11.06.2013 Views

Pigments of Higher Fungi: A Review

Pigments of Higher Fungi: A Review

Pigments of Higher Fungi: A Review

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102<br />

<strong>Pigments</strong> <strong>of</strong> <strong>Higher</strong> <strong>Fungi</strong>: A <strong>Review</strong><br />

Jan VELÍŠEK and Karel CEJPEK<br />

Department <strong>of</strong> Food Chemistry and Analysis, Faculty <strong>of</strong> Food and Biochemical Technology,<br />

Abstract<br />

Institute <strong>of</strong> Chemical Technology in Prague, Prague, Czech Republic<br />

Velíšek J., Cejpek K. (2011): <strong>Pigments</strong> <strong>of</strong> higher fungi – a review. Czech J. Food Sci., 29: 87–102.<br />

This review surveys the literature dealing with the structure <strong>of</strong> pigments produced by fungi <strong>of</strong> the phylum Basidiomycota<br />

and also covers their significant colourless precursors that are arranged according to their biochemical origin to the<br />

shikimate, polyketide and terpenoid derived compounds. The main groups <strong>of</strong> pigments and their leuc<strong>of</strong>orms include<br />

simple benzoquinones, terphenylquinones, pulvinic acids, and derived products, anthraquinones, terpenoid quinones,<br />

benzotropolones, compounds <strong>of</strong> fatty acid origin and nitrogen-containing pigments (betalains and other alkaloids).<br />

Out <strong>of</strong> three orders proposed, the concern is only focused on the orders Agaricales and Boletales and the taxonomic<br />

groups (incertae sedis) Cantharellales, Hymenochaetales, Polyporales, Russulales, and Telephorales that cover most <strong>of</strong><br />

the so called higher fungi <strong>of</strong>ten referred to as mushrooms. Included are only the European species that have generated<br />

scientific interest due to their attractive colours, taxonomic importance and distinct biological activity.<br />

Keywords: higher fungi; Basidiomycota; mushroom pigments; mushroom colour; pigment precursors<br />

Mushrooms inspired the cuisines <strong>of</strong> many cultures<br />

(notably Chinese, Japanese and European)<br />

for centuries and many species were used in folk<br />

medicine for thousands <strong>of</strong> years. However, little<br />

is known that mushrooms were a commonly<br />

used textile dye before the invention <strong>of</strong> synthetic<br />

dyes because <strong>of</strong> the vast range <strong>of</strong> vivid and rich<br />

colours achievable (Mussak & Bechtold 2009).<br />

The chromophores <strong>of</strong> mushroom dyes contain a<br />

variety <strong>of</strong> fascinating organic compounds. Their<br />

pigmentation may vary with the age and some<br />

undergo distinctive colour changes on bruising;<br />

therefore, the colours <strong>of</strong> mushrooms are one <strong>of</strong><br />

the essential features used in their identification.<br />

Furthermore, the pigments <strong>of</strong> mushrooms may<br />

protect the organism from UV damage and bacterial<br />

attack or play a role as insect attractants.<br />

Mushrooms do not contain the pigments that<br />

dominate in higher plant colours. Chlorophylls and<br />

anthocyanins are not present in fungi at all; betalains,<br />

carotenoids and other terpenoids are widespread<br />

only in some species <strong>of</strong> higher fungi. Many <strong>of</strong> the<br />

pigments <strong>of</strong> higher fungi are quinones or similar<br />

conjugated structures that are mostly classified according<br />

to the perceived biosynthetic pathways, reflecting<br />

their structure, to pigments derived from (i)<br />

the shikimate (chorismate) pathway, (ii) the acetatemalonate<br />

(polyketide) pathway, (iii) the mevalonate<br />

(terpenoid) pathway, and (iv) pigments containing<br />

nitrogen. Several review articles covering the literature<br />

published from its inception during the latter<br />

half <strong>of</strong> the 19 th century to the end <strong>of</strong> 2009 have been<br />

already published (Gill & Steglich 1987; Gill<br />

1994, 1996, 1999, 2003; Hanson 2008a,b; Räisänen<br />

2009; Zhou & Liu 2010).<br />

The shikimate pathway provides a route to the<br />

essential amino acids phenylalanine, tyrosine and<br />

tryptophan via the central intermediates shikimic<br />

and chorismic acids. Phenylalanine and tyrosine are<br />

precursors for a wide range <strong>of</strong> compounds includ-<br />

Partly supported by the Ministry <strong>of</strong> Education, Youth and Sports <strong>of</strong> the Czech Republic, Project No. MSM 6046137305.<br />

87


Vol. 29, 2011, No. 2: 87–102 Czech J. Food Sci.<br />

ing arylpyruvic, cinnamic and benzoic acids that<br />

represent the building blocks for many pigments <strong>of</strong><br />

higher fungi. Condensation <strong>of</strong> two arylpyruvic acid<br />

yields red to brown terphenylquinones and related<br />

orange to red grevillins. Diarylcyclopentenones,<br />

responsible for the colour changes in some bruised<br />

mushrooms, are formed by ring contractions <strong>of</strong><br />

terphenylquinones while oxidative cleavage <strong>of</strong> the<br />

hydroxyquinone ring in terphenylquinones and<br />

rearrangement <strong>of</strong> thus formed intermediates results<br />

in a series <strong>of</strong> yellow and orange lactones known as<br />

pulvinic (pulvic) acids. Their decarboxylation yields<br />

the yellow pulvinones that can be oxidised and further<br />

transformed to a number <strong>of</strong> structurally related<br />

products. Reduction <strong>of</strong> cinnamic acids affords the<br />

corresponding alcohols that are the building blocks<br />

<strong>of</strong> benzotropolone pigments. Tyrosine, hydroxylated<br />

to 3,4-dihydroxyphenylalanine (DOPA), is<br />

the precursor <strong>of</strong> the red-violet betacyanins and the<br />

orange-yellow betaxanthins. Both amino acids and<br />

their transformation products can be converted via<br />

quinones into the heterogeneous dark pigments<br />

melanins by the enzymatic browning reactions<br />

(oxidations and polymerisations). Tryptophan is<br />

transformed to hydroxyanthranilic acids that become<br />

the precursor <strong>of</strong> phenoxazines and other nitrogen-containing<br />

pigments. Benzoquinones can be<br />

synthesised from very different starting substances<br />

and via different biochemical pathways, e.g. using<br />

benzoic acids produced in the shikimate pathway.<br />

Terpenoid quinones are formed by combination <strong>of</strong><br />

the shikimate pathway with the mevalonate pathway.<br />

The polyketide pathway yields either aromatic<br />

ketides or fatty acids. For the aromatic ketides, the<br />

growing chain stabilises by cyclization reactions<br />

and partial reduction, whereas for fatty acids, the<br />

carbonyl groups <strong>of</strong> the chain are reduced before<br />

attachment <strong>of</strong> the next C 2 group. Products <strong>of</strong> this<br />

pathway include tetra-, hepta-, octa- and higher<br />

ketides and compounds <strong>of</strong> fatty acid origin. <strong>Fungi</strong><br />

contain a range <strong>of</strong> pigments <strong>of</strong> octaketide origin<br />

(e.g. anthraquinones) that are based on the anthra-<br />

9,10-quinone skeleton with both rings substituted.<br />

In many cases, anthraquinones are found in fungi<br />

as the corresponding colourless reduced forms<br />

88<br />

(anthranol, anthrone, anthrahydroquinone, and<br />

oxanthrone derivatives) that may occur in the form<br />

<strong>of</strong> various glycosides. Many natural anthraquinones<br />

are oligomers formed by coupling <strong>of</strong> two or more<br />

anthraquinone molecules. These oligomers further<br />

differ in the points through which monomers are<br />

attached and may have more than one polymorphic<br />

form (Velíšek et al. 2007, 2008; Velíšek &<br />

Cejpek 2008). Styrylpyrones are biosynthesised<br />

by a combined shikimate and polyketide pathway,<br />

which otherwise yields various terpenoids including<br />

carotenoids.<br />

Various pigments and other fungi constituents<br />

show important biological activities (antioxidative,<br />

free radical scavenging, anticarcinogenic, immunomodulatory,<br />

antiviral, and antibacterial) that<br />

have generated intensive research interest (Steglich<br />

1981; Calìa et al. 2003; Liu 2006; Medicinal<br />

Mushrooms 2008; Schüffler & Anke 2009).<br />

The taxonomy <strong>of</strong> the kingdom <strong>Fungi</strong> (the subkingdom<br />

Dikarya) is in a state <strong>of</strong> constant flux; therefore,<br />

the most recent 2007 classification adopted by a<br />

coalition <strong>of</strong> mycologists was used (Thorna et al.<br />

2007; MycoBank 2010). Out <strong>of</strong> seven phyla (divisions)<br />

proposed, the concern <strong>of</strong> this review only deals with<br />

the phylum Basidiomycota (“club fungi”) 1 (subphylum<br />

Agaricomycotina, class Agaromycetes, subclass<br />

Agaromycetidae)thatcoversmost<strong>of</strong>thesocalled“higher<br />

fungi” <strong>of</strong>ten referred to as “mushrooms”growing<br />

in Europe. The referred pigments, not reviewed up<br />

to now, are arranged according to the mushroom<br />

orders. Many other pigments were identified in<br />

fungi indigenous to Australasia.<br />

1 Agaricales<br />

The genera Agaricus L., Leucoagarius Locq. ex<br />

Singer and Macrolepiota Singer <strong>of</strong> the Agaricaceae,<br />

including the common mushroom A. bisporus (J.E.<br />

Lange) Imbach (now cultivated in at least 70 countries<br />

around the world), contain the glutamic acid<br />

derived hydrazine agaritine (1) that may be enzymatically<br />

oxidised at the C-4 hydroxymethyl group<br />

to the corresponding formyl and carboxyl deriva-<br />

1 The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya. The phylum Ascomycota<br />

(“sac fungi”) covers some higher fungi (belonging to the subdivision Pezizomycotina, class Pezizomycetes, subclass<br />

Penzizomycodidae, order Pezizales), such as the true morel (Morchella Dill. ex Pers., Morchellaceae), the false morel<br />

(Gyromitra Fr., Discinaceae) and the truffle (Tuber P. Micheli ex F.H. Wigg., Tuberaceae). Their pigments have been studied<br />

only sporadically; the black pigments <strong>of</strong> the black truffle T. melanosporum are polymeric allomelanins <strong>of</strong> polyketide<br />

origin (De Angelis et al. 1996).


O<br />

H<br />

N<br />

N<br />

H<br />

HO<br />

COOH<br />

O<br />

H<br />

N<br />

N<br />

H<br />

NHHO N<br />

2 H<br />

O<br />

H<br />

N<br />

N<br />

H<br />

COOH<br />

N<br />

N N<br />

H<br />

NH2 Czech HO J. Food Sci. NH2 <br />

O Vol. 29, 2011, No. 2: 87–102 <br />

O<br />

H<br />

N<br />

N<br />

H<br />

HO<br />

O<br />

H<br />

COOH N<br />

N<br />

H<br />

NH2 <br />

COOH<br />

NH2 <br />

N<br />

H<br />

N<br />

N<br />

N<br />

N N<br />

H<br />

O<br />

<br />

O<br />

<br />

1.agaritine 1.agaritine 2.agaricone<br />

2.agaricone<br />

HO<br />

O<br />

O<br />

COOH<br />

COOH<br />

N<br />

N<br />

H<br />

H<br />

NH2 NH2 <br />

<br />

glutamyl4hydroxybenzene 3.γglutamyl4hydroxybenzene<br />

O<br />

O<br />

OH<br />

OH<br />

NH<br />

NH<br />

<br />

<br />

4.2hydroxy4imino<br />

4.2hydroxy4iminocyclohexa2,5dienone<br />

cyclohexa2,5dienone<br />

HOOC<br />

O<br />

COO<br />

N<br />

-<br />

+<br />

COO<br />

+ O<br />

N<br />

-<br />

N<br />

COO O<br />

+<br />

N<br />

O<br />

-<br />

COOH<br />

+<br />

N COO -<br />

1.agaritine 2.agaricone<br />

HO<br />

O<br />

N<br />

H<br />

COOH<br />

NH2 <br />

3.γglutamyl4hydroxybenzene 4.2hydroxy4imino<br />

HOOC<br />

COO<br />

O<br />

N<br />

O<br />

HOOC N COOH<br />

-<br />

+<br />

+<br />

COO<br />

O<br />

N<br />

OH<br />

H<br />

H<br />

<br />

-<br />

N<br />

+<br />

N<br />

COO O<br />

O<br />

HOOC N COOH<br />

<br />

HOOC N COOH<br />

H<br />

-<br />

1.agaritine 2.agaricone<br />

1. agaritine 2. agaricone<br />

HO<br />

O<br />

N<br />

H<br />

HO<br />

COOH<br />

NH2 O<br />

N<br />

H<br />

COOH<br />

NH2 <br />

O<br />

OH<br />

NH<br />

O<br />

NH<br />

OH<br />

<br />

3.γglutamyl4hydroxybenzene 4.2hydroxy4imino<br />

3. γ-glutamyl-4-hydroxybenzene 4. 2-hydroxy-4-iminocyclohexa-2,5-dienone cyclohexa2,5dienone<br />

<br />

HOOC<br />

COO<br />

O<br />

N<br />

O<br />

HOOC N COOH<br />

5.muscapurpurin 6.muskaaurinI 7.muskaaurinI<br />

–<br />

+<br />

COO<br />

+ O<br />

N<br />

OH<br />

H<br />

H<br />

–<br />

COO O<br />

+<br />

N<br />

N<br />

O<br />

COOH<br />

HOOC N COOH<br />

HOOC N COOH<br />

H<br />

–<br />

+<br />

N<br />

COOH<br />

COO<br />

HOOC N COOH<br />

H<br />

–<br />

5. muscapurpurin 6. muskaaurin I 7. muskaaurin II 8. vulgaxanthin I<br />

COOH<br />

O<br />

COOH<br />

tives, which are hydrolysed to 4-(hydroxymethyl)- OH and yellow muscaflavin (12). Muscaurin I (6) and<br />

phenylhydrazine and 4-carboxymethylbenzoic acid, muscaurin II (7) are derived from unusual nonpro-<br />

respectively. 4-(Hydroxymethyl)phenylhydrazine is tein amino acids ibotenic acid and stizolobic acid,<br />

HOOC N COOH HOOC N COOH<br />

HOOC N COOH<br />

HOOC N COOH<br />

oxidised to theH corresponding diazonium H<br />

H<br />

cation. respectively, and are the major H agaric pigments.<br />

<br />

<br />

<br />

<br />

The metabolic fate <strong>of</strong> agaritine has been linked <strong>Pigments</strong> named muscaurins III–VII are mix-<br />

5.muscapurpurin with the carcinogenity <strong>of</strong> the6.muskaaurinI mushroom (Walton 7.muskaaurinII tures <strong>of</strong> pigments derived 8.vulgaxanthinI from common proteno-<br />

et al. 2001). The yellow pigment characteristic <strong>of</strong> genous amino acids. Muscaurin III is a mixture <strong>of</strong><br />

CONH2 the yellow-staining A. xanthodermus Genev. and <strong>of</strong> vulgaxanthin I (8), known as (S)-glutamine-beta-<br />

some other Agaricus species is caused by another xanthin, miraxanthin III (9), known as (S)-aspartic<br />

+<br />

azaquinone N COO metabolite agaricone (2) that forms by acid-betaxanthin, and a betaxanthin derived from<br />

oxidation <strong>of</strong> the corresponding leucophenol in the 2-aminoadipic acid. Muscaurin IV is a mixture <strong>of</strong><br />

damaged tissue. The agaritine analogues derived vulgaxanthin I and miraxanthin III. Muscaurin<br />

from 4-aminophenol γ-glutamyl-4-hydroxybenzene V is a mixture <strong>of</strong> vulgaxanthin II (10), known as<br />

(3) readily oxidise to the corresponding quinone (S)-glutamic acid-betaxanthin, indicaxanthin (11),<br />

HOOC N COOH<br />

via γ-glutamyl-3,4-dihydroxybenzene. H<br />

This quinone known as (S)-proline-betaxanthin, and betaxan-<br />

decomposes to 2-hydroxy-4-iminocyclohexa-2,5thins derived from valine and leucine. Muscaurin VI<br />

dienone (4), which imparts a pink-red colour to some is a mixture <strong>of</strong> vulgaxanthin II and indicaxanthin.<br />

agarics (e.g. to A. bisporus) (Hanson 2008a,b). Muscaurin VII is derived from histidine (Muso<br />

The striking orange-red pigments <strong>of</strong> the cap <strong>of</strong> 1976; Li & Oberlies 2005).<br />

fly agaric Amanita muscaria (L.) Hook. (Amanita Fly agaric and mushrooms <strong>of</strong> the genus Hygrocybe<br />

Pers., Amanitaceae) are a mixture <strong>of</strong> the purple (Fr.) P. Kumm. (Hygrophoraceae), e.g. H. conica<br />

betacyanin muscapurpurin (5), orange betaxan- (Schaeff.) P. Kumm., commonly known as the witch’s<br />

thins muscaurins (muscaaurins) I–VII (6 and 7) hat, synthesise the yellow pigment muscaflavin (12),<br />

-<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

<br />

-<br />

COOH<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

<br />

-<br />

O<br />

HOOC N COOH<br />

H<br />

<br />

<br />

9.miraxanthinIII 10.vulgaxanthinII 11.indicaxanthin 12.muscaflavin<br />

2-<br />

CH3<br />

COOH<br />

O<br />

R +<br />

N CH3<br />

N<br />

O O<br />

O V O O 2 H<br />

O O<br />

H3C N<br />

HOOC N<br />

O<br />

COOH<br />

H<br />

CH3<br />

<br />

<br />

+<br />

CONH2 +<br />

N COO<br />

HOOC N COOH<br />

H<br />

<br />

13.hygroaurins(R=aminoacidresidue) 14.amavadin<br />

CH3 OCH3 H3CO OH<br />

O<br />

HO<br />

OH<br />

O OH<br />

O OH OH<br />

H3CO OH OH O<br />

OH<br />

CH3 <br />

OH OH O<br />

OH<br />

RO<br />

CH3 <br />

-<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

<br />

-<br />

COOH<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

<br />

-<br />

O<br />

H<br />

N COOH<br />

N<br />

N<br />

N N<br />

H<br />

H<br />

HO<br />

NH2 O<br />

1. agaritine 2. agaricone<br />

O<br />

HO<br />

O<br />

OH<br />

COOH<br />

N<br />

H<br />

NH2 9.miraxanthinIII 10.vulgaxanthinII NH<br />

11.indicaxanthin<br />

<br />

H<br />

3. γ-glutamyl-4-hydroxybenzene 4. 2-hydroxy-4-iminocyclohexa-2,5-dienone<br />

COOH<br />

R +<br />

N<br />

HOOC<br />

COO<br />

O<br />

N<br />

H3<br />

HOOC N COOH<br />

O<br />

H<br />

<br />

<br />

13.hygroaurins(R=aminoacidresidue)<br />

HOOC N COOH<br />

CH3 OCH3 O<br />

HO<br />

OH OH O<br />

H3CO OH<br />

O OH OH<br />

H3CO C<br />

OH O OH<br />

15.fallacinol 16.(3R,3R,M)flavomannin6,6diOmeth<br />

–<br />

COO<br />

+<br />

+ O<br />

N<br />

OH<br />

H<br />

H<br />

–<br />

COO O<br />

+<br />

N<br />

N<br />

O<br />

COOH<br />

HOOC N COOH<br />

HOOC N COOH<br />

H<br />

–<br />

COOH<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

–<br />

5. muscapurpurin 6. muskaaurin I 7. muskaaurin II 8. vulgaxanthin I<br />

CONH2 +<br />

N COO<br />

HOOC N COOH<br />

H<br />

–<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

–<br />

COOH<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

–<br />

CONH2 +<br />

N COO<br />

HOOC N COOH<br />

H<br />

O<br />

9. miraxanthin III 10. vulgaxanthin II 11. indicaxanthin<br />

HOOC N COOH<br />

H<br />

12. muscaflavin<br />

–<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

–<br />

COOH<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

–<br />

O<br />

HOOC N COOH<br />

H<br />

9. miraxanthin III 10. vulgaxanthin II 11. indicaxanthin 12. muscaflavin<br />

CH3<br />

COOH<br />

O N CH3<br />

R +<br />

N<br />

O O<br />

O V O O 2 H<br />

O O<br />

H3C N<br />

HOOC N<br />

O<br />

COOH<br />

H<br />

CH3<br />

+<br />

13. hygroaurins (R = amino acid residue) 14. amavadin<br />

CH3 OCH3 O<br />

HO<br />

OH OH O<br />

OH OH O<br />

H3CO OH<br />

O OH OH<br />

OH<br />

OH<br />

H3CO CH RO<br />

3<br />

OH O OH<br />

CH3 15. fallacinol 16. (3R,3R',M)-flavomannin-6,6'-di-O-methyl ether 17. (3R)-atrochrysone, R = H<br />

(3R)-torosachrysone, R = CH3<br />

15.fallacinol 16.(3R,3R,M)flavomannin6,6diOmethylether17.(3R)atrochrysone,R=H<br />

(3R)torosachrysone,R=CH3<br />

CH3<br />

89<br />

R<br />

COOH<br />

+<br />

N<br />

N<br />

N<br />

O<br />

O<br />

O O<br />

N<br />

O O<br />

V O<br />

CH3<br />

O<br />

O<br />

2 H +<br />

N<br />

H<br />

N<br />

N


HOOC N<br />

H<br />

Vol. 29, 2011, No. 2: 87–102 <br />

<br />

Czech J. Food Sci.<br />

90<br />

COOH HOOC NHOOC<br />

COOHN<br />

H H<br />

COOH HOOC NHOOC<br />

COOHN<br />

H H<br />

O<br />

COOH HOOC NHOOC<br />

COOHN<br />

COOH<br />

H<br />

HOOC<br />

H<br />

N COOH<br />

H<br />

derived from dihydroazepine, and store it in the cup<br />

skin. Analogously to betalamic acid involved in the<br />

formation <strong>of</strong> betalains, muscaflavin can spontaneously<br />

condense with amino acids, under the formation<br />

<strong>of</strong> aldimine bonds, yielding yellow hygroaurins<br />

(13) (Muso 1976; Li & Oberlies 2005).<br />

The unusually high concentration <strong>of</strong> vanadium<br />

in some Amanita species is ascribed to the formation<br />

<strong>of</strong> amavadin (14), a pale blue complex (1:2)<br />

<strong>of</strong> vanadium V4+ C. citrinus J.E. Lange ex P.D. Orton and C. croceus<br />

(Schaeff.) Gray, while in Australian fungi it forms as<br />

a mixture <strong>of</strong> (3R,3R', M)- (16) and (3R,3R', P)-atropoisomers.<br />

The green (3R)-atrochrysone (17) occurs in<br />

C. atrovirens Kalchbr. and C. odoratus (M.M.Moser)<br />

M.M.Moser, (3S)-torosachrysone-8-O-methyl ether<br />

in C. fulmineus (Fr.) Fr., C. citrinus J.E. Lange ex<br />

P.D. Orton, C. splendens R. Henry, T. equestre (L.) P.<br />

Kumm. and the Sulphur Knight T. sulphureum (Bull.)<br />

with (2S,2´S)-N-hydroxyimino- P. Kumm. (Gill & Steglich 1987; Gill 1994). A<br />

2,2'-dipropionic acid, isolated originally from number <strong>of</strong> anthraquinone pigments formally derived<br />

A. muscaria (Bayer & Kneifel 1972).<br />

from torosachrysone and atrochrysone by coupling<br />

The genus Cortinarius (Pers.) Gray (Cortina- (dimeric, trimeric and tetrameric octaketides) have<br />

riaceae) represents the largest genus <strong>of</strong> agarics, con- been described, mostly in Australian fungi belonging<br />

taining about 1000 different species in Europe and to the genera Cortinarius, Dermocybe and, to a lesser<br />

found worldwide together with the closely related extent, Tricholoma (Gill & Morgan 2001).<br />

genera Dermocybe (Fr.) Wünsche (Cortinariaceae)<br />

and Tricholoma (Fr.) Staude (Tricholomataceae). A<br />

The European members <strong>of</strong> the genus Cortinarius<br />

characteristically contain the xanthone dermoxan-<br />

range <strong>of</strong> anthraquinones and biogenetically related thone (18) and its methyl ester that were found in<br />

metabolites has been found in these mushrooms the stem <strong>of</strong> the Surprise Webcap C. semisanguineus<br />

principally due to the activity in the study <strong>of</strong> the<br />

Australian Cortinarius/Dermocybe species. The major<br />

dark orange pigment <strong>of</strong> the European toadstool<br />

(Fr.) Gill. These xanthones are responsible for the<br />

bright yellow fluorescence under UV light (Gill<br />

1999). The fruiting bodies <strong>of</strong> several Cortinarius<br />

C. cinnabarinus Fr. is fallacinol (6-O-methoxycitre- species, such as the Violet Webcap C. violaceus<br />

orosein, 15) (Gill & Steglich 1987; Gill 1994). (L.) Gray, have a strikingly deep violet colour<br />

Several species <strong>of</strong> the genera Cortinarius, Dermo- <strong>of</strong> the fruiting bodies, which is ascribes to the<br />

cybe and Tricholoma, such as C. cinnamomeoluteus<br />

P.D. Orton and T. equestre (L.) P. Kumm. (trivially<br />

known as Man on Horseback), produce a bright<br />

yellow dimeric anthraquinone flavomannin-6,6'-<br />

unique β-DOPA-Fe<br />

di-O-methyl ether (16). This pigment is biosynthesised<br />

by 7,7'-coupling <strong>of</strong> the corresponding green<br />

dihydroanthracenone (3R)-torosachrysone (17). In<br />

its homochiral form it also occurs in the European<br />

3+ complex [Fe3+ L (H O )] 2 2 2 – or<br />

[Fe3+ L (H O )] 4 2 2 2– 9.miraxanthinIII 10.vulgaxanthinII 11.indicaxanthin 12.muscaflavin<br />

<br />

2-<br />

CH3<br />

COOH<br />

O<br />

R +<br />

N CH3<br />

N<br />

O O<br />

O V O O 2 H<br />

O O<br />

H3C N<br />

N<br />

O<br />

HOOC COOH<br />

H<br />

CH3<br />

<br />

<br />

, where L is the (3R)-β-DOPA anion<br />

ligand (19). These mushrooms concentrate iron<br />

by as much as 100-fold over other Basidiomycota<br />

(Von Nussbaum et al. 1998). Unusually high concentrations<br />

<strong>of</strong> iron were also found in the Velvet<br />

Bolete, Suillus variegatus (Sw.) Kuntze (Boletales)<br />

(Drbal et al. 1975; Kalač et al. 1989).<br />

+<br />

9.miraxanthinIII 10.vulgaxanthinII 11.indicaxanthin 12.muscaflavin<br />

<br />

H3CO 2-<br />

CH3<br />

COOH<br />

O<br />

R +<br />

N CH3<br />

N<br />

O O<br />

O V O O 2 H<br />

O O<br />

H3C N<br />

N<br />

O<br />

HOOC COOH<br />

H<br />

CH3<br />

<br />

<br />

<br />

13.hygroaurins(R=aminoacidresidue) 14.amavadin<br />

CH3 OCH3 O<br />

HO<br />

OH OH O<br />

OH OH O<br />

OH<br />

O OH OH<br />

OH<br />

OH<br />

H3CO CH RO<br />

3<br />

OH O OH<br />

CH3 <br />

<br />

15.fallacinol 16.(3R,3R,M)flavomannin6,6diOmethylether17.(3R)atrochrysone,R=H<br />

(3R)torosachrysone,R=CH3<br />

+<br />

O<br />

H<br />

N COOH<br />

N<br />

N<br />

N N<br />

H<br />

H<br />

HO<br />

NH2 O<br />

1. agaritine 2. agaricone<br />

O<br />

HO<br />

O<br />

OH<br />

COOH<br />

<br />

N<br />

H 13.hygroaurins(R=aminoacidresidue) 14.amavadin<br />

NH2 NH<br />

CH3 3. γ-glutamyl-4-hydroxybenzene 4. 2-hydroxy-4-iminocyclohexa-2,5-dienone<br />

OCH3 O<br />

HO<br />

OH OH O<br />

OH OH O<br />

H3CO OH<br />

O OH OH<br />

OH<br />

HOOC<br />

OH<br />

H<br />

COO 3CO<br />

CH RO<br />

3<br />

O OH O OH<br />

CH<br />

N<br />

3<br />

<br />

<br />

O<br />

15.fallacinol 16.(3R,3R,M)flavomannin6,6diOmethylether17.(3R)atrochrysone,R=H<br />

(3R)torosachrysone,R=CH3<br />

HOOC N COOH<br />

-<br />

COO<br />

+<br />

+ O<br />

N<br />

OH<br />

H<br />

H<br />

-<br />

COO O<br />

+<br />

N<br />

N<br />

O<br />

COOH<br />

HOOC N COOH<br />

HOOC N COOH<br />

H<br />

-<br />

COOH<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

-<br />

5. muscapurpurin 6. muskaaurin I 7. muskaaurin II 8. vulgaxanthin I<br />

CONH2 +<br />

N COO<br />

HOOC N COOH<br />

H<br />

-<br />

+<br />

N COO<br />

HOOC N COOH<br />

H<br />

-<br />

COOH<br />

+<br />

N COO<br />

HOOC N<br />

H<br />

COOH<br />

-<br />

O<br />

HOOC N COOH<br />

H<br />

9. miraxanthin III 10. vulgaxanthin II 11. indicaxanthin 12. muscaflavin<br />

2-<br />

CH3<br />

COOH<br />

R +<br />

N<br />

O N CH3<br />

O O<br />

O V O O 2 H<br />

O O<br />

HOOC N COOH<br />

H<br />

H3C N O<br />

CH3<br />

+<br />

13. hygroaurins (R = amino acid residue) 14. amavadin<br />

H 3CO<br />

O<br />

OH O OH<br />

OH<br />

HO<br />

CH 3<br />

O OH OH<br />

H3CO OCH3 OH<br />

15. fallacinol 16. (3R,3R',M)-flavomannin-6,6'-di-O-methyl ether 17. (3R)-atrochrysone, R = H<br />

(3R)-torosachrysone, R = CH3<br />

OH<br />

O<br />

CH 3<br />

OH<br />

O<br />

RO<br />

OH<br />

OH<br />

O<br />

CH 3<br />

OH


Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102<br />

H H3CO H3CO 3CO 3CO<br />

H3CO HOOC<br />

HOOC<br />

O<br />

O<br />

O OH<br />

OH<br />

OH O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

-<br />

–<br />

-<br />

-<br />

O<br />

O<br />

O<br />

-<br />

–<br />

-<br />

-<br />

O<br />

O<br />

O<br />

COO -<br />

COO<br />

+<br />

NH3 – COO<br />

+<br />

NH3 -<br />

COO<br />

+<br />

NH3 - COO<br />

+<br />

NH3 -<br />

COO<br />

+<br />

NH3 -<br />

COO<br />

+<br />

NH3 -<br />

+<br />

NH3 Scaurins (20) are the polyene pigments with and Pholiota (Fr.) P. Kumm., where they have a<br />

bound glutamic acid OH that were isolated from the considerable taxonomic significance (Gill 1994).<br />

fruiting bodies <strong>of</strong> C. scaurus (Fr.) Fr. (Gill 1998, Hispidin is biosynthesised by two different mecha-<br />

2003). R Alkaloids containing the canthin-6-one nisms using the activated 4-hydroxy-6-methylpy-<br />

O O<br />

skeleton are produced by some other C. species. rone (a condensation product <strong>of</strong> three activated<br />

The HO parent compound canthin-6-one (21) occurs acetates) and the activated 3,4-dihydroxybenzoic<br />

<br />

in the bitter-tasting C. infractus (Pers.) Fr. together acid or from phenylalanine via a cinnamyl derivative<br />

with the β-carboline derivatives infractin A and that is combined with either acetate or malonate<br />

B (22) (Gill 1996).<br />

through the polyketide pathway. The related open<br />

The benzotropolone derivative aurantricholone chain β-keto ester (26, R = COOCH ) was isolated<br />

3<br />

(23), isolated from the bright orange-red caps some years ago as the Brick Cap H. sublateritium<br />

<strong>of</strong> Tricholoma aurantium (Schaeff.) Ricken, is (Schaeff.) Quél. pigment. The yellow pigment<br />

closely related to the naphthalenoid pulvinic acid hispolon is the hydrolytic and decarboxylation<br />

badione A occurring in the Boletales mushrooms product <strong>of</strong> the open chain β-keto ester (26) (Gill<br />

(see Chapter 2). It occurs naturally as a metal 1994). It also occurs in mushrooms <strong>of</strong> the Hy-<br />

chelate; the predominant counter ion is calcium menochaetaceae family, e.g. in several Inonotus<br />

(Klostermeyer et al. 2000). Minor pigments are P. Karst., Onnia P. Karsten and Phellinus Quél.<br />

the yellow aurantricholides A and B (24). species. (Lee & Yun 2006)<br />

The yellow-brown styrylpyrone pigments bis- Orange-yellow polyenes <strong>of</strong> fatty acid origin,<br />

noryangonin and hispidin (25) are widespread dihydroxerulin, xerulin and xerulinic acid (27),<br />

among fungi <strong>of</strong> the Strophariaceae family, genera are the pigments <strong>of</strong> Oudemansiella melanotricha<br />

Gymnopilus P. Karst., Hypholoma (Fr.) P. Kumm. (Dörfelt) M.M. Moser (Oudemansiella Speg.,<br />

HO<br />

OH<br />

NO2 COOH<br />

OH O<br />

H<br />

R<br />

HO<br />

O O<br />

R<br />

O<br />

N<br />

N Cl<br />

H<br />

HO<br />

O<br />

O OH<br />

<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH NH<br />

2<br />

2<br />

COOH<br />

COOH<br />

HOOC<br />

O<br />

N<br />

N<br />

N<br />

HN<br />

O<br />

O<br />

H<br />

NH<br />

H<br />

NH<br />

NH<br />

N<br />

HN<br />

O<br />

HN<br />

N<br />

X N O<br />

N O<br />

O<br />

O<br />

COOH<br />

R<br />

<br />

<br />

<br />

<br />

29.mycearubinA 30.mycearubinB 31.sanguinoneA,R=H 32.haematopodin,X=O<br />

sanguinoneB,R=CH3 haematopodinB,X=NH<br />

O<br />

HO<br />

OH<br />

NO2 COOH<br />

OH O<br />

H<br />

R<br />

HO<br />

O O<br />

R<br />

O<br />

N<br />

N Cl<br />

H<br />

HO<br />

O<br />

O OH<br />

<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH NH<br />

2<br />

2<br />

COOH<br />

COOH<br />

HOOC<br />

O<br />

N<br />

N<br />

N<br />

HN<br />

O<br />

O<br />

H<br />

NH<br />

H<br />

NH<br />

NH<br />

N<br />

HN<br />

O<br />

HN<br />

N<br />

X N O<br />

N O<br />

O<br />

O<br />

COOH<br />

R<br />

<br />

<br />

<br />

<br />

29.mycearubinA 30.mycearubinB 31.sanguinoneA,R=H 32.haematopodin,X=O<br />

sanguinoneB,R=CH3 haematopodinB,X=NH<br />

O<br />

HO<br />

OH<br />

NO2 COOH<br />

OH O<br />

R<br />

H<br />

HO<br />

O O<br />

R<br />

O<br />

N<br />

N Cl<br />

H<br />

HO<br />

O<br />

O OH<br />

<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH NH<br />

2<br />

2<br />

COOH<br />

COOH<br />

HOOC<br />

O<br />

N<br />

N<br />

N<br />

HN<br />

O<br />

O<br />

H<br />

NH<br />

H<br />

NH<br />

NH<br />

N<br />

HN<br />

O<br />

HN<br />

N<br />

X N O<br />

N O<br />

O<br />

O<br />

COOH<br />

R<br />

<br />

<br />

<br />

<br />

29.mycearubinA 30.mycearubinB 31.sanguinoneA,R=H 32.haematopodin,X=O<br />

sanguinoneB,R=CH3 haematopodinB,X=NH<br />

O<br />

HO<br />

OH<br />

NO2 COOH<br />

OH O<br />

R<br />

H<br />

HO<br />

O O<br />

R<br />

O<br />

N<br />

N Cl<br />

H<br />

HO<br />

O<br />

O OH<br />

<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH NH<br />

2<br />

2<br />

COOH<br />

COOH<br />

HOOC<br />

O<br />

N<br />

N<br />

N<br />

HN<br />

O<br />

O<br />

H<br />

NH<br />

H<br />

NH<br />

NH<br />

N<br />

HN<br />

O<br />

HN<br />

N<br />

X N O<br />

N O<br />

O<br />

O<br />

COOH<br />

R<br />

<br />

<br />

<br />

<br />

29.mycearubinA 30.mycearubinB 31.sanguinoneA,R=H 32.haematopodin,X=O<br />

sanguinoneB,R=CH3 haematopodinB,X=NH<br />

O<br />

HO<br />

OH<br />

NO2 COOH<br />

OH O<br />

R<br />

H<br />

HO<br />

O O<br />

R<br />

O<br />

N<br />

N Cl<br />

H<br />

HO<br />

O<br />

O OH<br />

<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH NH<br />

2<br />

2<br />

COOH<br />

COOH<br />

HOOC<br />

O<br />

N<br />

N<br />

N<br />

HN<br />

O<br />

O<br />

H<br />

NH<br />

H<br />

NH<br />

NH<br />

N<br />

HN<br />

O<br />

HN<br />

N<br />

X N O<br />

N O<br />

O<br />

O<br />

COOH<br />

R<br />

<br />

<br />

<br />

<br />

29.mycearubinA 30.mycearubinB 31.sanguinoneA,R=H 32.haematopodin,X=O<br />

sanguinoneB,R=CH3 haematopodinB,X=NH<br />

O<br />

HO<br />

NO2 COOH<br />

OH O<br />

H<br />

HO<br />

R<br />

O<br />

N<br />

HOOC O OH O<br />

N Cl<br />

H<br />

O<br />

O OH<br />

O<br />

COO <br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

H3CO O<br />

<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH NH<br />

2<br />

2<br />

COOH<br />

COOH<br />

HOOC<br />

O<br />

N<br />

N<br />

N<br />

HN<br />

O<br />

O<br />

H<br />

NH<br />

H<br />

NH<br />

NH<br />

N<br />

HN<br />

O<br />

HN<br />

N<br />

X N O<br />

N O<br />

O<br />

O<br />

COOH<br />

R<br />

<br />

<br />

<br />

<br />

29.mycearubinA 30.mycearubinB 31.sanguinoneA,R=H 32.haematopodin,X=O<br />

sanguinoneB,R=CH3 haematopodinB,X=NH<br />

O<br />

-<br />

HOOC<br />

-<br />

O OH O<br />

O<br />

O COOH<br />

H<br />

R<br />

-<br />

N COOH<br />

O O<br />

COO H<br />

H +<br />

3CO O<br />

NH3 HO<br />

<br />

<br />

<br />

18.dermoxanthone 19.DOPAanion 20.scaurinA,R=H<br />

scaurinB,R=OH<br />

OH O<br />

OH<br />

HO<br />

O O<br />

R<br />

O<br />

O<br />

N<br />

HO<br />

H<br />

OH<br />

R O<br />

N<br />

O<br />

O<br />

COOCH3 HO<br />

O<br />

<br />

<br />

<br />

<br />

21.canthin6one 22.infractinA,R=H 23.aurantricholone 24.aurantricholideA,R=OH<br />

infractinB,R=OH aurantricholideB,R=H<br />

-<br />

HOOC<br />

-<br />

O OH O O<br />

O COOH<br />

H<br />

R<br />

-<br />

N COOH<br />

O O<br />

COO H<br />

H +<br />

3CO O<br />

NH3 HO<br />

<br />

<br />

18.dermoxanthone 19.DOPAanion 20.scaurinA,R=H<br />

scaurinB,R=OH<br />

OH O<br />

OH<br />

HO<br />

O O<br />

R<br />

O<br />

O<br />

N<br />

HO<br />

H<br />

OH<br />

R O<br />

N<br />

O<br />

O<br />

COOCH3 HO<br />

O<br />

<br />

<br />

<br />

<br />

21.canthin6one 22.infractinA,R=H 23.aurantricholone 24.aurantricholideA,R=OH<br />

infractinB,R=OH aurantricholideB,R=H<br />

-<br />

HOOC<br />

-<br />

O OH O<br />

O<br />

O COOH<br />

H<br />

R<br />

-<br />

N COOH<br />

O<br />

O<br />

COO H<br />

H +<br />

3CO O<br />

NH3 HO<br />

<br />

18. dermoxanthone 19. β-DOPA anion 20. scaurin A, R = H<br />

scaurin B, R = OH<br />

OH O<br />

OH<br />

HO<br />

O O<br />

R<br />

O<br />

O<br />

N<br />

HO<br />

H<br />

OH<br />

R O<br />

N<br />

O<br />

O<br />

COOCH3 HO<br />

O<br />

21. canthin-6-one 22. infractin A, R = H 23. aurantricholone 24. aurantricholide A, R = OH<br />

infractin B, R = OH aurantricholide B, R = H<br />

-<br />

-<br />

O<br />

O COOH<br />

H<br />

R<br />

-<br />

N COOH<br />

O<br />

H<br />

+<br />

NH3 HO<br />

<br />

<br />

18.dermoxanthone 19.DOPAanion 20.scaurinA,R=H<br />

scaurinB,R=OH<br />

OH O<br />

OH<br />

HO<br />

O O<br />

R<br />

O<br />

O<br />

N<br />

HO<br />

H<br />

OH<br />

R O<br />

N<br />

O<br />

O<br />

COOCH3 HO<br />

O<br />

<br />

<br />

<br />

<br />

21.canthin6one 22.infractinA,R=H 23.aurantricholone 24.aurantricholideA,R=OH<br />

infractinB,R=OH aurantricholideB,R=H<br />

R<br />

R<br />

R<br />

18.dermoxanthone 18.dermoxanthone 18.dermoxanthone 18.dermoxanthone 18.dermoxanthone 18.dermoxanthone 19.DOPAanion 19.DOPAanion 19.DOPAanion 19. 19.DOPAanion 19.DOPAanion 19.DOPAanion β-DOPA anion<br />

20.scaurinA,R=H<br />

20.scaurinA,R=H<br />

20.scaurinA,R=H<br />

20.scaurinA,R=H<br />

20.scaurinA,R=H<br />

20.scaurinA,R=H<br />

scaurinB,R=OH<br />

scaurinB,R=OH<br />

scaurinB,R=OH<br />

scaurinB,R=OH<br />

scaurinB,R=OH<br />

scaurinB,R=OH<br />

N<br />

N<br />

N<br />

O<br />

O<br />

O<br />

<br />

R<br />

R<br />

R<br />

<br />

<br />

<br />

N<br />

N<br />

N<br />

H<br />

H<br />

H<br />

COOCH COOCH 3<br />

3<br />

3<br />

<br />

HO<br />

HO<br />

HO<br />

<br />

<br />

<br />

OH<br />

OH<br />

OH O<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

HO<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

HO<br />

HO<br />

R<br />

R<br />

R<br />

HO<br />

HO<br />

HO<br />

<br />

O<br />

O<br />

O COOH<br />

COOH<br />

H<br />

H<br />

H<br />

N<br />

N<br />

N COOH<br />

COOH<br />

H<br />

H<br />

H<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

<br />

<br />

<br />

21.canthin6one 21.canthin6one 21.canthin6one 21.canthin6one 21.canthin6one 21.canthin6one 22.infractinA,R=H 22.infractinA,R=H 22.infractinA,R=H 22.infractinA,R=H 22.infractinA,R=H 22.infractinA,R=H 23.aurantricholone 23.aurantricholone 23.aurantricholone 23.aurantricholone 23.aurantricholone 23.aurantricholone 24.aurantricholideA,R=OH<br />

24.aurantricholideA,R=OH<br />

24.aurantricholideA,R=OH<br />

24.aurantricholideA,R=OH<br />

24.aurantricholideA,R=OH<br />

24.aurantricholideA,R=OH<br />

infractinB,R=OH infractinB,R=OH infractinB,R=OH infractinB,R=OH infractinB,R=OH infractinB,R=OH aurantricholideB,R=H<br />

aurantricholideB,R=H<br />

aurantricholideB,R=H<br />

aurantricholideB,R=H<br />

aurantricholideB,R=H<br />

aurantricholideB,R=H<br />

R<br />

R<br />

R<br />

R<br />

HO<br />

O<br />

O<br />

O<br />

OH<br />

R<br />

R<br />

R<br />

O O<br />

<br />

H H3C H3C 3C<br />

H3C H H3C H3C 3C<br />

H3C O<br />

O<br />

O<br />

O O<br />

O O<br />

O<br />

O<br />

O<br />

O O<br />

O<br />

O OH<br />

OH<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H H3C H3C 3C<br />

H3C O<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

CH CH 3<br />

CH 3<br />

3<br />

R<br />

R<br />

R<br />

HO<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

33.polyporicacid,R=H 33.polyporicacid,R=H 33.polyporicacid,R=H 33.polyporicacid,R=H 33.polyporicacid,R=H 33.polyporicacid,R=H 34.leucomentin2 34.leucomentin2 34.leucomentin2 34.leucomentin2 34.leucomentin2 34.leucomentin2 35.flavomentinA<br />

35.flavomentinA<br />

35.flavomentinA<br />

35.flavomentinA<br />

35.flavomentinA<br />

35.flavomentinA<br />

atromentin,R=OH<br />

atromentin,R=OH<br />

atromentin,R=OH<br />

atromentin,R=OH<br />

atromentin,R=OH<br />

atromentin,R=OH<br />

HO<br />

R<br />

HO<br />

OH<br />

HO<br />

O O<br />

<br />

R<br />

OH O<br />

R<br />

<br />

NO2 COOH<br />

H<br />

O<br />

N<br />

N Cl<br />

H<br />

O<br />

O OH<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH2 NH2 HO<br />

R R<br />

HO HO<br />

OH OH<br />

HO HO<br />

O O O O<br />

HO<br />

<br />

R R<br />

OH OH O O<br />

R R<br />

<br />

NO NO 2 2<br />

COOH<br />

H H<br />

O O<br />

N N<br />

N N Cl Cl<br />

H H<br />

O O<br />

O O OH OH<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

25. bisnoryangonin, R = H 26. hispolon, R = CH3 27. dihydroxerulin, R = CH2-CH2-CH3 28. stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

hispidin, R = OH xerulin, R = CH=CH-CH3<br />

xerulinicacid,R=CH=CHCOOH<br />

xerulinic acid, R = CH=CH- COOH<br />

NH NH 2 2<br />

NH NH 2 2<br />

HO<br />

HO<br />

R<br />

OH O<br />

R<br />

<br />

NO2 COOH<br />

H<br />

O<br />

N<br />

N Cl<br />

H<br />

O<br />

O OH<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH2 NH2 NN<br />

N N<br />

COOH<br />

COOH<br />

OO<br />

O O<br />

OO<br />

O O<br />

NN<br />

N N<br />

COOH<br />

COOH<br />

NH NH<br />

NH<br />

HOOC<br />

HOOC<br />

HH<br />

H H<br />

NN<br />

N N<br />

NH NH<br />

NH<br />

OO<br />

O O<br />

HHN<br />

HNH<br />

NN<br />

<br />

<br />

<br />

HH<br />

H H<br />

91


R<br />

HO<br />

RR<br />

R<br />

HO HO HO<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

Vol. 29, 2011, No. 2: 87–102 Czech J. Food Sci.<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

xerulinicacid,R=CH=CHCOOH<br />

xerulinicacid,R=CH=CHCOOH<br />

xerulinicacid,R=CH=CHCOOH<br />

HOOC<br />

- -<br />

HOOC OO<br />

OH OH<br />

-<br />

O OH O OO<br />

O OO<br />

O OO<br />

COOH<br />

COOH<br />

NH2 NH NH 2NH<br />

2 2<br />

H3CO H3CO H3CO COOH COOH<br />

O OO<br />

Physalacriaceae) that act as inhibitors H <strong>of</strong> choles- <strong>of</strong> theOH mushroom decomposing O OO<br />

O<br />

H under the influence<br />

3C HH3CH R O<br />

N<br />

3C 3C<br />

terol biosynthesis (Kuhnt et al. 1990). H3C H3C H3CH 3C <strong>of</strong> air and light (Hopmann & Steglich 2006). O<br />

The carrot O<br />

COOCH truffle, Stephanospora caroticolor 3 O<br />

O O<br />

OO<br />

O<br />

HO<br />

O<br />

<br />

O O <br />

O O<br />

O O OH OH OH OH <br />

(Berk.) Pat. (Stephanospora H3C Pat., HH H Stephanospo-<br />

O OO<br />

O<br />

3C 3C 3C<br />

21.canthin6one 22.infractinA,R=H 23.aurantricholone O OO<br />

O24.aurantricholideA,R=OH<br />

raceae), contains in its subterranean tuber-like<br />

2 Boletales<br />

infractinB,R=OH<br />

fruiting bodies the R pigment RR<br />

R stephanosporin O OO<br />

(28). O aurantricholideB,R=H<br />

OO<br />

OH O OH OH OH<br />

O OO<br />

O<br />

O OO<br />

O<br />

O OO<br />

O<br />

This unusual hydrazine derivative is biosynthesised<br />

O<br />

Mushrooms <strong>of</strong> the order Boletales are charac-<br />

OO<br />

O<br />

O OO<br />

O<br />

using 2-chloro-4-nitrophenol as the building block. terised by a diversity HO HO HO HO<strong>of</strong><br />

colours O OOmainly<br />

O derived<br />

OH<br />

Both compounds occur naturally as their potas- OH OH OH OH from terphenylquinones and pulvinic acids. Tersium<br />

salts O and OO<br />

Oare<br />

responsible for the bright OHorange<br />

OH OH OH phenylquinones, exemplified by polyporic CH3 CH CH3 CH 3acid<br />

3<br />

R RR<br />

R<br />

R<br />

HO HO HO HO<br />

O OO<br />

O<br />

colour <strong>of</strong> the mushroom O (Lang O<br />

et al. 2001). (33) and atromentin<br />

(33), are mainly produced by <br />

33.polyporicacid,R=H 33.polyporicacid,R=H 33.polyporicacid,R=H 33.polyporicacid,R=H The pyrroloquinone alkaloids 34.leucomentin2 isolated 34.leucomentin2 34.leucomentin2 34.leucomentin2 from My- wood-rotting higher 35.flavomentinA<br />

fungi 35.flavomentinA<br />

35.flavomentinA<br />

35.flavomentinA<br />

<strong>of</strong> the order Polyporales<br />

HO<br />

atromentin,R=OH<br />

atromentin,R=OH<br />

atromentin,R=OH<br />

cena atromentin,R=OH<br />

(Pers.) Roussel (Mycenaceae) species include growing on various deciduous trees but in other<br />

the red pigments mycearubin A (29), mycearubin B higher fungi, such as in the Boletales fungi, they<br />

(30) and related compounds from the fruiting bod- only appear sporadically. However, atromentin<br />

ies <strong>of</strong> M. rosea (Schumach.) Gramberg (Peters & is their key intermediate for many conversions<br />

Spiteller 2007a) and the Bleeding Fairy Helmet leading to more highly hydroxylated terphenyl-<br />

M. haematopus (Pers.) P. Kumm. The blue sanquinones, hydroxypulvinic acids, cyclopentenones<br />

guinones A and B (31) were isolated from M. san- and related compounds. In the intact fruit bodies,<br />

guinolenta (Alb. & Schwein.) P. Kumm. (Peters atromentin occurs in the form <strong>of</strong> its colourless<br />

& Spiteller 2007b) and red haematopodins from precursors leucomentins.<br />

the fragile reddish-brown stems <strong>of</strong> M. haematopus Leucoderivative <strong>of</strong> atromentin esterified with<br />

(Hopmann & Steglich 2006; Peters et al. 2008). (2Z,4S,5S)-4,5-epoxyhex-2-enoic acid from the<br />

These alkaloids are exemplified by the minor pigment lignicolous fungi Tapinella atrotomentosa (Batsch)<br />

haematopodin (32), a breakdown product <strong>of</strong> the labile Šutara (Tapinella E.-J. Gilbert, Tapinellaceae) spo-<br />

red haematopodin B (32), which is the main pigment rophore is leucomentin-2 (34) (Gill & Steglich<br />

1987; Gill 1994; Liu 2006; Hanson 2008b). This<br />

HO<br />

H<br />

OH<br />

R O<br />

N<br />

O<br />

O<br />

COOCH3 HO<br />

O<br />

<br />

<br />

<br />

<br />

21.canthin6one 22.infractinA,R=H 23.aurantricholone 24.aurantricholideA,R=OH<br />

infractinB,R=OH aurantricholideB,R=H<br />

R<br />

OH<br />

NO2 COOH<br />

OH O<br />

R<br />

H<br />

HO<br />

O O<br />

R<br />

O<br />

N<br />

N Cl<br />

H<br />

HO<br />

O<br />

O OH<br />

<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH NH<br />

2<br />

2<br />

COOH<br />

COOH<br />

HOOC<br />

O<br />

N<br />

N<br />

N<br />

HN<br />

O<br />

O<br />

H<br />

NH<br />

H<br />

NH<br />

NH<br />

N<br />

HN<br />

O<br />

HN<br />

N<br />

X N O<br />

N O<br />

O<br />

O<br />

COOH<br />

R<br />

<br />

<br />

<br />

<br />

29.mycearubinA 30.mycearubinB 31.sanguinoneA,R=H 32.haematopodin,X=O<br />

sanguinoneB,R=CH3 haematopodinB,X=NH<br />

HO<br />

H<br />

OH<br />

R O<br />

N<br />

O<br />

O<br />

COOCH3 HO<br />

O<br />

<br />

<br />

<br />

<br />

21.canthin6one 22.infractinA,R=H 23.aurantricholone 24.aurantricholideA,R=OH<br />

infractinB,R=OH aurantricholideB,R=H<br />

R<br />

OH<br />

NO2 COOH<br />

OH O<br />

H<br />

R<br />

HO<br />

O O<br />

R<br />

O<br />

N<br />

N Cl<br />

H<br />

HO<br />

O<br />

O OH<br />

<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH NH<br />

2<br />

2<br />

COOH<br />

COOH<br />

HOOC<br />

O<br />

N<br />

N<br />

N<br />

HN<br />

O<br />

O<br />

H<br />

NH<br />

H<br />

NH<br />

NH<br />

N<br />

HN<br />

O<br />

HN<br />

N<br />

X N O<br />

N O<br />

O<br />

O<br />

COOH<br />

R<br />

<br />

<br />

<br />

<br />

29.mycearubinA 30.mycearubinB 31.sanguinoneA,R=H 32.haematopodin,X=O<br />

sanguinoneB,R=CH3 haematopodinB,X=NH<br />

HO<br />

R<br />

NO2 COOH<br />

OH O<br />

H<br />

HO<br />

R<br />

O<br />

N<br />

N Cl<br />

H<br />

O<br />

O OH<br />

<br />

<br />

<br />

25.bisnoryangonin,R=H26.hispolon,R=CH327.dihydroxerulin,R=CH2CH2CH328.stephanosporin<br />

hispidin,R=OHxerulin,R=CH=CHCH3<br />

xerulinicacid,R=CH=CHCOOH<br />

NH NH<br />

2<br />

2<br />

COOH<br />

COOH<br />

HOOC<br />

O<br />

N<br />

N<br />

N<br />

HN<br />

O<br />

O<br />

H<br />

NH<br />

H<br />

NH<br />

NH<br />

N<br />

HN<br />

O<br />

HN<br />

N<br />

X N O<br />

N O<br />

O<br />

O<br />

COOH<br />

R<br />

<br />

<br />

<br />

<br />

29.mycearubinA 30.mycearubinB 31.sanguinoneA,R=H 32.haematopodin,X=O<br />

sanguinoneB,R=CH3 haematopodinB,X=NH<br />

92<br />

O<br />

HO HO HO HO<br />

O<br />

O O OO<br />

O<br />

HO<br />

HO<br />

HO<br />

HO<br />

R<br />

<br />

RR<br />

R<br />

<br />

O NH2 NH NH 2NH<br />

2 2 COO<br />

<br />

COOH COOH<br />

HOOC HOOC<br />

HOOC<br />

-<br />

O<br />

-<br />

O<br />

COO<br />

R<br />

<br />

+<br />

NH3 HO<br />

<br />

-<br />

O<br />

-<br />

O<br />

COO<br />

R<br />

<br />

+<br />

NH3 HO<br />

<br />

-<br />

-<br />

O<br />

R<br />

+<br />

NH3 HO<br />

<br />

<br />

O OO<br />

O N NN<br />

N<br />

N NN<br />

N Cl Cl Cl Cl<br />

H HH<br />

H<br />

O OO<br />

O<br />

O OO O OH OH OH OH<br />

<br />

<br />

N NN<br />

COOH<br />

COOH<br />

H HH<br />

O<br />

O O O<br />

N<br />

N<br />

N<br />

HN<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

HN<br />

N<br />

N 18.dermoxanthone 18.dermoxanthone 18.dermoxanthone O<br />

19.DOPAanion 19.DOPAanion 19.DOPAanion N<br />

N 20.scaurinA,R=H<br />

20.scaurinA,R=H<br />

20.scaurinA,R=H HN<br />

O OO<br />

O<br />

scaurinB,R=OH<br />

scaurinB,R=OH<br />

scaurinB,R=OH<br />

O OO<br />

O<br />

H HH<br />

H NH NH NH NH<br />

H HH<br />

H<br />

NH NH NH<br />

NH<br />

HN NH<br />

NH NH NH<br />

N<br />

HN<br />

N<br />

HN<br />

O O<br />

HN HN NN<br />

HN HN<br />

O<br />

HN<br />

N NN<br />

N<br />

OH OH OH O OO<br />

X X X N ON<br />

N O O<br />

N NON<br />

NOHO<br />

OH OOH<br />

X N O<br />

O<br />

O OO<br />

O<br />

O OO<br />

O HO HO HO<br />

COOH COOH<br />

R RR<br />

R<br />

<br />

<br />

<br />

<br />

29.mycearubinA 29.mycearubinA 29.mycearubinA 29.mycearubinA<br />

30.mycearubinB 30.mycearubinB 30.mycearubinB 30.mycearubinB 31.sanguinoneA,R=H 31.sanguinoneA,R=H 31.sanguinoneA,R=H 31.sanguinoneA,R=H<br />

O OO<br />

O OO<br />

R<br />

32.haematopodin,X=O<br />

R R<br />

32.haematopodin,X=O<br />

32.haematopodin,X=O<br />

32.haematopodin,X=O<br />

sanguinoneB,R=CH3 sanguinoneB,R=CH3 sanguinoneB,R=CH3 sanguinoneB,R=CH3 O OO<br />

haematopodinB,X=NH<br />

haematopodinB,X=NH<br />

haematopodinB,X=NH<br />

haematopodinB,X=NH<br />

O OO<br />

N NN<br />

HO HO HO<br />

R RR<br />

O OO<br />

O OO<br />

R RR<br />

<br />

O OO<br />

H3C H3C H3C HO HO HO<br />

O OO<br />

O OO<br />

O OO<br />

O OO<br />

H3C H3C H3C OH OH OH<br />

O OO<br />

OH OH OH<br />

OH OH OH<br />

<br />

<br />

<br />

O OO<br />

H3C H3C H3C HO HO HO<br />

O OO<br />

O OO<br />

O OO<br />

O OO<br />

O OO<br />

H HH<br />

O OO<br />

OH OH OH<br />

CH CH 3CH3<br />

3<br />

O OO<br />

33.polyporicacid,R=H 33.polyporicacid,R=H 33.polyporicacid,R=H<br />

atromentin,R=OH<br />

atromentin,R=OH<br />

atromentin,R=OH<br />

34.leucomentin2 34.leucomentin2 34.leucomentin2 35.flavomentinA<br />

35.flavomentinA<br />

35.flavomentinA


Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102<br />

HO<br />

HO<br />

compound and leucomentin-3, R -4, -5 and -6 were quinone ring has been oxidized and opened. The<br />

found in a number O OH<strong>of</strong><br />

other fungi. Mushrooms <strong>of</strong> unsubstituted parent compound, pulvinic acid,<br />

OH<br />

the genus R Tapinella also produce small amounts <strong>of</strong> only occurs in the form <strong>of</strong> its methyl ester named<br />

orange-yellow flavomentins A-DR and violet spiro- vulpinic acid. Xerocomic and variegatic acids play<br />

O<br />

mentins HO A-D (spiromentins E-J, derivatives <strong>of</strong> ben- the most important role being responsible for<br />

O<br />

zene-1,2,4,5-tetraol, are colourless) derived from the blue colours acquired in many boletes after<br />

atromentin. The flavomentins constitute diesters their fruiting bodies are injured, which results in<br />

and monoesters <strong>of</strong> atromentin with (2Z,4S,5S)-4,5- the oxidation <strong>of</strong> these acids to the corresponding<br />

epoxyhex-2-enoic and (2Z,4E)-hexa-2,4-dienoic blue chinonmethid anions (40). Pulvinic acids are<br />

acids. The spiromentins possess a unique spiro especially widespread in mushrooms belonging to<br />

structure in which a 4,5-dihydroxybenzo-1,2- the Gomphidiaceae and Suillaceae families, to the<br />

quinone is linked to a lactone acetal unit (Besl genera Gomphidius Fr. and Suillus Gary. The yellow<br />

et al. 1989). Flavomentin A (35) and spiromentin pigment gomphidic acid (39) was found for the first<br />

A (36) exemplify these metabolites.<br />

time in the Slimy Spike-cap G. glutinosus (Schaeff.<br />

Simple oxidation products <strong>of</strong> terphenylquinones ex Fr.) Fr. (Knight & Pattenden 1976).<br />

under the preservation <strong>of</strong> the central quinone The yellow-brown cap and stem <strong>of</strong> the Larch<br />

ring include cycloleucomelone (37) and cyclova- Bolete Suillus grevillei (Klotzsch) Sing. contain at<br />

riegatin (37), which is the precursor <strong>of</strong> the violet least 11 yellow, orange and red pigments derived<br />

thelephoric acid (38). Cycloleucomelone OH<br />

O<br />

occurs from decarboxylated OH<br />

pulvinic acids, <strong>of</strong> which 3',4',4- OH<br />

in the fruiting bodies O <strong>of</strong> Boletopsis leucomelaena trihydroxypulvinone OH (41) is the major pigment<br />

O<br />

O<br />

(Pers.) Fayod (Boletopsis Henn., Suillaceae) (Jägers (Besl & Bresinsky 1997). Cyclovariegatin (37)<br />

HO<br />

et al. 1987) and is accompanied O by a series <strong>of</strong> is also partly responsible for its colour O (Edwards<br />

colourless analogues O containing five, four and & Gill O 1973).<br />

O<br />

HO<br />

O<br />

three acetyl residues. Cyclovariegatin occurs in In the pathway leading to atromentin, instead <strong>of</strong><br />

O<br />

O<br />

this mushroom as the colourless peracetate HO <strong>of</strong> the two C-C bonds only one C-C HO bond may be formed.<br />

CH R<br />

3<br />

OH<br />

leuc<strong>of</strong>orm (Edwards & Gill 1973).<br />

The resulting lactonisation then yields grevil-<br />

The major pigments <strong>of</strong> the order Boletales are lins (42). Grevillins A, B, C and D are a group <strong>of</strong><br />

36. spiromentin A 37. cycloleucomelone, R = H 38. thelephoric acid<br />

the yellow pulvinic acids (39) that are formed cyclovariegatin, characteristic R = OH orange to red 2H-pyran-2,5(6H)dione<br />

through lactone formation, after the terphenyl- pigments that occur only in the fruiting body <strong>of</strong><br />

1<br />

2<br />

O<br />

OH<br />

3<br />

O<br />

O<br />

<br />

-<br />

O O<br />

HO<br />

-<br />

O<br />

O<br />

R<br />

<br />

39.atromenticacid,R1=R2=R3=H 40.chinonmethidanion<strong>of</strong>xerocomicacid,R=H<br />

xerocomicacid,R1=H,R2=OH,R3=H chinonmethidanion<strong>of</strong>variegaticacid,R=OH<br />

gomphidicacid,R1=H,R2=R3=OH isoxerocomicacid,R1=OH,R2=R3=H variegaticacid,R1=OH,R2=OH,R3 R<br />

O OH<br />

OH<br />

R<br />

R<br />

O<br />

HO<br />

O<br />

=H<br />

3<br />

2<br />

R R<br />

OH<br />

O<br />

OH<br />

HO<br />

OH<br />

1<br />

HO<br />

R<br />

O<br />

O<br />

O<br />

O<br />

HO OH<br />

O<br />

4<br />

HO<br />

O<br />

R O<br />

O<br />

<br />

<br />

<br />

41.3,4,4trihydroxypulvinone 42.grevillinA 43.gomphilactone<br />

grevillinB<br />

grevillinC<br />

grevillinD<br />

O<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

O<br />

O<br />

HO<br />

HO HO<br />

O<br />

1<br />

2<br />

O<br />

OH<br />

3<br />

O<br />

O<br />

<br />

-<br />

O O<br />

HO<br />

-<br />

O<br />

O<br />

R<br />

<br />

39.atromenticacid,R1=R2=R3=H 40.chinonmethidanion<strong>of</strong>xerocomicacid,R=H<br />

xerocomicacid,R1=H,R2=OH,R3=H chinonmethidanion<strong>of</strong>variegaticacid,R=OH<br />

gomphidicacid,R1=H,R2=R3=OH isoxerocomicacid,R1=OH,R2=R3=H variegaticacid,R1=OH,R2=OH,R3 R<br />

O OH<br />

OH<br />

R<br />

R<br />

O<br />

HO<br />

O<br />

=H<br />

3<br />

2<br />

R R<br />

OH<br />

O<br />

OH<br />

HO<br />

OH<br />

1<br />

HO<br />

R<br />

O<br />

O<br />

O<br />

O<br />

HO OH<br />

O<br />

4<br />

HO<br />

O<br />

R O<br />

O<br />

<br />

<br />

<br />

41.3,4,4trihydroxypulvinone 42.grevillinA 43.gomphilactone<br />

grevillinB<br />

grevillinC<br />

grevillinD<br />

O<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

O<br />

O<br />

HO<br />

HO HO<br />

O<br />

1<br />

2<br />

O<br />

OH<br />

3<br />

O<br />

O<br />

<br />

-<br />

O O<br />

HO<br />

-<br />

O<br />

O<br />

R<br />

<br />

39.atromenticacid,R1=R2=R3=H 40.chinonmethidanion<strong>of</strong>xerocomicacid,R=H<br />

xerocomicacid,R1=H,R2=OH,R3=H chinonmethidanion<strong>of</strong>variegaticacid,R=OH<br />

gomphidicacid,R1=H,R2=R3=OH isoxerocomicacid,R1=OH,R2=R3=H variegaticacid,R1=OH,R2=OH,R3=H 3<br />

2<br />

R R<br />

OH<br />

O<br />

OH<br />

HO<br />

OH<br />

1<br />

HO<br />

R<br />

O<br />

O<br />

O<br />

O<br />

HO OH<br />

O<br />

4<br />

HO<br />

O<br />

R O<br />

O<br />

<br />

<br />

<br />

41.3,4,4trihydroxypulvinone 42.grevillinA 43.gomphilactone<br />

grevillinB<br />

grevillinC<br />

grevillinD<br />

O<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

O<br />

O<br />

HO<br />

HO HO<br />

O<br />

R<br />

O OH<br />

OH<br />

R<br />

R<br />

O<br />

HO<br />

O<br />

1<br />

2<br />

OH<br />

3<br />

O<br />

O<br />

O<br />

–<br />

HO<br />

O O –<br />

R<br />

O<br />

O<br />

39. atromentic acid, R1 = R2 = R3 = H 40. chinonmethid anion <strong>of</strong> xerocomic acid, R = H<br />

xerocomic acid, R1 = H, R2 = OH, R3 = H<br />

gomphidic acid, R<br />

chinonmethid anion <strong>of</strong> variegatic acid, R = OH<br />

1 = H, R2 = R3 = OH<br />

isoxerocomic acid, R1 = OH, R2 = R3 = H<br />

variegatic acid, R1 = OH, R2 = OH, R3 OH OH<br />

OH OH<br />

O O<br />

O O<br />

HOOC HOOC HOOC HOOC<br />

R R<br />

O O<br />

HO HO<br />

O O<br />

OH OH<br />

OH OH<br />

<br />

44.xerocomorubin,R=H 44.xerocomorubin,R=H 44.xerocomorubin,R=H 45.badioneA 45.badioneA 45.badioneA <br />

O O<br />

HOOC HOOC HOOC HOOC<br />

OH OH<br />

OH OH<br />

<br />

46.norbadioneA<br />

46.norbadioneA<br />

46.norbadioneA<br />

variegatorubin,R=OH<br />

variegatorubin,R=OH<br />

variegatorubin,R=OH<br />

= H<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O O<br />

O O<br />

CH 3 CH3 O<br />

O<br />

OH<br />

O<br />

OH OH<br />

<br />

<br />

OH<br />

HO<br />

HO<br />

R<br />

HO<br />

R<br />

O<br />

O<br />

HO OH<br />

R<br />

4<br />

O<br />

HO<br />

O<br />

36.spiromentinA 36.spiromentinA 36.spiromentinA 37.cycloleucomelone,R=H 37.cycloleucomelone,R=H 37.cycloleucomelone,R=H<br />

cyclovariegatin,R=OH<br />

cyclovariegatin,R=OH<br />

cyclovariegatin,R=OH<br />

38.thelephoricacid<br />

38.thelephoricacid<br />

38.thelephoricacid<br />

O<br />

O<br />

OH OH<br />

O<br />

O<br />

O<br />

R<br />

3<br />

OH OH<br />

<br />

R<br />

R<br />

2<br />

1<br />

<br />

HO<br />

HO<br />

HO<br />

O<br />

OH OH<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OH OH<br />

O<br />

O<br />

O<br />

OH OH<br />

<br />

93<br />

OH<br />

<br />

OH OH


Vol. 29, 2011, No. 2: 87–102 Czech J. Food Sci.<br />

mushrooms belonging to the genus Suillus Gray.<br />

S. grevillei (Klotzsch) Sing. and S. luteus (L. ex Fr.)<br />

S. F. (Slippery Jack) contain grevillins A, B and C,<br />

S. granulatus (L. ex Fr.) O. Kuntze (Weeping Bolete)<br />

contains grevillins B, C and D, <strong>of</strong> which the major<br />

pigment is grevillin D (Besl et al. 1974).<br />

The colourless, but easily oxidisable 1,2,4-trihydroxybenzene<br />

and its derivatives commonly<br />

occur in mushrooms belonging to the Gomphidiaceae<br />

family and to the genus Suillus Gray. The<br />

oxidation products <strong>of</strong> 1,2,4-trihydroxybenzene<br />

include the red gomphilactone (43) and the corresponding<br />

biphenyls. Variegatorubin (44) and<br />

xerocomorubin (44) exemplify the red pigments<br />

formed from pulvinic acids by the second lactone<br />

ring production (Besl & Bresinsky 1997).<br />

High concentrations <strong>of</strong> radionuclides occurring in<br />

the fruiting bodies <strong>of</strong> the Bay Bolete Boletus badius<br />

(Fr.) Fr. (Boletus Fr., Boletaceae) after the nuclear reactor<br />

accident at Chernobyl have been ascribed to the<br />

complexation <strong>of</strong> 137 <br />

CH R<br />

3<br />

<br />

Norbadione A (46) is the dominating compound<br />

OH<br />

in the dying mushroom Pisolithus arrhizus (Scop.) <br />

36.spiromentinA 37.cycloleucomelone,R=H Rauschert (Pisolithus 38.thelephoricacid<br />

Alb. & Schwein, Scleroder-<br />

cyclovariegatin,R=OH mataceae) where it occurs in amount <strong>of</strong> over 25%<br />

<strong>of</strong> the dry weight <strong>of</strong> the fungus. Badione A (45) and<br />

several similar compounds are minor components<br />

R<br />

O OH<br />

(Winner et al. 2004).<br />

OH<br />

Oxidative coupling <strong>of</strong> two molecules <strong>of</strong> xerocomic<br />

R<br />

R<br />

acid (39) yields bright yellow sclerocitrin (47) oc-<br />

O<br />

curring in the fruiting bodies <strong>of</strong> the common Earth<br />

HO<br />

O<br />

Ball Scleroderma citrinum Pers. (Scleroderma Pers.,<br />

Sclerodermataceae) together with norbadione A<br />

(46) as the main pigments, which are accompanied<br />

by xerocomic acid (39) and badione A (45)<br />

(Winner et al. 2004).<br />

Sclerocitrin is the main pigment <strong>of</strong> the lemonyellow<br />

coloured stalk base <strong>of</strong> the Peppery Bolete<br />

Cs by the so called naphthalenoid<br />

pulvinic acids that occur as their potassium salts in<br />

the cap skin <strong>of</strong> this toadstool. The main compounds<br />

Chalciporus piperatus (Bull.) Bataille (Chalciporus<br />

Bataille, Boletaceae). It is accompanied by the second<br />

yellow pigment chalcitrin (48), norbadione A<br />

(46), variegatic acid (39) and variegatorubin (44)<br />

(Winner et al. 2004).<br />

The decarboxylation products <strong>of</strong> pulvinic acids,<br />

are badione A (45) and norbadione A (46) that are 2,5-diarylcyclopentenones, appear in fungi almost as<br />

responsible for the chocolate brown and golden frequently as terphenylquinones. Typical examples<br />

yellow colours <strong>of</strong> cap skin <strong>of</strong> this bolete and related are chamonixin (49), involutin (49) and the more<br />

bolete species (Aumann et al. 1989).<br />

highly oxidised gyrocyanin (50) and gyroporin (50).<br />

1<br />

2<br />

O<br />

OH<br />

3<br />

O<br />

O<br />

<br />

-<br />

O O<br />

HO<br />

-<br />

O<br />

O<br />

R<br />

<br />

39.atromenticacid,R1=R2=R3=H 40.chinonmethidanion<strong>of</strong>xerocomicacid,R=H<br />

xerocomicacid,R1=H,R2=OH,R3=H chinonmethidanion<strong>of</strong>variegaticacid,R=OH<br />

gomphidicacid,R1=H,R2=R3=OH isoxerocomicacid,R1=OH,R2=R3=H variegaticacid,R1=OH,R2=OH,R3=H O<br />

OH<br />

OH<br />

HO<br />

O<br />

O<br />

HO<br />

4<br />

HO<br />

O<br />

R O<br />

<br />

3<br />

2<br />

R R<br />

OH<br />

HO<br />

1<br />

R<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

<br />

<br />

41.3,4,4trihydroxypulvinone 42.grevillinA 43.gomphilactone<br />

grevillinB<br />

grevillinC<br />

grevillinD<br />

94<br />

OH<br />

OH<br />

HO<br />

O<br />

HO<br />

O<br />

<br />

41.3,4,4trihydroxypulvinone<br />

3<br />

2<br />

R R<br />

O<br />

1<br />

R<br />

O<br />

HO OH<br />

4<br />

R O<br />

<br />

42.grevillinA,R<br />

OH<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

1=R3=R4=H,R2=OH 43.gomphilactone<br />

grevillinB,R1=R3=H,R2=R4=OH grevillinC,R1=R2=R4=OH,R3=H grevillinD,R1=R3=R4=OH,R2 OH<br />

O<br />

O<br />

OH<br />

OH<br />

O<br />

OH<br />

O<br />

O<br />

HO<br />

O<br />

HO<br />

O<br />

O<br />

O<br />

=H<br />

O<br />

HO<br />

O<br />

HO<br />

O<br />

HO<br />

O<br />

OH<br />

O<br />

O<br />

OH<br />

O<br />

OH<br />

R<br />

<br />

HO<br />

HOOC<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

O<br />

HO<br />

OH<br />

HOOC<br />

O<br />

O<br />

OH<br />

<br />

HO<br />

O<br />

HO O<br />

HO<br />

44.xerocomorubin,R=H 45.badioneA 46.norbadioneA<br />

variegatorubin,R=OH<br />

HOOC<br />

OH<br />

O<br />

O<br />

HOOC<br />

O<br />

O<br />

<br />

OH<br />

OH


Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102<br />

HO<br />

O<br />

O<br />

O<br />

O HO<br />

O<br />

H<br />

O<br />

OH<br />

COOH<br />

H<br />

HO<br />

HOOC<br />

O<br />

O<br />

OH<br />

<br />

HO<br />

HOOC<br />

OH<br />

COOH<br />

OH<br />

H<br />

HO O<br />

47.sclerocitrin 48.chalcitrin<br />

They occur e.g. in several HOfamilies OH<strong>of</strong><br />

Boletales, in the<br />

R<br />

genera Chamonixia Rolland (Boletaceae), Gyrodon<br />

Opat. (Paxillaceae), Gyroporus Quél. (Gyroporaceae),<br />

HO OH HO<br />

Leccinum Gray (Boletaceae), O Melanogaster Corda<br />

<br />

(Melanogasteraceae), Paxillus Fr. (Paxillaceae) and<br />

that HO occurs O in S. granulatus (L. exO Fr.) O. O Kuntze.<br />

Its oxidation R products are responsible for the caps’<br />

brown colour. Prenylated benzoquinones, corre-<br />

OH HO<br />

O<br />

sponding O to 1,2,4-trihydroxybenzene O(mentioned <br />

above), mostly appear as meroterpenoids named<br />

several other families and genera. The pigments are boviquinones. Boviquinone-3 (2,5-dihydroxyresponsible<br />

for the conspicuous deep brown and 3-farnesyl-1,4-benzoquinone) is biosynthesised<br />

bright blue colour reactions observed when the<br />

fruiting bodies <strong>of</strong> mushrooms are bruised. Involutin<br />

by Chroogogompus rutilus (Schaeff.) O.K. Mill.,<br />

Chroogomphus (Singer) O.K. Mill. (Gomphi-<br />

occurs in P. involutus (Batsch ex Fr.) Fr. (chamonixin diaceae), bovinoquinone-4 (2,5-dihydroxy-3-gera-<br />

is a minor compound); chamonixin is a constituent nylgeranyl-1,4-benzoquinone, 53) is an example <strong>of</strong><br />

in C. caespitosa Rolland and gyrocyanin in G. cya- prenylated benzoquinones found in Suillus bovinus<br />

nescens (Bull. ex Fr.) Quél. The colour changes <strong>of</strong> the (L.) Roussel. (Mühlbauer et al. 1998). The red<br />

latter mushroom are associated with the related me- pigment tridentoquinone (54) is the main pigment<br />

tabolite <strong>of</strong> gyrocyanin, which is oxidised to the blue <strong>of</strong> S. tridenticus (Bres.) Singer, which is related<br />

anion (51) (Feling et al. 2001; Hanson 2008b). to the linear boviquinone-4 (53) from S. bovinus<br />

The prenylated compounds occur only rarely (L.) Roussel. In the mushroom, tridentoquinone<br />

in Boletales being biosynthesised from 3,4-dihy- is accompanied by several compounds <strong>of</strong> similar<br />

droxybenzoic acid (Besl & Bresinsky 1997). The structure (Lang et al. 2008). Mushrooms <strong>of</strong> the<br />

aromatic ring <strong>of</strong>ten bears an additional farnesyl genus Rhizopogon Fr. (i.e. Rhizopogon pumilionum<br />

or geranylgeranyl side-chain derived from the (Ade) Bataille), closely related to the genus Suil-<br />

terpenoid pathway. Suillin (52) is an example <strong>of</strong> lus Gray, contain rhizopogone (55) as the main<br />

acetylated and prenylated 1,2,4-trihydroxybenzene pigment (Lang et al. 2009).<br />

-<br />

<br />

49.chamonixin,R=H 50.gyrocyanin,R=H 51.blueanion<strong>of</strong>gyrocyanin<br />

involutin,R=OH gyroporin,R=OH<br />

OH<br />

OH<br />

O<br />

CH3 O<br />

COOH<br />

COOH<br />

OH<br />

H3C O CH3 CH3 CH3 CH<br />

OH<br />

3<br />

O<br />

OH<br />

O<br />

O<br />

OH<br />

O<br />

H<br />

O<br />

O HO<br />

H<br />

OHO<br />

HO<br />

HO<br />

O <br />

O<br />

H<br />

H<br />

H<br />

H<br />

52.suillin<br />

O H<br />

O H<br />

H<br />

H<br />

O<br />

O O<br />

O<br />

HO O<br />

HO O<br />

O<br />

HO O<br />

HO<br />

H3C CH3 CH<br />

O<br />

O HOOC<br />

HOOC<br />

HOOC<br />

CH CH<br />

O 3<br />

3<br />

3<br />

H CH3 CH<br />

3C 3<br />

O<br />

OH O<br />

OH<br />

O<br />

H<br />

O<br />

CH<br />

OH<br />

3<br />

OH OH<br />

H3C OH<br />

CH3 OH<br />

COOH<br />

COOH<br />

H<br />

HO<br />

3C O<br />

HO<br />

OH<br />

HO<br />

HO<br />

OH<br />

O CH <br />

O CH<br />

3<br />

3 <br />

O CH3 <br />

<br />

<br />

47.sclerocitrin <br />

47. sclerocitrin<br />

48.chalcitrin<br />

48. chalcitrin<br />

53.boviquinone4 54.tridentoquinone 55.rhizopogone<br />

HO OH<br />

R<br />

HO OH<br />

HO<br />

R<br />

O<br />

R<br />

HO O<br />

O<br />

R<br />

O<br />

O O<br />

HO<br />

O<br />

H<br />

O<br />

OH<br />

<br />

HO<br />

O<br />

OH<br />

O<br />

<br />

HO<br />

O<br />

O<br />

H3COOC N CH3 H<br />

CH3 <br />

-<br />

HO<br />

O<br />

OH HO<br />

O<br />

OH HO<br />

<br />

O<br />

O<br />

49.chamonixin,R=H 50.gyrocyanin,R=H 51.blueanion<strong>of</strong>gyrocyanin<br />

involutin,R=OH gyroporin,R=OH<br />

-<br />

49. chamonixin, R = H 50. gyrocyanin, R = H 51. blue anion <strong>of</strong> gyrocya<br />

involutin, R = OH gyroporin, R = OH<br />

H 3C<br />

O<br />

OH<br />

O<br />

56.melanocrocin<br />

OH<br />

OH<br />

OH<br />

O<br />

CH<br />

CH 3<br />

3 H3C H CH3 CH<br />

3C CH3 3<br />

H<br />

CH 3C O CH<br />

3 CH3 CH 3 CH<br />

3 CH 3 CH3 CH3 3<br />

O<br />

CH 3<br />

O<br />

52.suillin<br />

57.canthaxanthin<br />

CH 3<br />

52. suillin<br />

CH 3<br />

H 3 C CH 3<br />

H<br />

H3C CH3 CH 3C CH<br />

CH<br />

CH CH<br />

3<br />

3 CH 3 CH3 3<br />

3<br />

3<br />

O<br />

O H3C O<br />

O<br />

H<br />

CH H<br />

CH 3<br />

OH<br />

3<br />

OH<br />

H3C OH H3C OH<br />

CH3 H C<br />

O<br />

<br />

O<br />

H<br />

H<br />

OH<br />

O<br />

<br />

CH3 O<br />

OH<br />

CH H3C 3<br />

95<br />

CH 3<br />

CH3 O<br />

O


Vol. 29, 2011, No. 2: 87–102 <br />

Czech J. Food Sci.<br />

Melanocrocin (56) is a unique brilliant yellow Karst., the polypore with a red-brown fruiting<br />

HO<br />

OH<br />

polyene pigment, with bound phenylalanine, iso- body (Bu’Lock et al. 1962), where it is accompalated<br />

from theOsubterranean fungus Melanogaster O<br />

H<br />

47. sclerocitrin nied by bisnoryangonin 48. chalcitrin (25), hypholomin B (58)<br />

broomeianus H that resemble truffles (Aulinger<br />

3COOC N CH and 3 the yellow pigment hispolon (26, R = CH ) 3<br />

et al. 2001). H<br />

HO OH<br />

CH (Ali et al. HO 1996). These O pigments also occur O in O<br />

3<br />

R<br />

several mushrooms R <strong>of</strong> the Hymenochaetaceae<br />

56.melanocrocin<br />

HO OH family, HO e.g. in Inonotus P. Karst., OH Onnia HO P. Karsten<br />

O<br />

3 Cantharellales O<br />

and Phellinus Quél. O species and in the genus Hy- O<br />

O<br />

pholoma (Fr.) P. Kumm. <strong>of</strong> the Strophariaceae<br />

H3C Carotenoids H CH are 3 not widespread CH in higher fungi as<br />

3C CH3 3<br />

family (Agaricales). Inoscavin A, reported to be<br />

they are in plants; nevertheless, they were isolated a free radical scavenger, isolated from the fruit-<br />

from several yellow pigmented Cantharellus CH Juss. ing bodies <strong>of</strong> the mushroom P. xeranticus (Berk.)<br />

3 CH H<br />

3 3C CH3 CH (Cantharellaceae) 3 species. The Golden Chanterelle Pegler (Phellinus, Hymenochaetaceae) has been<br />

O<br />

C. cibarius Fr. pigment mixture was found to consist assigned the fused styrylpyrone structure (59),<br />

mainly <strong>of</strong> β-carotene57.canthaxanthin and also present were lycopene, which relates inoscavin A closely to hispidin (25)<br />

α-carotene and two other carotenes, probably the and thence to hypholomin B (58).<br />

γ- and δ-isomers or the xanthophyl canthaxanthin<br />

(57) that was found in the pink to red-orange Cinnabar<br />

Chanterelle C. cinnabarinus (Schwein.) Schwein.<br />

as the main pigment (Haxo 1950; Hanson<br />

5 Polyporales<br />

2008b).<br />

4 Hymenochaetales<br />

Styrylpyrone hispidin (25) was originally isolated<br />

Species within the order Polyporales are saprotrophic<br />

and most <strong>of</strong> them wood-rotters. The Polyporaceae<br />

are a family <strong>of</strong> such wood-decay fungi that<br />

contain pigments mostly derived from polyporic<br />

acids and terphenylquinones. The dark red polyporic<br />

acid (33), the parent compound <strong>of</strong> numerous<br />

as the main constituent <strong>of</strong> the plant pathogen<br />

the Chaga Fungus Inonotus hispidus (Bull.) P.<br />

terphenylquinones and related compounds, is the<br />

major component <strong>of</strong> Hapalopilus nidulans (Fr.)<br />

-<br />

HO<br />

OH<br />

47. sclerocitrin 48. chalcitrin<br />

HO OH<br />

HO O<br />

O O<br />

R<br />

R<br />

HO OH HO OH HO<br />

O<br />

O<br />

O<br />

O<br />

49. chamonixin, R = H 50. gyrocyanin, R = H 51. blue anion <strong>of</strong> gyrocyani<br />

involutin, R = OH gyroporin, R = OH<br />

OH<br />

OH<br />

CH3 H3C O CH3 CH3 CH3 CH3 O<br />

52. suillin<br />

H3C CH3 CH3 O<br />

CH3 OH<br />

HO<br />

O CH3 CH3 CH3 H CH<br />

3C 3<br />

O<br />

H<br />

O<br />

H3C OH<br />

CH3 H3C O<br />

HO<br />

O CH3 O<br />

C<br />

OH<br />

53. boviquinone-4 54. tridentoquinone 55. rhizopog<br />

-<br />

49. chamonixin, R = H 50. gyrocyanin, R = H 51. blue anion <strong>of</strong> gyrocyani<br />

involutin, R = OH gyroporin, R = OH<br />

OH<br />

OH<br />

CH3 H3C O CH3 CH3 CH3 CH3 O<br />

52. suillin<br />

H3C CH3 CH3 O<br />

CH3 OH<br />

HO<br />

O CH3 CH3 CH3 H CH<br />

3C 3<br />

O<br />

H<br />

O<br />

H3C OH<br />

CH3 H3C O<br />

HO<br />

O CH3 O<br />

C<br />

OH<br />

53. boviquinone-4 54. tridentoquinone 55. rhizopog<br />

96<br />

H 3C<br />

O<br />

O<br />

CH 3 CH 3 CH 3 CH 3<br />

CH 3<br />

52.suillin<br />

H3C CH3 CH3 O<br />

CH3 OH<br />

HO<br />

O CH3 <br />

53.boviquinone4<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O HOO<br />

CH3 CH HO<br />

O 3<br />

HO<br />

H3C O O<br />

HO<br />

H<br />

H<br />

O<br />

H3C OH<br />

H H<br />

O<br />

O H<br />

HO<br />

H3C HO<br />

O<br />

O<br />

O<br />

HO<br />

HO<br />

O HOOC O CH<br />

HOOC<br />

3<br />

O HOOC<br />

HOOC<br />

OH<br />

OH<br />

OH<br />

54.tridentoquinone OH<br />

COOH<br />

COOH<br />

O<br />

COOH<br />

O<br />

OH<br />

COOHOH<br />

O<br />

OH<br />

OH H<br />

O<br />

CH H<br />

3 CH3 O H<br />

CH O H H<br />

3<br />

OH<br />

O H<br />

O<br />

HO<br />

O<br />

O CH3 <br />

55.rhizopogone<br />

H3COOC H3COOC H3C CH3 H3C CH3 O<br />

O<br />

O<br />

H<br />

O<br />

HN<br />

NH H<br />

56. melanocrocin<br />

56. melanocrocin<br />

O<br />

O<br />

CH3<br />

CH CH3<br />

3<br />

CH3 CH3 CH3 CH3 CH3 CH3 CH3 57. canthaxanthin<br />

57. canthaxanthin<br />

CH3 CH3 CH3 CH3 H3C H3C O<br />

O<br />

H3C CH3 H3C CH3


Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102<br />

HO<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

P. Karst. (Hapalopilus P. Karst.) amounting up<br />

to 43% <strong>of</strong> its dry weight. Betulinans A (60) and B<br />

O<br />

O<br />

(61) are two simple terphenylquinones recently<br />

H3CO O<br />

found in the plant pathogen Lenzites betulina (L.)<br />

The striking OH O yellowish or orange-coloured fruit-<br />

OH<br />

ing HO bodies <strong>of</strong> the wood-rotting OH edible mushroom<br />

Laetiporus sulphurous (Bull.) Murrill (Laetiporus<br />

O O<br />

Murrill), HO belonging to the Fomitopsidaceae family,<br />

Fr. (Lenzites Fr.) (Lee et al. 1996; Gill 1999). The<br />

OCH3 OCH3 labile 2,3,4-trihydroxycinnamyl O<br />

alcohol is the O building<br />

block <strong>of</strong> the purpurogallin (benzotropolone)<br />

contains non-isoprenoid polyene known as laetiporic<br />

N<br />

acid A (predominantly occurring as the 7-cis-isomer, COOH<br />

HO<br />

OH<br />

66) and 2-dehydro-3-deoxylaetiporic acid A (67)<br />

derivative fomentariol 60. betulinan A(62) produced 61. by betulinan the plant B<br />

pathogen, the Tinder Fungus, Fomes fomentarius<br />

as the 62. main fomentariol pigments (Davoli et al. 63. 2005). cinnabarinic acid<br />

(L.) Fr. <strong>of</strong> the genus Fomes (Fr.) Fr. (Polyporaceae)<br />

OCH3 (Steglich & Zechlin 1978). OH<br />

<strong>Pigments</strong> with a phenoxazine O<br />

OH<br />

chromophore<br />

HO<br />

O<br />

6 Russulales<br />

O<br />

widely occur in lichens and to a smaller extent Apart from carotenoids, only a few lower ter-<br />

H O<br />

3CO<br />

in higher fungi <strong>of</strong> the Polyporaceae family. The R penoids areO coloured compounds. The colour <strong>of</strong><br />

OCH3 cinnabar red pigment HO <strong>of</strong> the wood-rotting fungus the injured flesh as well as <strong>of</strong> the latex <strong>of</strong> several<br />

HO<br />

Pycnoporus cinnabarinus (Jacq.) P. Karst. (Pycnopo- Lactarius Pers. (Russulaceae) species own to their<br />

rus P. Karst.) is 2-amino-3H-phenoxazin-3-one-<br />

64. corticin A 65. xylerythrin, colour changes R = H to sesquiterpenoids. The young<br />

1,9-dicarboxylic acid named cinnabaric acid (63). peniophorin, fruiting body R = OH <strong>of</strong> L. deliciosus (L. ex Fr.) S. F. Gray<br />

It is biosynthesized from 3-hydroxyanthranilic acid<br />

units formed as the tryptophan transformation<br />

is first carrot-coloured, but slowly turns green<br />

H3C O<br />

on aging. The young L. deterrimus Gröger fruit-<br />

products (Gripenberg 1958a).<br />

The cobalt Crust Fungus Terana caerulea (Lam.)<br />

ing body CH is pale peach coloured and becomes<br />

3<br />

apricot coloured with a greyish green shades on<br />

Kuntze (Terana Adans.) <strong>of</strong> the Phanerochaetaceae aging. On cutting, L. deterrimus yields saffron or<br />

family contains O<br />

HOOC corticins A (64), B and C as the orange coloured latex. These colour changes are<br />

colourless quinhydrones OH that are oxidized to the due to sesquiterpenoids CH3 derived from azulene. The<br />

indigo-blue pigmentOin hymenal surface (Briggs compounds responsible O for these colour changes<br />

66. laetiporic acid A<br />

O<br />

et al. 1976). HOThe<br />

saprophytic fungus Phanerochaete in L. deliciosus are the blue lactarazulene, i.e.<br />

O<br />

O O<br />

sanguine HO (Fr.) Pouzar (Phanerochaete P. Karst.) con- HO H1,4-dimethyl-7-(1-methylethenyl)azulene (68), and<br />

3C O<br />

O<br />

O<br />

tains xylerythrin-type pigments (65). Their struc- lipophilic red-violet lactaroviolin, i.e. 4-methyl-<br />

HO<br />

HO<br />

tures suggest a biosynthesis from threeOH molecules <strong>of</strong> 7-(1-methylethenyl)azulene-1-carbaldehyde CH3 OH<br />

(68).<br />

arylpyruvic acids. The wood infected OH by this fungus is However, neither lactarazulene OH nor lactaroviolin<br />

<br />

<br />

then coloured dark red by its mycelium (Gripenberg occurs as such. The orange colour <strong>of</strong> the fungus<br />

1965; 58.hypholominB Gripenberg & Martikkala 1970). is due 59.inoscavinA<br />

to the labile and easily oxidizable dihy-<br />

H 3CO<br />

HOOC<br />

O<br />

O<br />

R<br />

HO<br />

OH<br />

HO<br />

97<br />

68. lactarazulene, R = CH3<br />

O<br />

OH<br />

lactaroviolin, R = CH=O<br />

69. dihydroazulen-1-ol (R = H) 70. 1,3,5,7(11),9-pentaenyl-14-guaianal<br />

HO<br />

CH 3<br />

O<br />

O O<br />

58. hypholomin B 59. inoscavin A<br />

OCH<br />

H3C3 O<br />

67. 2-dehydro-3-deoxylaetiporic acid HO A<br />

<br />

H 3 C<br />

CH 2<br />

O<br />

O<br />

OCH<br />

N NH2 3 H3C H3C COOH<br />

HO<br />

OH<br />

<br />

<br />

RO<br />

HO<br />

60.betulinanA 61.betulinanB 62.fomentariol 63.cinnabarinicacid<br />

H 3CO<br />

OCH 3<br />

O<br />

OCH 3<br />

R<br />

H 3C<br />

OH<br />

CH2 O<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

OH<br />

O<br />

O<br />

OH<br />

O<br />

OH<br />

H 3 C<br />

O<br />

CH 3<br />

<br />

NH 2


O<br />

OH O<br />

O<br />

OH<br />

H HO<br />

O<br />

O<br />

3CO<br />

O<br />

O O<br />

OH<br />

O<br />

H<br />

HO O<br />

3CO<br />

H3CO O<br />

O R O<br />

O<br />

O<br />

OCH3 HO OCH OCH N NH<br />

3<br />

2<br />

3<br />

HO<br />

O<br />

O<br />

HO<br />

COOH<br />

OCH Vol. 29, 2011, No. 3 2: 87–102 OCH<br />

CH N NH2 3<br />

3<br />

HO <br />

OH <br />

<br />

<br />

Czech J. Food Sci.<br />

O<br />

O<br />

COOH<br />

O<br />

64.corticinA HO<br />

O OH 65.xylerythrin,R=H<br />

HO 60.betulinanA <br />

61.betulinanB <br />

O 62.fomentariol <br />

63.cinnabarinicacid<br />

<br />

peniophorin,R=OH<br />

O<br />

O O<br />

60.betulinanA HO<br />

61.betulinanB 62.fomentariol HO<br />

O 63.cinnabarinicacid<br />

O<br />

OCH3 O<br />

H3C O<br />

OH<br />

HO<br />

HO<br />

OHO<br />

OCH3 OH<br />

O OH HO OH<br />

OH<br />

CH3 O<br />

OH OH<br />

O OH<br />

<br />

<br />

H O<br />

3CO<br />

O R<br />

58.hypholominB<br />

H O<br />

59.inoscavinA O<br />

OCH3 3CO<br />

HOOC<br />

HO<br />

R<br />

O HO<br />

OCH OH<br />

3<br />

OH O<br />

<br />

<br />

HO<br />

HO<br />

OH<br />

64.corticinA<br />

O<br />

HO<br />

O<br />

65.xylerythrin,R=H<br />

OH<br />

66.laetiporicacidA<br />

64.corticinA H <br />

3CO<br />

<br />

<br />

O<br />

O O<br />

<br />

<br />

65.xylerythrin,R=H<br />

peniophorin,R=OH<br />

HO<br />

H O<br />

peniophorin,R=OH<br />

3C H3C O<br />

OCH3 OCH<br />

N NH2 3<br />

O<br />

H3C O<br />

CH<br />

O<br />

COOH<br />

3<br />

HO<br />

CH OH<br />

3<br />

<br />

<br />

<br />

<br />

60.betulinanA 61.betulinanB<br />

CH<br />

62.fomentariol 3<br />

63.cinnabarinicacid<br />

HOOC<br />

droazulen-1-ol HO (69, R=H) or to their stearates, HO uvidin A and B (71) CH3 illustrate the broad variety <strong>of</strong><br />

<br />

<br />

69, R = CO[CH ] CH . Recently, three other red compounds found in L. uvidus (Fr.) Fr. Drimane<br />

2 16 3 CH3 azulene 64.corticinA pigments have been isolated 65.xylerythrin,R=H<br />

from the sesquiterpenoids like drimenol (72) and uvidins<br />

fruiting bodies <strong>of</strong> L. deliciosus being 7-acetyl-4-<br />

peniophorin,R=OH CH<br />

have R so far been 2found<br />

only RO in L. uvidus, CHwhich 2<br />

methylazulene-1-carbaldehyde, 7-(1,2-dihydroxy- has a white H3Clatex rapidly turning violet H3C H on expo-<br />

3C O<br />

<br />

<br />

1-methylethyl)-4-methylazulene-1-carbaldehyde sure to the air.<br />

HOOC<br />

68.lactarazulene,R=CH3 69.dihydroazulen1ol(R=H) 70.<br />

and 7-acetyl-4-methylazulene-1-carboxylic acid Intact CH3 fruiting bodies <strong>of</strong> Lactarius fuliginosus<br />

lactaroviolin,R=CH=O<br />

(Xang HOOC et al. 2006; Zhou & Liu 67.2dehydro3deoxylaetiporicacidA<br />

2010). The red (Krapf<br />

) Fr. and L. picinus Fr. contain the isoprenoid<br />

pigment 1,3,5,7(11),9-pentaenyl-14-guaianal (70) quinol stearate <strong>of</strong> 4-methoxy-2-(3-methylbut-2-<br />

67.2dehydro3deoxylaetiporicacidA<br />

was HOOC found in L. sanguifluus H3C H (Paulet) Fr., the lienyl)phenol 3C (73). The pink-red stain and acrid H3C pophilic pigment OH<br />

H 1-hydroxymethyl-4-methyl- taste that develops when the toadstool is bruised<br />

3C H3C <br />

H3C 7-(1-methylethenyl)azulene stearate; 68, R = are due to its hydrolysis followed by oxidation to<br />

66.laetiporicacidA<br />

CH OCO[CH ] CH , is responsible CH for the bril- a variety <strong>of</strong> red benz<strong>of</strong>urans and chromenes (De<br />

2 2 16 3 R<br />

2<br />

RO<br />

CH<br />

CH<br />

2<br />

O<br />

3<br />

liant blue colour CH <strong>of</strong> the Indigo Milk H Cap L. indigo H3C O Bernardi et al. 1992).<br />

2<br />

3C H3C R<br />

RO<br />

CH<br />

CH H<br />

2<br />

3<br />

3C <br />

O<br />

<br />

<br />

(Schwein.) Fr. (native to America and Asia and The pale green aminobenzoquinone blennione<br />

H3C H3C H3C also reported from68.lactarazulene,R=CH3 southern France) (Harmon 69.dihydroazulen1ol(R=H) CH3(74) occurs in the fruit bodies 70.1,3,5,7(11),9pentaenyl14guaianal<br />

<strong>of</strong> the common<br />

et al. 1980; Ayer &lactaroviolin,R=CH=O 68.lactarazulene,R=CH3 Browne 69.dihydroazulen1ol(R=H) 1981; Koul et al. toadstool, 70.1,3,5,7(11),9pentaenyl14guaianal<br />

the Slimy Milkcap Lactarius blen-<br />

lactaroviolin,R=CH=O<br />

1985; De Rosa & De Stefano 1987).<br />

nius (Fr.) Fr. It is probably biosynthesized using<br />

The milky juice <strong>of</strong> L. scrobiculatus (Scop.) Fr. 3,6-dihydroxyanthranilic acid units (Spiteller &<br />

turns rapidly from white to yellow. A range <strong>of</strong> Steglich 2002). Biosynthetically closely related to<br />

lactarane HOOC and secolactarane sesquiterpenoids, bennione is the red pigment lilacinone (75), which<br />

analogues <strong>of</strong> the above azulenes, have been iso- is responsible for the violet colour <strong>of</strong> Lactarius<br />

lated (Bosetti 67.2dehydro3deoxylaetiporicacidA<br />

et al. 1989). The structures <strong>of</strong> lilacinus (Lasch) Fr. (Spiteller et al. 2003).<br />

98<br />

H 3CO<br />

R<br />

OH<br />

H 3 C<br />

O<br />

H 3 C<br />

OH<br />

OCH 3<br />

CH 2<br />

HOOC<br />

OCH OH3<br />

OH<br />

66.laetiporicacidA<br />

O<br />

<br />

RO<br />

H 3C<br />

O<br />

HO<br />

HOOC<br />

66.laetiporicacidA <br />

O<br />

R<br />

H3C H 3C<br />

CH 2<br />

O<br />

O<br />

H 3 C<br />

<br />

67.2dehydro3deoxylaetiporicacidA<br />

H3C O<br />

68.lactarazulene,R=CH3 69.dihydroazulen1ol(R=H) 70.1,3,5,7(11),9pentaenyl14guaianal<br />

lactaroviolin,R=CH=O<br />

O<br />

<br />

H 3 C<br />

H 3 C<br />

H 3C<br />

CH 3


Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102<br />

OH<br />

OH<br />

H<br />

H 3C<br />

3C<br />

CH<br />

CH 3<br />

3<br />

O<br />

O<br />

R<br />

R<br />

H<br />

H<br />

3C CH3 H O<br />

3C CH3 O<br />

<br />

<br />

OH<br />

OH<br />

H<br />

H 3C<br />

3C<br />

CH<br />

CH 3<br />

3<br />

H<br />

H<br />

3C CH<br />

H 3<br />

3C CH3 <br />

<br />

<br />

<br />

<br />

OCH<br />

OCH 3<br />

3<br />

OH<br />

OH<br />

CH3CH 3<br />

CH3CH 3<br />

<br />

71.uvidinA,R=H<br />

71.uvidinA,R=H<br />

<br />

uvidinB,R=OH<br />

uvidinB,R=OH<br />

<br />

72.drimenol<br />

72.drimenol<br />

<br />

<br />

<br />

73.4methoxy2(3methylbut2enyl)phenol<br />

73.4methoxy2(3methylbut2enyl)phenol<br />

O<br />

HO<br />

O<br />

HO<br />

OCH3 O<br />

H2N OH<br />

N<br />

OCH OH<br />

3 O<br />

H2N OH<br />

N<br />

OH OH<br />

OCH<br />

OCH 3 OHOCH<br />

H2N COOH<br />

3<br />

3<br />

OCH3 H2N H3C COOH<br />

CH H H3C 3<br />

3C<br />

HOOC CH CH H<br />

3 N<br />

3C<br />

3<br />

NH CH<br />

HOOC N<br />

2 3<br />

H<br />

N<br />

O<br />

NH2 HOOC<br />

NH H O<br />

N<br />

2<br />

O<br />

HOOC<br />

NH O<br />

2<br />

O<br />

CH3 CH3 R<br />

O<br />

H OH O<br />

R<br />

O O COOH<br />

O OH<br />

OH O<br />

H H<br />

O COOH H<br />

H<br />

<br />

<br />

CH <br />

<br />

O OH<br />

3C CH3 O<br />

H3CH 3C CH 3 O<br />

H CH OH CH<br />

<br />

<br />

3<br />

3C<br />

OH CH<br />

3<br />

3<br />

3<br />

<br />

<br />

<br />

<br />

74.blennione<br />

74.blennione<br />

75.lilacinone<br />

75.lilacinone<br />

<br />

<br />

<br />

<br />

<br />

<br />

76.necatarone<br />

76.necatarone<br />

71.uvidinA,R=H 71.uvidinA,R=H 72.drimenol 72.drimenol 73.4methoxy2(3methylbut2enyl)phenol<br />

73.4methoxy2(3methylbut2enyl)<br />

uvidinB,R=OH<br />

2<br />

1<br />

2 R<br />

uvidinB,R=OH<br />

1 R<br />

R<br />

R<br />

OH N<br />

N<br />

An alkaloidal pigment necatarone (76), its dehydrodimer<br />

(77, R1 = R2 = OH) prevailing in aged<br />

fruiting bodies and the 10-deoxydehydrodimer<br />

(77, R1 = H, R2 N<br />

N<br />

OH<br />

O<br />

batrellaceae), which OCHincluded e.g. the purple pig-<br />

O 3 HO<br />

H3C OCH CH H<br />

3<br />

3C<br />

ment grifolinone B (80), the red ketone albatrellin<br />

3 O<br />

H2N OCHCH 3 O3<br />

OH<br />

N<br />

OCH<br />

H2N OH<br />

3<br />

OCH3 H N O<br />

(81) and a variety <strong>of</strong> related compounds <strong>of</strong> the<br />

2N COOH<br />

N<br />

N<br />

N H2N COOH<br />

CH3 R<br />

H = OH) are the principal HOOC pigments N<br />

H<br />

mushroom NH HOOC 2 A. confluens N (Alb. & Schwein.) NH Kotl.<br />

2<br />

H CH O OH HO O<br />

H<br />

N<br />

H<br />

<strong>of</strong> HOOC the 3C 3 green-brown O<br />

OHNH HOflesh<br />

OandH<br />

HOOC cap 3C CHskin 3 <strong>of</strong> O Lacta- NH & Pouzar (Yang O<br />

OH CH<br />

et al. 2008). 3<br />

2<br />

O<br />

<br />

2<br />

O<br />

O <br />

<br />

rius turpis OH (Weinm.) O Fr. (Fugmann <br />

O COOH<br />

O<br />

et OHal.<br />

O1984,<br />

The Orange Tooth Hydnellum O Oaurantiacum<br />

COOHOH<br />

71.uvidinA,R=H<br />

Klamann<br />

77.necataronedehydrodimer<br />

72.drimenol 73.4methoxy2(3methylbut2enyl)phenol<br />

<br />

<br />

77.necataronedehydrodimer<br />

et al. 1989).<br />

(Batsch) P. Karst. (Hydnellum P. Karst., Peniophora-<br />

uvidinB,R=OH<br />

74.blennione 74.blennione 75.lilacinone 75.lilacinone 76.necatarone<br />

<br />

Ochroleucins are the OCHmain pigments <strong>of</strong> the fruitceae) colour is derived from the terphenylquinone<br />

3<br />

OH<br />

OCH3 OH<br />

ing 2bodies<br />

<strong>of</strong> the Common Yellow 2Russula,<br />

1 O Russula atromentin. The 3,6-dibenzoylatromentin, HO<br />

named<br />

R<br />

O R<br />

1<br />

CH R<br />

O<br />

2<br />

ochroleuca Pers. and OR.<br />

viscida OH Kudrna CH O<br />

OCH3 O<br />

H 2 (Russula aurantiacin, was first isolated as a dark red pig-<br />

OH<br />

2N<br />

OH<br />

N<br />

N<br />

N<br />

N<br />

N OCH3 Pers., H2N Russulaceae). COOHThe<br />

labile yellow ochroleucin<br />

CH ment from this mushroom and subsequently from<br />

H2C H<br />

CH 3<br />

H2C CH<br />

H 2<br />

A (78) 2C H<br />

3<br />

is rapidly transformed OCH HOOC<br />

H<br />

3 to the stable N red 2C various Hydnellum O<br />

CH<br />

OCH NH species (Gripenberg 2<br />

2<br />

1956;<br />

3<br />

O<br />

O<br />

H<br />

N<br />

HOOC N<br />

ochroleucin CHB 3 (79) O<br />

N<br />

N<br />

(Sontag et al. 2006). Gripenberg CH 1958b). O O<br />

CH<br />

CH<br />

NH N<br />

O<br />

2<br />

O<br />

3 O Aurantiacin is 3 accompanied<br />

3<br />

CH<br />

O<br />

CH<br />

3<br />

3<br />

<br />

O <br />

<br />

OH O<br />

O COOH<br />

O OH<br />

Dimeric O meroterpenoid OH HO pigments have been with the corresponding leuc<strong>of</strong>orm dihydroauran-<br />

78.ochroleucinA<br />

O<br />

O OH HO O <br />

79.ochroleucinB<br />

<br />

<br />

reported from 78.ochroleucinA the Albatrellus Gray species (Altiacin and 79.ochroleucinB<br />

thelephoric acid.<br />

74.blennione 75.lilacinone 76.necatarone<br />

HO<br />

N<br />

76.nec<br />

77.necataronedehydrodimer O<br />

O<br />

77.necataronedehydrodimer<br />

O<br />

H3C OH<br />

O<br />

CH3 O CH3 CH3 CH<br />

H 3<br />

3C CH3 OH<br />

CH3 HO CH3 <br />

80.grifolinoneB<br />

H3C OH<br />

O<br />

CH3 O CH3 CH3 O CH<br />

H 3<br />

3C CH3 OH<br />

CH3 HO CH3 <br />

81.albatrellin<br />

HO<br />

H3C O<br />

H3C CH3 +<br />

CH3 O OH<br />

HO<br />

-<br />

OH<br />

N<br />

O O O<br />

N<br />

O<br />

OH<br />

N<br />

O<br />

N<br />

HO<br />

O O<br />

OH<br />

HO OH<br />

<br />

- H3C OH<br />

O<br />

CH3 O CH CH CH<br />

H 3<br />

3<br />

3<br />

3C CH3 OH<br />

H3C CH3 HO CH3 <br />

80.grifolinoneB<br />

O<br />

H3C OH<br />

O<br />

CH3 O CH3 CH3 O CH3 CH3 OH<br />

CH3 HO CH3 <br />

81.albatrellin<br />

HO<br />

H3C O<br />

H3C CH3 +<br />

CH3 O OH<br />

H3C O<br />

O O<br />

H3C CH3 H O O<br />

3C CH3 +<br />

CH3 OH<br />

HO<br />

82.sarcoviolin<br />

<br />

83.sarcodonin<br />

<br />

-<br />

O<br />

OH<br />

N<br />

O O<br />

N<br />

O<br />

OH<br />

N<br />

O<br />

N<br />

HO<br />

O O<br />

OH<br />

HO OH<br />

<br />

- 2<br />

1<br />

R<br />

R<br />

OCH<br />

N<br />

3 N<br />

OCH3 O<br />

CH2 O<br />

OH<br />

OH<br />

N<br />

N CH<br />

H2C H<br />

3<br />

H2C H H2C OCH3 OCH3 O OH HO O<br />

CH<br />

O<br />

O<br />

3<br />

CH CH 3<br />

3<br />

<br />

77.necataronedehydrodimer<br />

78.ochroleucinA 78.ochroleucinA<br />

OH<br />

OH<br />

CH<br />

O<br />

O<br />

2<br />

CH3 H2C CH2 CH2 O<br />

O<br />

O O<br />

CH CH O O<br />

CH<br />

3<br />

3<br />

3<br />

<br />

<br />

<br />

79.ochroleucinB 79.ochroleucinB<br />

OCH3 O<br />

O<br />

OH O<br />

O<br />

H2C H3C CH3 CH3 H3C O<br />

H<br />

OCH3 O<br />

OH<br />

H3C OH<br />

O<br />

CH2 OH<br />

O CH3 CH3 H2C O CH3 CH3 CH3O CH H3C 3 OH<br />

CH H<br />

3 3C CH CH<br />

3<br />

3<br />

H3C OH<br />

O<br />

H3C H3C OH<br />

O<br />

O O<br />

H<br />

CH 3C<br />

O<br />

CH<br />

3<br />

O 3 CH3 H O O<br />

3C CH CH 3<br />

2 +<br />

CH3 O CH3 O CH CH 3 3 CH3 O CH CH3 3O<br />

OH<br />

H3C CH<br />

O O<br />

CH3 OH<br />

CH OH<br />

3<br />

CH 3<br />

3<br />

CH<br />

<br />

3<br />

CH3 OH<br />

78.ochroleucinA<br />

HO<br />

82.sarcoviolin<br />

O<br />

H3C 80.grifolinoneB OH<br />

CH3 79.ochroleucinB<br />

HO CH3 HO CH3 <br />

83.sarcodonin <br />

O<br />

80.grifolinoneB H3C 81.albatrellin<br />

OH<br />

HO<br />

<br />

81.albatrellin<br />

CH<br />

<br />

H 3 C<br />

HO<br />

<br />

CH 3<br />

O<br />

H3C O<br />

H3C 99<br />

CH3 +<br />

CH3 HO<br />

O OH<br />

-<br />

OH<br />

N<br />

O O O<br />

O<br />

N<br />

N<br />

O<br />

HO<br />

O O -<br />

H3C CH3 O<br />

CH<br />

O<br />

3 H3C O<br />

O O<br />

H<br />

O<br />

3C<br />

CH CH CH CH<br />

H3C 3<br />

3 3<br />

3<br />

O CH3 CH3 O CH3 CH3 OH<br />

H3C CH<br />

+<br />

3 OH<br />

H O O<br />

3C CH<br />

CH 3 +<br />

CH3 3<br />

O OH<br />

-<br />

OH<br />

OH<br />

N<br />

N<br />

O O O<br />

O<br />

N<br />

N<br />

O<br />

HO<br />

O O - H3C O<br />

O O<br />

H3C CH3 H O O<br />

3C CH3 +<br />

CH3 OH<br />

HO<br />

OH<br />

HO CH 3<br />

<br />

HO CH 3


H 3 C<br />

100<br />

CH 3<br />

O<br />

CH 3<br />

CH3 OH<br />

7 Thelephorales<br />

<br />

The fruiting bodies <strong>of</strong> Sarcodon leucopus (Pers.)<br />

Maas Geest. & Nannf. (Sarcodon Quél. ex P. Karst.,<br />

Bankeraceae) contain a range <strong>of</strong> compounds related<br />

to terphenylquinones. The main pigments are the<br />

unusual nitrogenous violet terphenylquinols sarcoviolins,<br />

exemplified by sarcoviolon α (82), which<br />

are accompanied by their colourless precursors<br />

sarcodonins (83) and structurally related compounds<br />

(Geraci et al. 2000; Cali et al. 2004).<br />

R e f e r e n c e s<br />

CH 3<br />

CH 3<br />

Ali N.A.A., Jansen R., Pilgrim H., Liberra K., Lindequist<br />

U. (1996). Hispolon, a yellow pigment from Inonotus<br />

hispidus. Phytochemistry, 41: 927–929.<br />

Aumann D.C., Cloth G., Steffan B., Steglich W. (1989).<br />

CompIexation <strong>of</strong> cesium 137 by the cap pigments <strong>of</strong> the<br />

bay boletus (Xevocomus badius). Angewandte Chemie,<br />

International Edition English, 28: 453–454.<br />

Aulinger K., Besl H., Spiteller P., Spiteller M., Steglich<br />

W. (2001): Melanocrocin, a polyene pigment from<br />

Melanogaster broomeianus (Basidiomycetes). Zeitschrift<br />

für Naturforschung, 56C: 495–498.<br />

Ayer W.A., Browne L.M. (1981): Terpenoid metabolites<br />

<strong>of</strong> mushrooms and related basidiomycetes. Tetrahedron,<br />

37: 2197–2248.<br />

Bayer E., Kneifel H. (1972): Isolation <strong>of</strong> amavadin, a<br />

vanadium compound occurring in Amanita muscaria.<br />

Zeitschrift für Naturforschung, 27B, 207–210.<br />

Besl H., Bresinsky A. (1997): Chemosystematics <strong>of</strong> Suillaceae<br />

and Gomphidiaceae (suborder Suillineae). Plant<br />

Systematics and Evolution, 206: 223–242.<br />

Besl H., Bresinsky A., Geigenmiiller G., Herrmann,<br />

R., Steglich W. (1989): Pilzfarbst<strong>of</strong>fe, 61 Flavomentine<br />

und Spiromentine, neue Terphenylchinon-Derivate aus<br />

Paxillus atrotomentosus und P. panuoides (Boletales).<br />

Liebigs Annalen der Chemie: 803–810.<br />

Besl H., Michler I., Preuss R., Steglich W. (1974): <strong>Pigments</strong><br />

<strong>of</strong> fungi, XXII Grevillin D, the main pigment <strong>of</strong><br />

Suillus granulatus, S. luteus and S. placidus (Boletales).<br />

Zeitschrift für Naturforschung, 29C: 784–786.<br />

H 3 C<br />

CH 3<br />

O<br />

CH 3<br />

CH3 OH<br />

HO<br />

Vol. 29, 2011, No. 2: 87–102<br />

CH3 <br />

HO CH3 Czech J. Food Sci. <br />

80.grifolinoneB 81.albatrellin<br />

HO<br />

O O<br />

H3C H3C O<br />

+<br />

O OH<br />

-<br />

OH<br />

N<br />

O<br />

N<br />

O<br />

CH 3<br />

CH 3<br />

HO OH<br />

<br />

HO OH<br />

82.sarcoviolin 83.sarcodonin<br />

<br />

HO<br />

CH 3<br />

OH<br />

N<br />

O<br />

N<br />

O O - O<br />

H3C O<br />

H3C O<br />

CH3 H3C O O CH3 +<br />

CH3 OH<br />

CH 3<br />

Bosetti A., Fronza G., Vidari G., Vita-Finzi P. (1989):<br />

Norlactarane and lactarane sesquiterpenes from Lacta-<br />

rius scrobiculatus. Phytochemistry, 28: 1427–1431.<br />

Briggs L.H., Cambie R.C., Dean I.C., Hodges R., Ingram<br />

W.B., Rutledge P.S. (1976): Chemistry <strong>of</strong> fungi. XI. Corticins<br />

A, B, and C, benzobisbenz<strong>of</strong>urans from Corticium<br />

caeruleum. Australian Journal <strong>of</strong> Chemistry, 29: 179–190.<br />

Bu’Lock J.D., Leeming P.R., Smith H.G. (1962): Pyrones.<br />

Part II. Hispidin, a new pigment and precursor <strong>of</strong> a fungus<br />

“lignin”. Journal <strong>of</strong> Chemical Society, 2085–2089.<br />

Cali V., Spatafora C., Tringali C. (2004): Sarcodonins<br />

and sarcoviolins, bioactive polyhydroxy-p-terphenyl<br />

pyrazinediol dioxide conjugates from fruiting bodies <strong>of</strong><br />

the Basidiomycete Sarcodon leucopus. European Journal<br />

<strong>of</strong> Organic Chemistry, 2004: 592–599.<br />

Calìa V., Spatafora C., Tringali C. (2003): Polyhydroxyp-terphenyls<br />

and related p-terphenylquinones from fungi:<br />

Overview and biological properties. Studies in Natural<br />

Products Chemistry, 29: 263–307.<br />

Davoli P., Mucci A., Schenetti L., Weber R.W.S. (2005):<br />

Laetiporic acids, a family <strong>of</strong> non-carotenoid polyene pigments<br />

from fruit-bodies and liquid cultures <strong>of</strong> Laetiporus<br />

sulphureus (Polyporales, <strong>Fungi</strong>). Phytochemistry, 66:<br />

817–823.<br />

De Angelis F., Arcadi A., Marinelli F, Paci M., Botti<br />

D., Pacioni G., Miranda M. (1996): Partial structures <strong>of</strong><br />

truffle melanins. Phytochemistry, 43: 1103–1106.<br />

De Bernardi M., Vidari G., Vita Finzi P., Fronza G.<br />

(1992): The chemistry <strong>of</strong> Lactarius fuliginosus and Lactarius<br />

picinus. Tetrahedron, 48: 7331–7344.<br />

De Rosa S., De Stefano S. (1987): Guaiane sesquiterpenes<br />

from Lactarius sanguifluus. Phytochemistry, 26:<br />

2007–2009.<br />

Drbal K., Kalač P., Šeflová A., Šefl J. (1975): Obsah<br />

stopových prvků železa a manganu v některých druzích<br />

jedlých hub. Česká mykologie, 29: 110–114.<br />

Edwards R.L., Gill M. (1973): Constituents <strong>of</strong> the higher<br />

fungi. Part XIV. 3',4',4-Trihydroxypulvinone, thelephoric<br />

acid, and novel pyrandione and furanone pigments from<br />

Suillus grevillei (Klotsch) Sing. [Boletus elegans (Schum.<br />

per Fries)]. Journal <strong>of</strong> the Chemical Society, Perkin Transactions,<br />

1: 1921–1929.<br />

Feling R., Polborn K., Steglich W., Mühlbacher J.,<br />

Bringmann G. (2001): The absolute configuration <strong>of</strong><br />

O


Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102<br />

the mushroom metabolites involution and chamonixin.<br />

Tetrahedron, 57: 7857–7863.<br />

Fugmann B., Steffan B., Steglich W. (1984): Necatarone,<br />

an alkaloidal pigment from the gilled toadstool Lactarius<br />

necator (Agaricales). Tetrahedron Letters, 25: 3575–3578.<br />

Geraci C., Neri P., Paterno C., Rocco C., Tringali C.<br />

(2000): An unusual nitrogenous terphenyl derivative from<br />

fruiting bodies <strong>of</strong> the Basidiomycete Sarcodon leucopus.<br />

Journal <strong>of</strong> Natural Products, 63: 347–351.<br />

Gill M. (1994): <strong>Pigments</strong> <strong>of</strong> fungi (Macromycetes). Natural<br />

Products Reports, 11: 67–90.<br />

Gill M. (1996): <strong>Pigments</strong> <strong>of</strong> fungi (Macromycetes). Natural<br />

Products Reports, 13: 513–528.<br />

Gill M. (1999): <strong>Pigments</strong> <strong>of</strong> fungi (Macromycetes). Natural<br />

Products Reports, 16: 301–317.<br />

Gill M. (2003): <strong>Pigments</strong> <strong>of</strong> fungi (Macromycetes). Natural<br />

Products Reports, 20: 615–639.<br />

Gill M., Morgan P.M. (2001): New fungal anthraquinones.<br />

ARKIVOC, Part (vii): 145–156.<br />

Gill M., Steglich W. (1987): <strong>Pigments</strong> <strong>of</strong> fungi (Macromycetes).<br />

Fortschritte der Chemie organischer Naturst<strong>of</strong>fe,<br />

51: 1–317.<br />

Gripenberg J. (1956): Fungus pigments. IV. Auratiacin, the<br />

pigment <strong>of</strong> Hydnum aurantiacum Batsch. Acta Chemica<br />

Scandinavica, 10: 1111–1115.<br />

Gripenberg J. (1958a): Fungus pigments. VIII. Structure<br />

<strong>of</strong> cinnabarin and cinnabarinic acid. Acta Chemica Scandinavica,<br />

12: 603–610.<br />

Gripenberg J. (1958b): Fungus pigments. IX. Some further<br />

constituents <strong>of</strong> Hydnum aurantiacum Batsch. Acta<br />

Chemica Scandinavica, 12: 1411–1414.<br />

Gripenberg J. (1965): Fungus pigments. XVI. The pigments<br />

<strong>of</strong> Peniophora sanguinea Bres. Acta Chemica Scandinavica,<br />

19: 2242–2259.<br />

Gripenberg J., Martikkala J. (1970): Fungus pigments.<br />

XX. On the structure <strong>of</strong> peniophorin. One <strong>of</strong> the pigments<br />

produced by Peniophora sanguinea Bres. Acta Chemica<br />

Scandinavica, 24: 3444–3448.<br />

Hanson J.R. (2008a): Fungal metabolites derived from<br />

amino acids. In: Hanson J.R. (ed.): The Chemistry <strong>of</strong><br />

<strong>Fungi</strong>. The Royal Society <strong>of</strong> Chemistry. Thomas Graham<br />

House, Cambridge: 32–46.<br />

Hanson J.R. (2008b): <strong>Pigments</strong> and odours <strong>of</strong> fungi. In: Hanson<br />

J.R. (ed.): The Chemistry <strong>of</strong> <strong>Fungi</strong>. The Royal Society <strong>of</strong><br />

Chemistry. Thomas Graham House, Cambridge: 127–142.<br />

Harmon A.D., Weisgraber K.H., Weiss U. (1980): Preformed<br />

azulene pigments <strong>of</strong> Lactarius indigo (Schw.) Fries<br />

(Russelaceae, Basidiomycetes). Experientia, 36: 54–56.<br />

Haxo F. (1950): Carotenoids <strong>of</strong> the mushroom Cantharellus<br />

cinnabarinus. Botanical Gazette, 112: 228–232.<br />

Hopmann C., Steglich W. (2006): <strong>Pigments</strong> <strong>of</strong> fungi. 65.<br />

Synthesis <strong>of</strong> haematopodin – a pigment from the mushroom<br />

Mycena haematopus (Basidiomycetes). Liebigs<br />

Annalen der Chemie, 1996: 1117–1120.<br />

Jägers E., Hillen-Maske E., Steglich W. (1987): Pilzfarbst<strong>of</strong>fe,<br />

54. Inhaltsst<strong>of</strong>fe von Boletopsis leucomelaena<br />

(Basidiomycetes): Klärung der chemischen Natur von<br />

„Leucomelon“ and „Protoleucomelon“. Zeitschrift für<br />

Naturforschung, B: Chemical Sciences, 42: 1349–1353.<br />

Kalač P., Wittingerová M., Stašková I. (1989): Obsah<br />

sedmi biogenních stopových prvků v jedlých houbách.<br />

Potravinářské vědy, 7: 131–136.<br />

Klamann J.-D., Fugmann B., Steglich W. (1989): Alkaloidal<br />

pigments from Lactarius necator and L. atroviridis.<br />

Phytochemistry, 28: 3519–3522.<br />

Klostermeyer D., Knops L., Sindlinger T., Polborn<br />

K., Steglich W. (2000): Novel nebzotropolone and<br />

2H-furo[3,2b]benzopyran/2-one pigments from Tricholoma<br />

aurantium (Agaricales). Europen Journal <strong>of</strong> Organic<br />

Chemistry, 4: 603–609.<br />

Knight D.W., Pattenden G. (1976): Synthesis <strong>of</strong> the pulvinic<br />

acid pigments <strong>of</strong> lichen and fungi. Journal <strong>of</strong> Chemical<br />

Society, Chemical Communications: 660–661.<br />

Koul S.K., Taneja S.C., Ibraham S.P., Dhar K.L., Atal<br />

C.K. (1985): A C-formylated allene from Lactarius deterrimus.<br />

Phytochemistry, 24: 181–182.<br />

Kuhnt D., Anke T., Besl H., Bross M., Herrmann R.<br />

Mocek U., Steffan B., Steglich W. (1990): Antibiotics<br />

from Basidiomycetes. XXXVII. New inhibitors <strong>of</strong> cholesterol<br />

biosynthesis from cultures <strong>of</strong> Xerula melanotricha<br />

Dörfelt. Journal <strong>of</strong> Antibiotics, 43: 1413–1420.<br />

Lang M, Jägers E, Polborn K, Steglich W. (2009): Structure<br />

and absolute configuration <strong>of</strong> the fungal ansabenzoquinone<br />

rhizopogone. Journal <strong>of</strong> Natural Products, 72: 214–217.<br />

Lang M., Mühlbauer A., Gräf C., Beyer J., Lang-Fugmann<br />

S., Polborn K., Steglich W. (2008): Studies<br />

on the structure and biosynthesis <strong>of</strong> tridentoquinone<br />

and related meroterpenoids from the mushroom Suillus<br />

tridenticus (Boletales). European Journal <strong>of</strong> Organic<br />

Chemistry: 816–825.<br />

Lang M., Spiteller P., Hellwig V., Steglich W. (2001):<br />

Stephanosporin, ein „spurloser“ Vorläufer von 2-Chlor-<br />

4-nitrophenol im Bauchpilz Stephanospora caroticolor.<br />

Angewandte Chemie, International Edition English, 113:<br />

1749–1751.<br />

Lee I.-K., Yun B.-S. (2006): Hispidin analogs from the<br />

mushroom Inonotus xeranticus and their free radical<br />

scavenging aktivity. Bioorganic & Medicinal Chemistry<br />

Letters, 16: 2376–2379.<br />

Lee I.-K., Yun B.-S., Cho S.-M., Kim W.-G., Kim J.-P., Ryoo<br />

I.-J., Hiroyuki K., Yoo I.-D. (1996): Betulinans A and B,<br />

two benzoquinone compounds from Lenzites betulina.<br />

Journal <strong>of</strong> Natural Products, 59: 1090–1092.<br />

Li C., Oberlies N.H. (2005): The most widely recognized<br />

mushroom: Chemistry <strong>of</strong> the genus Amanita. Life Sciences,<br />

78: 532–538.<br />

Liu J.-K. (2006): Natural terphenyls: Developments since<br />

1877. Chemical <strong>Review</strong>, 106: 2209–2223.<br />

101


Vol. 29, 2011, No. 2: 87–102 Czech J. Food Sci.<br />

Medicinal Mushrooms (2008): Available at http://healing-mushrooms.net/archives/lenzites-betulina-l-fr.html<br />

(accessed Nov 10, 2010)<br />

Muso H. (1976): The pigments <strong>of</strong> fly agaric, Amanita muscaria.<br />

Tetrahedron, 35: 2843–2853.<br />

Mussak R., Bechtold T. (2009): Handbook <strong>of</strong> Natural<br />

Colorants. John Wiley & Sons, New York: 183–200.<br />

Mühlbauer A., Beyer J., Steglich W. (1998): The biosynthesis<br />

<strong>of</strong> the fungal meroterpenoids boviquinone-3 and<br />

-4 follows two different pathways. Tetrahedron Letters,<br />

39: 5167–5170.<br />

MycoBank (2010): Available at http://www.mycobank.org/<br />

DefaultPage.aspx (accessed Nov 8, 2010)<br />

Peters S., Spiteller P. (2007a): Mycenarubins A and<br />

B, red pyrroloquinoline alkaloids from the mushroom<br />

Mycena rosea. European Journal <strong>of</strong> Organic Chemistry,<br />

2007: 1571–1576.<br />

Peters S., Spiteller P. (2007b): Sanguinones A and B, blue<br />

pyrroloquinoline alkaloids from the fruiting bodies <strong>of</strong><br />

the mushroom Mycena sanguinolenta. Journal <strong>of</strong> Natural<br />

Products, 70: 1274–1277.<br />

Peters S., Jaeger R. J. R., Spiteller P. (2008): Red pyrroloquinoline<br />

alkaloids from the mushroom Mycena<br />

haematopus. European Journal <strong>of</strong> Organic Chemistry,<br />

2008: 319–323.<br />

Räisänen R.: Dyes from lichens and mushrooms (2009):<br />

In: Bechtold T., Mussak R. (eds): Handbook <strong>of</strong> Natural<br />

Colorants. John Wiley & Sons, New York: 183–200.<br />

Schüffler A., Anke T. (2009): Chapter 10. Secondary<br />

metabolites <strong>of</strong> Basidiomycetes. In: Anke T., Weber D.<br />

(eds): Physiology and Genetics. Selected Basic and Applied<br />

Aspects. Springer, New York: 209–231.<br />

Sontag B., Rüth M., Spitteler P., Arnold N., Steglich<br />

W., Reichert M., Bringmann G. (2006): Chromogenic<br />

meroterpenoids from the mushroom Russula ochroleuca<br />

and R. viscida. European Journal <strong>of</strong> Organic Chemistry,<br />

2006, 1023–1033.<br />

Spiteller P., Arnold N., Spiteller M., Steglich W.<br />

(2003): Lilacinone, a red aminobenzoquinone pigment<br />

from Lactarius lilacinus. Journal <strong>of</strong> Natural Products,<br />

66: 1402–1403.<br />

Spiteller P, Steglich W. (2002): Blennione, a green aminobenzoquinone<br />

derivative from Lactarius blennius.<br />

Journal <strong>of</strong> Natural Products, 65: 725–727.<br />

Steglich W. (1981): Biologically active components from<br />

higher fungi. Pure & Applied Chemistry, 53: 1233–1240.<br />

102<br />

Steglich W., Zechlin L. (1978): Pilzpigmente, 33: Synthese<br />

des Fomentariols. Eine neue Methode zur Darstellung<br />

von Zimtalkoholen. Chemische Berichte, 111:<br />

3939–3948.<br />

Thorna R.G., Tibell L., Untereiner W.A., Walker C.,<br />

Wang Z., Weir A., Weiss M., White M.M., Winka K.,<br />

Yao Y.-J., Zhang N. (2007): A higher level phylogenetic<br />

classification <strong>of</strong> the fungi. Mycological Research, 111:<br />

509–547.<br />

Velíšek J., Cejpek K. (2008): Biosynthesis <strong>of</strong> Food Components.<br />

Ossis, Tábor.<br />

Velíšek J., Davídek J., Cejpek K. (2007): Biosynthesis <strong>of</strong><br />

food constituents: Natural pigments. Part 1 – a review.<br />

Czech Journal <strong>of</strong> Food Sciences, 25: 291–315.<br />

Velíšek J., Davídek J., Cejpek K. (2008): Biosynthesis <strong>of</strong><br />

food constituents: Natural pigments. Part 2 – a review.<br />

Czech Journal <strong>of</strong> Food Sciences, 26: 73–98.<br />

Von Nussbaum F., Spiteller P., Rüth M., Steglich W.,<br />

Wanner G., Gamblin B., Stievano L., Wagner F.E.<br />

(1998): An iron (III)-catechol complex as a mushroom<br />

pigment. Angewandte Chemie, International Edition<br />

English, 37: 3292–3295.<br />

Walton K., Coombs M.M., Walker R., Ioannides C.<br />

(2001):The metabolism and bioactivation <strong>of</strong> agaritine<br />

and <strong>of</strong> other mushroom hydrazines by whole mushroom<br />

homogenate and by mushroom tyrosinase. Toxicology,<br />

161: 165–177.<br />

Winner M., Gimenez A., Schmidt H., Sontag B., Steffan<br />

B., Steglich W. (2004): Unusual pulvinic acid dimers<br />

from the common fungi Scleroderma citrinum (common<br />

earthball) and Chalciporus piperatus (peppery bolete).<br />

Angewandte Chemie, International Edition English, 43:<br />

1883–1886.<br />

Yang X.-L., Luo D.-Q., Dong Z.-J., Liu J.-K. (2006): Two<br />

new pigments from the fruiting bodies <strong>of</strong> the Basidiomycete<br />

Lactarius deliciosus. Helvetica Chimica Acta,<br />

89: 988–990.<br />

Yang X.-L., Qin C., Wang F., Dong Z.-J., Liu J.-K. (2008):<br />

A new meroterpenoid pigment from the Basidiomycete<br />

Albatrellus confluens. Chemistry & Biodiversity, 5:<br />

484–489.<br />

Zhou Z.-Y., Liu J.-K. (2010): <strong>Pigments</strong> <strong>of</strong> fungi (Macromycetes).<br />

Natural Products Reports, 27: 1531–1570.<br />

Recieved for publication December 29, 2010<br />

Accepted after corrections January 15, 2011<br />

Corresponding author:<br />

Pr<strong>of</strong>. Ing. Jan Velíšek, DrSc., Vysoká škola chemicko-technologická v Praze, Fakulta potravinářské a biochemické<br />

technologie, Ústav chemie a analýzy potravin, Technická 5, 166 28 Praha 6, Česká republika<br />

tel.: + 420 220 443 175, e-mail: jan.velisek@vscht.cz

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!