09.06.2013 Views

Recent Trends in Heat Recovery Cokemaking Processes - ABM

Recent Trends in Heat Recovery Cokemaking Processes - ABM

Recent Trends in Heat Recovery Cokemaking Processes - ABM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Recent</strong> <strong>Trends</strong> <strong>in</strong> <strong>Heat</strong> <strong>Recovery</strong> Cokemak<strong>in</strong>g<br />

<strong>Processes</strong><br />

Dr. John F. Quanci<br />

SunCoke Energy<br />

Vice-President of Technology<br />

September 2011<br />

September 2011 SunCoke Energy 1


Outl<strong>in</strong>e<br />

• Iron Production: Coke Usage<br />

• <strong>Heat</strong> <strong>Recovery</strong> Cokemak<strong>in</strong>g Technology History<br />

• <strong>Heat</strong> <strong>Recovery</strong> Cokemak<strong>in</strong>g: Current Practice<br />

• Future Requirements and Direction <strong>in</strong> <strong>Heat</strong> <strong>Recovery</strong><br />

September 2011 SunCoke Energy 2


Iron Production: Coke Usage<br />

September 2011 SunCoke Energy<br />

3


Iron Production: Coke M<strong>in</strong>imization<br />

• Coke is the 2 nd highest cost consumable <strong>in</strong> Steel<br />

production<br />

– ~25% of the total cost<br />

– Iron highest at ~40% of total cost<br />

• Blast furnace competitiveness depends on lower<strong>in</strong>g<br />

coke use<br />

• Steel Industry focused on lower<strong>in</strong>g coke use for the<br />

last 50 years by advances <strong>in</strong> practices and technology<br />

September 2011 SunCoke Energy 4


Reduction Blast Furnace Reduc<strong>in</strong>g Agent Consumption<br />

Impact of Technology over the last 50 years:<br />

• Reduc<strong>in</strong>g Agents lowered by over 50%<br />

• Coke use lowered by over 65%<br />

September 2011<br />

consumption of reductants kg/thm<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Ore beneficiation<br />

Input of overseas rich ores<br />

Blast temperature > 1200C<br />

O2 enrichment<br />

Top pressure<br />

Burden distribution<br />

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005<br />

year<br />

Gas flow control<br />

Improvement of Fe burden<br />

~30%<br />

Improvement of coke<br />

Source: Sponge Iron Production - Chatterjee<br />

Small coke <strong>in</strong> Fe burden<br />

104<br />

33<br />

345<br />

coal<br />

oil + others<br />

coke<br />

482<br />

SunCoke Energy<br />

5


Global Demand for Coke and Hot Metal<br />

Source: US Geological Survey<br />

• Even though Steel Companies driv<strong>in</strong>g down coke/thm through technology and alternate<br />

reductants, coke demand still <strong>in</strong>creas<strong>in</strong>g<br />

• Increas<strong>in</strong>g demand for cok<strong>in</strong>g coals expected<br />

September 2011 SunCoke Energy 6


Alternate Reductants for Coke Replacement<br />

• Increased use of PCI and other reductants to replace coke <strong>in</strong><br />

Blast Furnaces<br />

• As high as 30-40% of blast furnace coke has been replaced by<br />

alternate reductants like PCI<br />

• Alternate reductants could potentially make up as much as<br />

50% of the total reductant<br />

• As alternate reductants like PCI <strong>in</strong>crease, higher quality coke<br />

needed:<br />

– Supports the burden (about 50% of total reductant)<br />

– Distributes gases<br />

• Will drive demand for larger and stronger coke!<br />

September 2011 SunCoke Energy 7


<strong>Heat</strong> <strong>Recovery</strong> Technology History<br />

September 2011 SunCoke Energy 8


Sun Coke<br />

Process Flow Diagram<br />

SunCoke Energy – Process Flow Diagram<br />

Coal 1,930 F Flue Gas temperature<br />

Flue Gas<br />

Treat<strong>in</strong>g<br />

for Sulfur<br />

Removal<br />

ID Fans<br />

Coal - Blended<br />

VM 24.50<br />

FC 68.25<br />

Ash 7.25<br />

Moisture 7.00<br />

<strong>Heat</strong> <strong>Recovery</strong> Coke Ovens<br />

Steam<br />

Extracted<br />

for Process<br />

Use<br />

Turb<strong>in</strong>e<br />

Electricity to Grid<br />

Emergency<br />

Stack<br />

Run-of-Oven<br />

Coke<br />

Furnace coke<br />

Breeze<br />

<strong>Heat</strong> <strong>Recovery</strong><br />

Steam Generators<br />

Co-generation Plant<br />

Condenser<br />

Feed Water<br />

<strong>Heat</strong>ers, Pumps,<br />

Deaerators<br />

September 2011 SunCoke Energy 9<br />

Ma<strong>in</strong> Stack


SunCoke Energy – Horizontal <strong>Heat</strong> <strong>Recovery</strong> Oven<br />

September 2011 SunCoke Energy 10


Horizontal Non-<strong>Heat</strong> <strong>Recovery</strong> – Developmental History<br />

• 1960s<br />

– First SunCoke Horizontal Mitchell Ovens <strong>in</strong> Jewell<br />

• 1970s<br />

– Jewell Thompson ovens built<br />

– Precursor to modern HHR design<br />

• 1980s<br />

– Cont<strong>in</strong>ued R&D<br />

– Highest quality coke <strong>in</strong> US<br />

Jewell Plant – late 1980s<br />

Jewell Plant – Vansant, VA<br />

(Mid-1970s)<br />

September 2011 SunCoke Energy 11


1990s – First Generation <strong>Heat</strong> <strong>Recovery</strong> Plant<br />

• SunCoke builds first heat<br />

recovery plant <strong>in</strong> world<br />

• Located <strong>in</strong> East Chicago, Indiana<br />

• Started up <strong>in</strong> March 1998<br />

• Coke capacity: 1.3M tpa (268<br />

ovens)<br />

• <strong>Heat</strong> <strong>Recovery</strong> of 1.0 Mlbs/hr of<br />

superheated steam<br />

• Rated for 100 MW of power<br />

generation<br />

Indiana Harbor Coke Plant – March 1998<br />

September 2011 SunCoke Energy 12


SunCoke Energy History s<strong>in</strong>ce 2000 – New HR Plants<br />

Domestic Operations<br />

Granite City (2009)<br />

120 Ovens<br />

Capacity: 650kt<br />

Steam: 450klbs/hr<br />

Indiana Harbor<br />

268 Ovens<br />

Capacity: 1,220kt<br />

Steam: 1,000klbs/hr Haverhill (2005, 2008)<br />

200 Ovens<br />

Capacity: 1,100kt<br />

Steam: 450klb/hr<br />

Power: net 46 MW<br />

Jewell Coke<br />

142 Ovens<br />

Capacity: 720kt<br />

Middletown (1)<br />

100 Ovens<br />

Capacity: 550kt<br />

Power: net 46 MW<br />

Exist<strong>in</strong>g coke facilities<br />

Coke facility under construction<br />

(1) Expected start-up <strong>in</strong> Q4 2011.<br />

(2) SunCoke holds a preferred <strong>in</strong>terest of $41 million <strong>in</strong> Vitória and is the operator.<br />

International Operations<br />

Brazil<br />

Vitória (2) (2007)<br />

320 Ovens<br />

Capacity: 1,700kt<br />

Power: 150 MW<br />

September 2011 SunCoke Energy 13


SunCoke <strong>Heat</strong> <strong>Recovery</strong> Plants<br />

Vitoria, ES – Brazil (320 Ovens)<br />

Haverhill, OH – Phase II (100 Ovens)<br />

September 2011 SunCoke Energy 14


Most recent project – Middletown, OH<br />

September 2011 SunCoke Energy 15


SunCoke Energy Capacity through 2011<br />

• Steady <strong>in</strong>crease <strong>in</strong> SunCoke Energy heat recovery cok<strong>in</strong>g capacity over the last 5 – 10 years<br />

• All new coke plants <strong>in</strong> United States s<strong>in</strong>ce 2000 have been Horizontal <strong>Heat</strong> <strong>Recovery</strong><br />

September 2011 SunCoke Energy 16<br />

<strong>Heat</strong> <strong>Recovery</strong> Capacity


Last 5-Year Technology Advancements<br />

• Improved Oven Design<br />

• Improved HRSG design<br />

• Pusher charger mach<strong>in</strong>e upgrades<br />

• Flat push hot car & quench car<br />

• Further enhanced charg<strong>in</strong>g<br />

emission control system<br />

• Advanced FGD Control<br />

– EPA Approved Technology<br />

• Improved Quench Tower Design<br />

September 2011 SunCoke Energy<br />

17


<strong>Heat</strong> <strong>Recovery</strong> Cokemak<strong>in</strong>g:<br />

Current Practice<br />

September 2011 SunCoke Energy 18


Typical SunCoke Energy Battery<br />

• Coal specifications<br />

– Typical volatile matter is 21% to 28%, campaign 19% to 32%<br />

– Average reflectance range of 1.00 to 1.65<br />

• Can generate steam or power<br />

– Approximately 9 MW / 100 kmt annual Run of Oven coke production<br />

– Annual power production of 788 kW-h / mt coke<br />

• No wastewater treatment plant required<br />

• Can be constructed on a new site or exist<strong>in</strong>g site (brownfield)<br />

• 48 hour cycle / 43.2 metric tons (48 short tons) coal<br />

• 1540C max temperature<br />

• Plant designed for 30 year run life<br />

• Approximately 2 – 4% Yield Loss<br />

• 2 – 5 CSR <strong>in</strong>crease over By-product plant us<strong>in</strong>g same coals<br />

– Improved Strength attributed to slower heat<strong>in</strong>g rate, higher temperatures and longer soak<br />

time result<strong>in</strong>g <strong>in</strong> consistent crystal growth<br />

September 2011 SunCoke Energy 19


• Not limited by coal expansion<br />

– Can use high wall-pressure coals<br />

– Can use low and high rank coals<br />

HHR Coal Flexibility<br />

• SunCoke demonstrated use of PCI coal (25%), Petroleum Coke (10%), noncok<strong>in</strong>g<br />

coal (10%), soft or semi-cok<strong>in</strong>g coal (25%) and breeze with m<strong>in</strong>imal<br />

impact to CSR<br />

• No oven damage risk associated with blend changes<br />

– M<strong>in</strong>imal need to run pilot/moveable wall oven studies<br />

• Less risk of exposure to coal supply shortages / issues<br />

– SunCoke Energy facilities can change coal blends weekly<br />

– Up to 80+ different coal blends used per year<br />

September 2011 SunCoke Energy 20


<strong>Heat</strong> <strong>Recovery</strong> Oven Flexibility<br />

Hypothetical<br />

blend of 3 coals<br />

HR &<br />

By-Product<br />

• <strong>Heat</strong> recovery plants can blend <strong>in</strong> more high pressure coals<br />

HR only<br />

• Elim<strong>in</strong>ation of wall pressure constra<strong>in</strong>ts <strong>in</strong>creases blend flexibility<br />

HHR Not constra<strong>in</strong>ed<br />

to this maximum<br />

September 2011 SunCoke Energy 21


Environmental Impact Benefits<br />

• Low VOC emissions<br />

– Ovens operate under negative pressure conditions dur<strong>in</strong>g cok<strong>in</strong>g cycle<br />

– Complete combustion of VM<br />

• SunCoke Energy sets the technology standard <strong>in</strong> United States<br />

– SDA / baghouse is typical<br />

– Successfully <strong>in</strong>tegrated advanced FGD with cok<strong>in</strong>g process<br />

• No net waste-water discharge<br />

– All process water consumed by quench<strong>in</strong>g<br />

September 2011 SunCoke Energy 22


Factors Favor<strong>in</strong>g <strong>Heat</strong> <strong>Recovery</strong> Plants<br />

• M<strong>in</strong>imal need for COG <strong>in</strong> the steel plant<br />

• High cost of electricity or no electricity supply available<br />

• Steam required for process needs<br />

– HHR is a Cogen plant and can replace exist<strong>in</strong>g boilers<br />

• Coal blend flexibility (no wall pressure limits)<br />

– Can utilize wide range of coals (lower cost blends)<br />

– Plant location at risk for coal supply disruptions<br />

• Strict environmental regulations<br />

• No or limited waste water treatment plant<br />

• Higher quality coke is required<br />

– Large blast furnaces and/or high PCI rates<br />

September 2011 SunCoke Energy<br />

23


Future <strong>Trends</strong> <strong>in</strong> <strong>Heat</strong> <strong>Recovery</strong><br />

Cokemak<strong>in</strong>g


SCE Horizontal HR Coke Plant Improvement Summary<br />

Critical Areas for Customers Next Plant Future Plants<br />

Footpr<strong>in</strong>t Potential 30% Smaller >30% Smaller<br />

Capital Cost Value Eng<strong>in</strong>eered -<br />

Lower Capital<br />

Further Capital Decrease Driven by<br />

Footpr<strong>in</strong>t<br />

Coke Yield Lower Yield Loss Increased Yield Ga<strong>in</strong><br />

Lower Coal Cost Flexibility for Stamp Charg<strong>in</strong>g<br />

Predictive coal blend model<strong>in</strong>g<br />

improvements<br />

New Designs<br />

Turndown Greater than 25% >50% and Turn Off<br />

Environmental Regs Meet or exceed New EPA Regs Exceed EPA Regs<br />

Cont<strong>in</strong>ue to set the standard<br />

Oven Operation/Life New Monitor<strong>in</strong>g Tools Structure<br />

Improvements<br />

New Materials of Construction and<br />

CFD/FEA<br />

Increased Power New HRSG Design Further Improvements based on<br />

CFD<br />

September 2011 SunCoke Energy 25


Value Eng<strong>in</strong>eer<strong>in</strong>g Coke Plant: Conceptual Designs<br />

• Value eng<strong>in</strong>eer<strong>in</strong>g can reduce capital <strong>in</strong>vestment<br />

– Ma<strong>in</strong>ta<strong>in</strong> coke rate with less support<strong>in</strong>g capital equipment<br />

– Reviewed exist<strong>in</strong>g design and reduced number of mach<strong>in</strong>es<br />

– Also look<strong>in</strong>g to use low-cost country sourc<strong>in</strong>g<br />

• Design Enhancements<br />

– Plot space sav<strong>in</strong>g<br />

– Simplified power production design<br />

– Meets or exceeds new Environmental requirements<br />

• Modular expansion provides more flexibility for “brownfield”<br />

sites<br />

September 2011 SunCoke Energy 26


Coke Yield Improvements<br />

• Currently study<strong>in</strong>g parameters that effect the Run of Oven<br />

coke yield<br />

• Goal is to m<strong>in</strong>imize burn loss through fundamental design<br />

changes of the coke oven<br />

• Ties <strong>in</strong> very well with future model<strong>in</strong>g work (CFD and<br />

combustion k<strong>in</strong>etics)<br />

September 2011 SunCoke Energy 27


Low Cost Coal Utilization<br />

• Horizontal <strong>Heat</strong> <strong>Recovery</strong> ovens have blend advantage s<strong>in</strong>ce no<br />

wall pressure limit<br />

– Larger selection of low quality and low cost coals<br />

• Coal Compaction/Stamp charg<strong>in</strong>g has high potential to lower<br />

overall coke cost<br />

– Significantly reduce coal costs and ma<strong>in</strong>ta<strong>in</strong> high coke quality<br />

– Required <strong>in</strong> India/Ch<strong>in</strong>a where large quantities of low quality coal<br />

– International coke producers claim 40 to 60% low quality coal usage <strong>in</strong> coal<br />

blends<br />

• Coal/Coke Blend Model<strong>in</strong>g is crucial to take advantage of Coal<br />

Flexibility and Stamp Charg<strong>in</strong>g<br />

September 2011 SunCoke Energy 28


Coal/Coke Chemistry and Blend Model<strong>in</strong>g<br />

• Advance fundamental knowledge of the cok<strong>in</strong>g process<br />

• Coal blend/coke prediction model for world-wide applications<br />

• Optimization of coal/coke blends through first pr<strong>in</strong>ciple<br />

model<strong>in</strong>g<br />

– Go beyond current empirical correlations<br />

– Function of Operat<strong>in</strong>g Conditions, Coal Properties and Reaction K<strong>in</strong>etics<br />

– CSR, Stability, Yield, Power, etc<br />

• Coal/Coke Non-L<strong>in</strong>ear Program Optimization Tool<br />

• Pilot plant and large-scale test<strong>in</strong>g for coal blend test<strong>in</strong>g, model<br />

development and next generation coke oven design<br />

September 2011 SunCoke Energy 29


Model Development: Coal Blends<br />

log(fluidity)<br />

Coal 1<br />

Planned test Space<br />

optimal<br />

cok<strong>in</strong>g range<br />

Coal 2<br />

Coal 3<br />

reflectance<br />

• Develop coal blends/models with non-l<strong>in</strong>ear multidimensional optimization and design of<br />

experiment<br />

• Pilot Plant studies allow for non-production viable blends to be tested for the purpose of<br />

statistical leverage on model build<strong>in</strong>g and test<strong>in</strong>g<br />

September 2011 SunCoke Energy 30


Computational Fluid Dynamics (CFD) Oven<br />

Temperature<br />

(°F)<br />

Model<br />

• Advance coke mak<strong>in</strong>g science, technology and pr<strong>in</strong>ciples through the use and application of Advanced<br />

Computational Tools (CFD/FEA/Rxn K<strong>in</strong>etics)<br />

• L<strong>in</strong>k CFD, coke/coal blend/k<strong>in</strong>etic models and oven structural FEA models to allow fully <strong>in</strong>tegrated design and<br />

optimization<br />

• Us<strong>in</strong>g CFD to optimize oven design and operation; lower yield loss, faster rates, new designs etc<br />

September 2011 SunCoke Energy 31


Coke Oven Turndown Optimization<br />

• Allow flexibility for <strong>in</strong>dustry turndowns and coal shortages<br />

• Safe , efficient, and quick turndown of SCE oven without<br />

damage to the oven structure or life while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g coke<br />

yield and quality<br />

• Improve Max turndown on exist<strong>in</strong>g plant<br />

– Ovens have been turned down greater than 25%<br />

– Further tests may show greater turndown possible<br />

• Improvements to allow more turndown and potentially turn<br />

off exist<strong>in</strong>g ovens<br />

September 2011 SunCoke Energy 32


Next Generation Environmental Control<br />

• Next North American Plant to meet or exceed EPA regulations<br />

– Lower SOx<br />

– No planned vent<strong>in</strong>g<br />

– Still lowest <strong>in</strong> HAP’s/VOC’s s<strong>in</strong>ce negative pressure<br />

• Improved Quench Tower Design<br />

– Lower Emissions<br />

– Better Reliability<br />

– Faster and more efficient quench<strong>in</strong>g<br />

• Environmental Controls can be optimized to meet local<br />

requirements and needs<br />

September 2011 SunCoke Energy 33


Next Generation Cok<strong>in</strong>g Process<br />

• Future Goals<br />

– Lower Capital Cost and Lower Cost of Conversion<br />

– High Turndown (turn off)<br />

– Improved HRSG/FGD reliability and <strong>in</strong>tegration<br />

– Low yield loss (9 MW/100k mtpa Coke)<br />

– Smaller Footpr<strong>in</strong>t Coke Plant<br />

– Improved Coke Quality<br />

– Maximize low quality coal<br />

– Increased throughput over current designs<br />

– Meet or exceed Environmental requirements<br />

September 2011 SunCoke Energy 34


Summary<br />

• SunCoke Energy has advanced horizontal heat recovery<br />

technology over the last 50 years<br />

– Oven design perfected from 1960s to 2010s<br />

– Currently look<strong>in</strong>g to optimize heat recovery and push the limits of<br />

technology<br />

• Will cont<strong>in</strong>ue to improve the <strong>Heat</strong> <strong>Recovery</strong> process<br />

– Better coal blend predictions<br />

– Lowest possible turndown capabilities<br />

– Advanced process model<strong>in</strong>g for optimal operation<br />

– Smaller footpr<strong>in</strong>t with lower CapEx and OpEx costs<br />

– Improved Environmental Controls<br />

• Aspir<strong>in</strong>g to br<strong>in</strong>g science to the art of cokemak<strong>in</strong>g<br />

September 2011 SunCoke Energy 35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!