09.06.2013 Views

Thermohydraulic Analysis of the ITER Magnet Systems

Thermohydraulic Analysis of the ITER Magnet Systems

Thermohydraulic Analysis of the ITER Magnet Systems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

<strong>Thermohydraulic</strong> <strong>Analysis</strong> <strong>of</strong> <strong>the</strong><br />

<strong>ITER</strong> <strong>Magnet</strong> <strong>Systems</strong><br />

• Toroidal Fields Coils<br />

• Winding & Case<br />

• Cryoplant interface<br />

• Poloidal Field Coils<br />

• Winding<br />

• Cryoplant interface<br />

• Central Solenoid<br />

• Winding<br />

• Cryoplant interface


Numerical Simulation <strong>of</strong> <strong>the</strong> TF<br />

<strong>Magnet</strong> Cooling System: Model<br />

• Hydraulic Layout<br />

(Two closed cooling circuits with <strong>the</strong> cryolines, feeders, pumps, valves<br />

and heat exchangers for <strong>the</strong> TF Winding and <strong>the</strong> TF Case separately )<br />

• Winding cooling circuit<br />

• 1-dimensional dimensional finite element model for <strong>the</strong> transient<br />

compressed flows <strong>of</strong> SHe in <strong>the</strong> conductor channels,<br />

cooling pipes and cryolines<br />

• 7 pairs <strong>of</strong> channels for <strong>the</strong> individual modeling <strong>of</strong> 7<br />

pancakes (half <strong>of</strong> <strong>the</strong> TF winding)<br />

• Opposite He flow direction in a double pancake<br />

• Case cooling circuit<br />

• 25+25 (for half <strong>of</strong> <strong>the</strong> coil) TF case cooling pipes for two<br />

separate refrigerating circuits controlled by <strong>the</strong> valves<br />

• Coil structure<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

• 2-dimensional dimensional finite element model for <strong>the</strong> transient<br />

<strong>the</strong>rmal problem in <strong>the</strong> TF Coil cross-sections<br />

cross sections<br />

• 32 variable TF Coil cross sections (case & winding) in<br />

poloidal direction<br />

• Space and time distribution <strong>of</strong> <strong>the</strong> heat loads along and<br />

across <strong>the</strong> TF coil<br />

• Space and time distribution <strong>of</strong> AC losses and nuclear<br />

heating in <strong>the</strong> pancakes<br />

VINCENTA v.4.1 code


Temperature [K]<br />

5.2<br />

5.1<br />

5<br />

4.9<br />

4.8<br />

4.7<br />

4.6<br />

4.5<br />

turn_1 turn_2<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Numerical Simulation <strong>of</strong> <strong>the</strong> TF<br />

<strong>Magnet</strong> Cooling System: Results<br />

The general numerical model is treated by VINCENTA v.4.1 code<br />

Winding cooling circuit<br />

4.4<br />

0 50 100 150 200 250 300 350<br />

6.5 s<br />

100 s<br />

130 s<br />

230 s<br />

330 s<br />

430 s<br />

530 s<br />

630 s<br />

725 s<br />

825 s<br />

925 s<br />

1245 s<br />

1590 s<br />

1690 s<br />

1790 s<br />

1800 (0) s<br />

Channel Length [m]<br />

Normal<br />

operation<br />

without<br />

controllability<br />

Temperature evolution <strong>of</strong> <strong>the</strong> TF conductor for<br />

pancake #5 during plasma pulse (“odd” pancake,<br />

C63) (no controllability).<br />

Temperature [K]<br />

6.2<br />

6<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

Case cooling circuit<br />

4.4<br />

0 2 4 6 8 10 12 14 16<br />

6.5 s<br />

100 s<br />

130 s<br />

Channel Length [m]<br />

Normal<br />

230 s<br />

330 s<br />

430 s<br />

530 s operation<br />

630 s<br />

725 s<br />

825 s<br />

925 s<br />

1245 s<br />

1590 s<br />

1690 s<br />

1790 s<br />

1800 (0) s<br />

without<br />

controllability<br />

Temperature distribution along <strong>the</strong> "long"<br />

cooling pass #4 (“front” wall) during 1800 s<br />

plasma pulse (no controllability)<br />

8<br />

7<br />

6<br />

5<br />

Coil structure<br />

Normal<br />

operation<br />

without<br />

controllability<br />

Temperature diagram for section # 9 (middle plane) at 530 s (end <strong>of</strong><br />

plasma burning).


Temperature [K]<br />

5.3<br />

5.2<br />

5.1<br />

5<br />

4.9<br />

4.8<br />

4.7<br />

4.6<br />

4.5<br />

4.4<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Numerical Simulation <strong>of</strong> <strong>the</strong> TF<br />

<strong>Magnet</strong> Cooling System: Results<br />

The general numerical model is treated by VINCENTA v.4.1 code<br />

Winding cooling circuit<br />

turn_1 turn_2<br />

4.3<br />

0 50 100 150 200 250 300 350<br />

6.5 s<br />

100 s<br />

130 s<br />

230 s<br />

330 s<br />

430 s<br />

530 s<br />

630 s<br />

725 s<br />

825 s<br />

925 s<br />

1245 s<br />

1590 s<br />

1690 s<br />

1790 s<br />

1800 (0) s<br />

Channel Length [m]<br />

Normal<br />

operation<br />

with<br />

controllability<br />

Temperature evolution <strong>of</strong> <strong>the</strong> TF conductor for<br />

pancake #5 during plasma pulse (“odd” pancake,<br />

C63).<br />

Temperature [K]<br />

6.6<br />

6.4<br />

6.2<br />

6<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

4.4<br />

Case cooling circuit<br />

4.2<br />

0 2 4 6 8 10 12 14 16<br />

6.5 s<br />

100 s<br />

130 s<br />

230 s<br />

330 s<br />

430 s<br />

530 s<br />

630 s<br />

725 s<br />

825 s<br />

925 s<br />

1245 s<br />

1590 s<br />

1690 s<br />

1790 s<br />

1800 (0) s<br />

Channel Length [m]<br />

Normal<br />

operation<br />

with<br />

controllability<br />

Temperature distribution along <strong>the</strong> "long"<br />

cooling pass #4 (“front” wall) during 1800 s<br />

plasma pulse.<br />

8<br />

7<br />

6<br />

5<br />

Coil structure<br />

Normal<br />

operation<br />

with<br />

controllability<br />

Temperature diagram for section # 9 (middle plane) at 530 s (end <strong>of</strong><br />

plasma burning).


Temperature [K]<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

4.4<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Numerical Simulation <strong>of</strong> <strong>the</strong> TF<br />

<strong>Magnet</strong> Cooling System: Results<br />

The general numerical model is treated by VINCENTA v.4.1 code<br />

Winding cooling circuit<br />

turn_1 turn_2<br />

4.2<br />

0 50 100 150 200 250 300 350<br />

Channel Length [m]<br />

6.5 s<br />

100 s<br />

130 s<br />

230 s<br />

330 s<br />

430 s<br />

530 s<br />

630 s<br />

725 s<br />

825 s<br />

925 s<br />

1245 s<br />

1590 s<br />

1690 s<br />

1790 s<br />

1800 (0) s<br />

Temperature evolution <strong>of</strong> <strong>the</strong> TF conductor for<br />

pancake #5 (“odd” pancake, C63) during 9 th<br />

plasma pulse ended by plasma disruption.<br />

Temperature [K]<br />

9.5<br />

9<br />

8.5<br />

8<br />

7.5<br />

7<br />

6.5<br />

6<br />

5.5<br />

5<br />

4.5<br />

Case cooling circuit<br />

4<br />

0 2 4 6 8 10 12 14 16<br />

Channel Length [m]<br />

6.5 s<br />

100 s<br />

130 s<br />

230 s<br />

330 s<br />

430 s<br />

530 s<br />

630 s<br />

725 s<br />

825 s<br />

925 s<br />

1245 s<br />

1590 s<br />

1690 s<br />

1790 s<br />

1800 (0) s<br />

Temperature distribution along <strong>the</strong> "long"<br />

cooling pass #4 (“front” wall) during 9 th plasma<br />

pulse ended by plasma disruption.<br />

14<br />

12<br />

10<br />

8<br />

6<br />

Coil structure<br />

Operation with plasma disruption<br />

Temperature diagram for section # 9 (middle plane) at 590 s (one<br />

minute pass after 9 th plasma pulse ended by plasma disruption).


Temperature (K)<br />

6<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

4.4<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Numerical Simulation <strong>of</strong> <strong>the</strong> TF<br />

<strong>Magnet</strong> Cooling System: Results<br />

The general numerical model is treated by VINCENTA v.4.1 code<br />

16 246<br />

4.2<br />

0 50 100 150 200 250<br />

6.5 s<br />

100 s<br />

130 s<br />

230 s<br />

330 s<br />

430 s<br />

530 s<br />

540 s<br />

550 s<br />

560 s<br />

570 s<br />

580 s<br />

590 s<br />

650 s<br />

950 s<br />

1800 (0) s<br />

x (m)<br />

Winding cooling circuit<br />

Pressure (MPa)<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

16 246<br />

0.45<br />

0 50 100 150 200 250 300<br />

6.5 s<br />

100 s<br />

130 s<br />

230 s<br />

330 s<br />

430 s<br />

530 s<br />

630 s<br />

725 s<br />

825 s<br />

925 s<br />

1245 s<br />

1590 s<br />

1690 s<br />

1790 s<br />

1800 (0) s<br />

SHe temperature and Pressure evolution in <strong>the</strong> feeder C73, cryoline C74, heat exchanger C75,<br />

cryoline C76 and feeder C77 during 9 th plasma pulse ended by plasma disruption.<br />

x (m)<br />

Temperature (K)<br />

4<br />

0 20 40 60 80 100 120 140 160<br />

Operation with plasma disruption<br />

8<br />

7.5<br />

7<br />

6.5<br />

6<br />

5.5<br />

5<br />

4.5<br />

6.5 s<br />

100 s<br />

130 s<br />

230 s<br />

330 s<br />

430 s<br />

530 s<br />

540 s<br />

550 s<br />

560 s<br />

570 s<br />

580 s<br />

590 s<br />

650 s<br />

950 s<br />

1800 (0) s<br />

21 131<br />

x (m)<br />

Case cooling circuit<br />

0.5<br />

0 20 40 60 80 100 120 140 160<br />

SHe temperature and pressure evolution in <strong>the</strong> feeder C53, cryoline C54, heat exchanger<br />

C55, cryoline C56 and feeder C57 during 9 th plasma pulse ended by plasma disruption.<br />

Pressure [MPa]<br />

1.7<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

21 131<br />

6.5 s<br />

100 s<br />

130 s<br />

230 s<br />

330 s<br />

430 s<br />

530 s<br />

630 s<br />

725 s<br />

825 s<br />

925 s<br />

1245 s<br />

1590 s<br />

1690 s<br />

1790 s<br />

1800 (0) s<br />

x (m)


Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Numerical Simulation <strong>of</strong> <strong>the</strong> TF<br />

<strong>Magnet</strong> Cooling System: Results<br />

The general numerical model is treated by VINCENTA v.4.1 code<br />

Normal operation under Cryoplant Controllability (TF Case circuit circuit<br />

adjusted only)<br />

HEAT LOAD [kW] Normal<br />

PRESSURE [MPa]<br />

20<br />

15<br />

10<br />

5<br />

Winding cooling circuit<br />

0<br />

0 1<br />

Q_cryoplant<br />

Q_winding & pump<br />

Q_average<br />

2 3 4<br />

PULSE<br />

5 6 7 8<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

Evolution <strong>of</strong> <strong>the</strong> heat released in <strong>the</strong> cooling circuit and<br />

absorbed by heat exchanger.<br />

0.3<br />

0 1 2 3 4 5 6 7 8<br />

After <strong>the</strong> pump<br />

Before <strong>the</strong> pump<br />

PULSE<br />

Evolution <strong>of</strong> <strong>the</strong> He pressure before and after <strong>the</strong><br />

pump.<br />

HEAT LOAD [kW]<br />

PRESSURE [MPa]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Case cooling circuit<br />

0<br />

0 1<br />

Q_cryoplant<br />

Q_case & pump<br />

Q_average<br />

2 3 4<br />

PULSE<br />

5 6 7 8<br />

Evolution <strong>of</strong> <strong>the</strong> heat released in <strong>the</strong> cooling circuit and<br />

absorbed by heat exchanger.<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0 1 2 3 4 5 6 7 8<br />

After <strong>the</strong> pump<br />

Before <strong>the</strong> pump<br />

Evolution <strong>of</strong> <strong>the</strong> He pressure before and after <strong>the</strong><br />

pump.<br />

PULSE<br />

HEAT LOAD [kW]<br />

Total: Winding & Coil structure<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 1<br />

Q_cryoplant (total)<br />

Q_cryoplant (average)<br />

2 3 4<br />

PULSE<br />

5 6 7 8<br />

MASS FLOW RATE (g/s)<br />

Evolution <strong>of</strong> <strong>the</strong> total power absorbed by both heat<br />

exchangers.<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

PULSE<br />

pump<br />

control valve<br />

bypass valve<br />

Evolution <strong>of</strong> <strong>the</strong> He mass flow rate through <strong>the</strong> pump,<br />

control and bypass valves (TF Case cooling circuit).


Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Numerical Simulation <strong>of</strong> <strong>the</strong> PF<br />

<strong>Magnet</strong> Cooling System: Model<br />

<strong>Thermohydraulic</strong> Model<br />

• 1-dimensional dimensional finite element model for <strong>the</strong><br />

transient compressed flows <strong>of</strong> SHe in <strong>the</strong><br />

conductor channels, cooling pipes and cryolines<br />

• 17 pairs <strong>of</strong> channels for <strong>the</strong> individual<br />

modeling <strong>of</strong> 6 PF coils<br />

• individual distribution <strong>of</strong> <strong>the</strong> heat loads in<br />

space and time among <strong>the</strong> conductors including<br />

AC losses, Nuclear heating, joint losses etc.<br />

• cryoplant interface: centrifugal pump, heat<br />

exchanger, controll & bypass valves<br />

PF conductors<br />

PF1&6 PF2,3&4 PF5<br />

coolant normal / backup inlet 4.7K /4.4K inlet 4.7K inlet 4.7K<br />

Type <strong>of</strong> Strand NbTi NbTi NbTi<br />

Operating Current (kA) normal / backup 45 / 52 45 / 52 45 / 52<br />

Nominal Peak Field (T) normal / backup 6.0 / 6.4 4.0 5.0<br />

Operating Temperature (K)<br />

normal / backup 5.0 / 4.7 5.0 5.0<br />

Equiv. Disch. Time Constant (s) hot spot 18 18 18<br />

Tcs (K) normal / backup 6.5 / 6.27 6.65 / 6.51 6.60 / 6.51<br />

Iop/Ic normal / backup 0.127 / 0.144 0.365 / 0.422 0.264 / 0.305<br />

Cable diameter (mm) 38.2 34.5 35.4<br />

Central spiral od x id (mm) 12 x 10 12 x 10 12 x 10<br />

Conductor OD (mm) 53.8 x 53.8 52.3 x 53.2 51.9 x 51.9<br />

Jacket steel steel steel<br />

sc strand diam (mm) 0.73 0.73 0.72<br />

sc strand cu : non-cu 1.6 6.9 4.4<br />

3x4x4x5x6 ((3x3x4+1) ((3x3x4+1)<br />

cabling pattern<br />

x4+1)x6 x5+1)x6<br />

sc strand Nr 1440 864 1080<br />

Cu core 2/3/4 stage (mm) 0/0/0 0 / 1.8 / 3.5 0 /1.2 /2.7<br />

ocal Void Fraction (%) in strand bundle 34.5 34.2 34.3<br />

Helium in Annulus (mm2 ) 351.1 277.3 294.8<br />

Helium in strand bundle (mm2) 334.5 261.2 278.6<br />

Total Helium Area (mm2 ) 429.6 355.8 373.3<br />

SC strand total perimeter (m)<br />

3.302<br />

1.981<br />

2.443<br />

[twisted]<br />

[3.390]<br />

[2.034]<br />

[2.508]<br />

A-ncu (mm2 )<br />

229.3<br />

45.2<br />

80.5<br />

[twisted]<br />

[241.3]<br />

[47.6]<br />

[84.8]<br />

A-cu sc str (mm2 )<br />

366.8<br />

312.4<br />

354.3<br />

[twisted]<br />

[386.1]<br />

[328.8]<br />

[373.0]<br />

A-cu extra (mm2 )<br />

0<br />

118.4<br />

67.9<br />

[twisted]<br />

[0]<br />

[120.9]<br />

[69.5]<br />

SC strand weight/m <strong>of</strong> conductor (kg/m) 4.885 2.931 3.564<br />

? P/L (Pa/m) at 5K@5bar 8 g/s 66.9 69.1 71.4<br />

J cable space (A/mm2) normal / backup 39.26 / 45.37 48.14 / 55.62 45.72 / 52.83<br />

Conductor Cost (IUA/m) 1.26 0.97 1.05<br />

Channel geometry and hydraulic parameters<br />

Channel Cross section<br />

#<br />

area, mm 2<br />

Hydraulic Length,<br />

Comments<br />

ID, mm m<br />

C1-C2 351.1 0.42 196 Cable Spaces <strong>of</strong> PF1 cables<br />

C3-C5 277.3 0.54 280 Cable Spaces <strong>of</strong> PF2 cables<br />

C6-C8 277.3 0.54 441 Cable Spaces <strong>of</strong> PF3 cables<br />

C9-C11 277.3 0.54 144 Cable Spaces <strong>of</strong> PF4 cables<br />

C12-C14 294.8 0.47 144 Cable Spaces <strong>of</strong> PF5 cables<br />

C15-C17 351.1 0.42 144 Cable Spaces <strong>of</strong> PF6 cables<br />

C18- C34 78.5 10 - Central channel <strong>of</strong> PF1-PF6 cables<br />

C41, C43 5030 80 80 Return & Supply Cryolines<br />

C42 20000 20 20 Heat Exchanger<br />

C35-40, C44-49 1257 40 16 Return & Supply pipes<br />

VINCENTA v.4.code


MASS FLOW RATE (g/s)<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Numerical Simulation <strong>of</strong> <strong>the</strong> PF<br />

<strong>Magnet</strong> Cooling System: Results<br />

500<br />

0 0.5 1 1.5 2 2.5 3<br />

PULSE<br />

3.5 4 4.5 5 5.5 6<br />

pump<br />

control valve<br />

bypass valve<br />

Evolution <strong>of</strong> <strong>the</strong> SHe mass flow rate through <strong>the</strong> pump,<br />

<strong>the</strong> control and by-pass valves<br />

Evolution <strong>of</strong> <strong>the</strong> SHe pressure along <strong>the</strong> PF cooling<br />

loop for <strong>the</strong> repetitive pulsing mode.<br />

Generalized view <strong>of</strong> <strong>the</strong> temperature evolution for<br />

all simulated PF cables.<br />

VINCENTA v.4.1 code


Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Numerical Simulation <strong>of</strong> <strong>the</strong> PF<br />

<strong>Magnet</strong> Cooling System: Results<br />

Temperature (K)<br />

Mass flow rate (g/s)<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

0 50 100 150 200<br />

10<br />

9<br />

8<br />

7<br />

Inlet<br />

Outlet<br />

Time (min)<br />

PF3: “top”<br />

6<br />

0 50 100 150 200<br />

Inlet<br />

Outlet<br />

Time (min)<br />

PF3: “top”<br />

Temperature (K)<br />

Mass flow rate (g/s)<br />

4.85<br />

4.8<br />

4.75<br />

4.7<br />

4.65<br />

4.6<br />

0 50 100 150 200<br />

10<br />

9<br />

8<br />

7<br />

Inlet<br />

Outlet<br />

Time (min)<br />

PF3: “regular”<br />

6<br />

0 50 100 150 200<br />

Inlet<br />

Outlet<br />

Time (min)<br />

PF3: “regular”<br />

4.6<br />

0 50 100 150 200<br />

Evolution <strong>of</strong> <strong>the</strong> SHe temperature and mass flow rate at <strong>the</strong> inlet/outlet <strong>of</strong> <strong>the</strong> PF3 conductors conductors<br />

Temperature (K)<br />

Mass flow rate (g/s)<br />

5.1<br />

5<br />

4.9<br />

4.8<br />

4.7<br />

10<br />

9<br />

8<br />

7<br />

Inlet<br />

Outlet<br />

Time (min)<br />

PF3: “bottom”<br />

6<br />

0 50 100 150 200<br />

Inlet<br />

Outlet<br />

Time (min)<br />

PF3: “bottom”<br />

VINCENTA v.4.1 code


Numerical Simulation <strong>of</strong> <strong>the</strong> CSMC<br />

& CS Insert Cooling system: Model<br />

<strong>Thermohydraulic</strong>s:<br />

<strong>Thermohydraulic</strong>s<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

• 1-dimensional dimensional finite element model for <strong>the</strong><br />

transient compressed flows <strong>of</strong> SHe in <strong>the</strong><br />

conductor channels, cooling pipes and cryolines<br />

• 18 pairs <strong>of</strong> conductors for modeling <strong>of</strong> 10+8<br />

solenoid layers<br />

• distribution <strong>of</strong> AC losses in space and time <strong>of</strong><br />

solenoid conductors<br />

• two separate cooling loop for Inner & Outer<br />

Modules controlled by valves<br />

• cryoplant interface: centrifugal pump, heat<br />

exchanger, control & bypass valves<br />

Coil structure:<br />

Joint<br />

• 2-dimensional dimensional finite<br />

element model for <strong>the</strong><br />

transient <strong>the</strong>rmal problem in<br />

<strong>the</strong> CSMC cross-sections<br />

cross sections<br />

• 5 cross sections in<br />

circumference Insert<br />

Supporting<br />

Structure<br />

Inner Module<br />

Outer Module<br />

Buffer Spacer<br />

1m<br />

VINCENTA v.4.1


Mass flow rate [g/s]<br />

Temperature [K]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Numerical Simulation <strong>of</strong> <strong>the</strong> CSMC<br />

& CS Insert Cooling system : Results<br />

4<br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000<br />

X [m]<br />

0 s (30 min)<br />

32.5 s<br />

37.5 s<br />

1 min<br />

2 min<br />

6 min<br />

10 min<br />

14 min<br />

18 min<br />

22 min<br />

26 min<br />

Generalized view <strong>of</strong> He mass flow rate evolution along <strong>the</strong><br />

conductors <strong>of</strong> layers number 1 through 18. Option 1.<br />

6<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

4.4<br />

4.2<br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000<br />

X [m]<br />

0 s (30 min)<br />

32.5 s<br />

37.5 s<br />

1 min<br />

2 min<br />

6 min<br />

10 min<br />

14 min<br />

18 min<br />

22 min<br />

26 min<br />

Generalized view <strong>of</strong> conductor temperature evolution for<br />

layers number 1 through 18. Option 1.<br />

Temperature diagram for CSMC Winding & Buffer zone at 6th minute <strong>of</strong> pulse during repetitive pulsing mode.<br />

•Option 1: mass flow rate is 370 g/s, effective time constant nτ is 50 ms, and repetitive time <strong>of</strong> pulsing trep is 30<br />

minutes.<br />

•Option 2: mass flow rate is 185 g/s and ano<strong>the</strong>r parameters as Option 1.<br />

•Option 3: effective time constant nτ is 100 ms and ano<strong>the</strong>r parameters as Option 1.<br />

•Option 4: repetitive time <strong>of</strong> pulsing trep is 20 minutes and ano<strong>the</strong>r parameters as Option 1.<br />

VINCENTA v.4.1


Pressure (MPa)<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Validation <strong>of</strong> <strong>the</strong> CSMC Model:<br />

Calculating & Experimental Data<br />

Calculation<br />

0 2000 4000 6000 8000 1 10 4<br />

0.45<br />

Time (sec)<br />

Coil Inlet<br />

Coil Outlet<br />

Experiment with <strong>the</strong> series <strong>of</strong> current pulses 30 kA, 40 kA, 43 kA and 46 kA<br />

Evolution <strong>of</strong> pressure at inlet and outlet <strong>of</strong><br />

<strong>the</strong> CSMC for series <strong>of</strong> current pulses.<br />

Pressure (MPa)<br />

1.2 10 4<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

Experiment<br />

0 2000 4000 6000 8000 1 10 4<br />

0.45<br />

Time (sec)<br />

CSV_PT_PI_CB40X<br />

CSV_PT_PI_CB40E<br />

1.2 10 4<br />

Temperature (K)<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

4.4<br />

Calculation<br />

0 2000 4000 6000 8000 1 10 4<br />

Time (sec)<br />

Coil Inlet<br />

Coil Outlet<br />

Temperature (K)<br />

1.2 10 4<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

4.8<br />

4.6<br />

4.4<br />

0 2000 4000 6000 8000 1 10 4<br />

Time (sec)<br />

Evolution <strong>of</strong> temperatures at inlet and outlet <strong>of</strong><br />

<strong>the</strong> CSMC for series <strong>of</strong> current pulses.<br />

VINCENTA v.4.1<br />

5<br />

Experiment<br />

CSV_TC_TB_CB40X<br />

CSV_TC_TB_CB40E<br />

1.2 10


Temperature (K)<br />

6<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Validation <strong>of</strong> <strong>the</strong> CSMC Model:<br />

Calculating & Experimental Data<br />

Calculation<br />

0 2000 4000 6000 8000 1 10 4<br />

4.4<br />

Time (sec)<br />

Inner Module Inlet<br />

Inner Module Outlet<br />

Experiment with <strong>the</strong> series <strong>of</strong> current pulses 30 kA, 40 kA, 43 kA and 46 kA<br />

1.2 10 4<br />

Experiment<br />

Evolution <strong>of</strong> temperatures at inlet and<br />

outlet <strong>of</strong> <strong>the</strong> inner CSMC module.<br />

Temperature (K)<br />

6<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

0 2000 4000 6000 8000 1 10 4<br />

4.4<br />

Time (sec)<br />

CSV_TC_TB_CS1E<br />

CSV_TC_TB_CS1X<br />

Temperature (K)<br />

1.2 10 4<br />

5.3<br />

5.2<br />

5.1<br />

5<br />

4.9<br />

4.8<br />

4.7<br />

4.6<br />

4.5<br />

Calculation<br />

0 2000 4000 6000 8000 1 10 4<br />

4.4<br />

Time [sec]<br />

Outer Module Inlet<br />

Outer Module Outlet<br />

Temperature (K)<br />

1.2 10 4<br />

5.3<br />

5.2<br />

5.1<br />

4.9<br />

4.8<br />

4.7<br />

4.6<br />

4.5<br />

Experiment<br />

0 2000 4000 6000 8000 1 10 4<br />

4.4<br />

Time (sec)<br />

Evolution <strong>of</strong> temperatures at inlet and outlet <strong>of</strong><br />

<strong>the</strong> outer CSMC module.<br />

VINCENTA v.4.1<br />

5<br />

CSV_TC_TB_CS2E<br />

CSV_TC_TB_CS2X<br />

1.2 10


Temperature [K]<br />

7<br />

6.5<br />

6<br />

5.5<br />

5<br />

4.5<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Validation <strong>of</strong> <strong>the</strong> CSMC Model:<br />

Calculating & Experimental Data<br />

Calculation<br />

0 500 1000 1500 2000 2500 3000<br />

1A<br />

2A<br />

3A<br />

4A<br />

5A<br />

6A<br />

7A<br />

8A<br />

9A<br />

10A<br />

Experiment with <strong>the</strong> series <strong>of</strong> current pulses 30 kA, 40 kA, 43 kA and 46 kA<br />

Time (s)<br />

Experiment<br />

0 500 1000 1500 2000 2500 3000<br />

Evolution <strong>of</strong> temperatures at outlet <strong>of</strong> 10 (A)<br />

conductors <strong>of</strong> <strong>the</strong> inner CSMC module for 46 kA<br />

current pulse.<br />

Temperature (K)<br />

7<br />

6.5<br />

6<br />

5.5<br />

5<br />

4.5<br />

Time (sec)<br />

MCI_TC_01AO<br />

MCI_TC_02AO<br />

MCI_TC_03AO<br />

MCI_TC_04AO<br />

MCI_TC_05AO<br />

MCI_TC_06AO<br />

MCI_TC_07AO<br />

MCI_TC_08AO<br />

MCI_TC_09AO<br />

MCI_TC_10AO<br />

Temperature [K]<br />

6.2<br />

6<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

Calculation 5.8<br />

Experiment<br />

4.4<br />

0 500 1000 1500 2000 2500 3000<br />

11A<br />

12A<br />

13A<br />

14A<br />

15A<br />

16A<br />

17A<br />

18A<br />

Time (s)<br />

Temperature (K)<br />

4.4<br />

0 500 1000 1500 2000 2500 3000<br />

Evolution <strong>of</strong> <strong>the</strong> She temperatures at outlet <strong>of</strong> 8<br />

(A) conductors <strong>of</strong> <strong>the</strong> outer CSMC module<br />

for 46 kA current pulse.<br />

6.2<br />

6<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

Time (sec)<br />

MCO_TC_11AO<br />

MCO_TC_12AO<br />

MCO_TC_13AO<br />

MCO_TC_14AO<br />

MCO_TC_15AO<br />

MCO_TC_16AO<br />

MCO_TC_17AO<br />

MCO_TC_18AO<br />

VINCENTA v.4.1


T, K 70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Numerical Simulation <strong>of</strong> <strong>the</strong><br />

CICC Conductor Performance<br />

Quench <strong>Analysis</strong><br />

1.0s<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

Time=1s<br />

2s<br />

3s<br />

4s<br />

5s<br />

6s<br />

7s<br />

8s<br />

9s<br />

10s<br />

15s<br />

20s<br />

24s<br />

67 68 69 70 71 72 73 74 75 76 77 78 79 80<br />

Length, m<br />

Evolution <strong>of</strong> <strong>the</strong> strand temperature along<br />

<strong>the</strong> cable during <strong>the</strong> Quench (Current (40-<br />

0KA) and field (13.4-0T) Dump time<br />

constant: 15s)<br />

24s<br />

.<br />

.<br />

∂Tk<br />

∂ ⎛ ∂Tk<br />

⎞ 1 ∂ ⎛ ∂Tk<br />

⎞<br />

Ck<br />

( T ) = qV<br />

k ( x,<br />

r,<br />

t)<br />

+ ⎜ κk<br />

( T ) ⎟ + ⎜ κk<br />

( T ) ⋅ r ⎟<br />

∂t<br />

∂x<br />

⎝ ∂x<br />

⎠ r ∂r<br />

⎝ ∂r<br />

⎠<br />

Cable model treated by<br />

∑ ki<br />

i iVi<br />

k<br />

t x Ai<br />

ρ<br />

Γ<br />

∂ρ ∂ρ<br />

+ =<br />

∂ ∂<br />

V<br />

∑ ki<br />

iVi<br />

fi<br />

iVi<br />

Vi<br />

k<br />

( Pi<br />

iVi<br />

)<br />

t x<br />

Dh<br />

A<br />

i<br />

i<br />

ρ<br />

Γ<br />

∂ρ ∂<br />

2 − 2 ρ<br />

+ + ρ =<br />

+<br />

∂ ∂<br />

conv<br />

ρH<br />

∑ Qmi<br />

+ ∑ Γki<br />

⎛<br />

2<br />

Vi<br />

P ⎞ ⎛<br />

2<br />

∂<br />

i ∂<br />

V ⎞ i m<br />

k<br />

ρ ⎜<br />

i H<br />

⎟<br />

i<br />

ρiV<br />

⎜<br />

i H ⎟<br />

i =<br />

t ⎜<br />

+ −<br />

⎟<br />

+<br />

i x ⎜<br />

+<br />

∂<br />

∂<br />

⎟<br />

⎝ 2 ρ ⎠ ⎝ 2 ⎠ Ai<br />

1 1 2 2 ∂Tm 2 ∂ ⎛<br />

1 1 2 2<br />

( A C + A C ) = − cos θ ⎜ ( A k + A k )<br />

m m<br />

m m<br />

T = T<br />

∂Tk<br />

κ k + hi<br />

⋅<br />

∂n<br />

k<br />

He ( T − T ) = 0<br />

k<br />

∂t<br />

m<br />

∂Tk<br />

κ k = ϕ(<br />

x,<br />

t)<br />

∂n<br />

i<br />

∂x⎝<br />

+ Q<br />

Joule<br />

m<br />

m m<br />

+<br />

∑<br />

i<br />

Q<br />

m m<br />

conv<br />

im<br />

∂Tm<br />

∂x<br />

⎞<br />

⎟ +<br />

⎠<br />

+ Q + Q<br />

∑<br />

n<br />

cond<br />

nm<br />

Ext<br />

m<br />

Stability <strong>Analysis</strong><br />

CICC stability diagram for <strong>the</strong> 1 st cabling stage


Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

VINCENTA - Numerical Tools<br />

for <strong>Thermohydraulic</strong> <strong>Analysis</strong> <strong>of</strong><br />

Cryogenic <strong>Systems</strong><br />

• OVERVIEW<br />

The code VINCENTA is designed to enhance <strong>the</strong> simulation <strong>of</strong> transient <strong>the</strong>rmohydraulic processes in cryogenic environment <strong>of</strong> superconducting magnet systems. An advanced,<br />

powerful calculation algorithm enables combined 1D, 2D and quasi-3D <strong>the</strong>rmal calculations for a full range <strong>of</strong> operating modes, including normal operation, quench, ramping,<br />

cooldown and emergency. A rich set <strong>of</strong> easy-to-link ma<strong>the</strong>matical models provide a maximum realistic approximations for system geometry, material properties, coolant behavior and<br />

accessory arrangement (piping, valves, pumps, etc).<br />

• OPERATIONAL FEATURES<br />

• comprehensive full-scale ma<strong>the</strong>matical simulation <strong>of</strong> both <strong>the</strong> whole system and its components;<br />

• forecasting simulation to help solving constructive problems from many points <strong>of</strong> view;<br />

• realistic modeling for a variety <strong>of</strong> cryogenic systems and operation conditions;<br />

• estimation <strong>of</strong> temperature distribution, coolant parameters, heat exchange, and nonlinear effects;<br />

• high adaptability for each particular application.<br />

• APPLICATIONS<br />

A multipurpose versatility, extensive calculation capability and high performance <strong>of</strong> <strong>the</strong> VINCENTA code allows a wide range <strong>of</strong> most demanding applications, including:<br />

• Fusion and particle accelerator magnets<br />

• MRI-magnets<br />

• Experimental and diagnostic devices for scientific research<br />

• Superconducting generators<br />

• Superconducting cables and joints


Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

COND - Numerical Tools for<br />

<strong>Thermohydraulic</strong> <strong>Analysis</strong> <strong>of</strong> SC<br />

<strong>Magnet</strong> <strong>Systems</strong><br />

• OVERVIEW<br />

The code COND is intended to simulate <strong>the</strong> long-term transient <strong>the</strong>rmohydraulic processes such as cool-down, warm-up etc. in large SC <strong>Magnet</strong> <strong>Systems</strong>. An advanced, powerful<br />

calculation algorithm enables 3D <strong>the</strong>rmal calculations for a full range <strong>of</strong> operating modes, providing a maximum realistic approximations for system geometry, material properties.<br />

• OPERATIONAL FEATURES<br />

• comprehensive full-scale ma<strong>the</strong>matical simulation <strong>of</strong> both <strong>the</strong> whole system and its components;<br />

• forecasting simulation to help solving constructive problems from many points <strong>of</strong> view;<br />

• realistic modeling for a variety <strong>of</strong> operation conditions;<br />

• estimation <strong>of</strong> temperature distribution, coolant parameters, heat exchange, and nonlinear effects;<br />

• high adaptability for each particular application.<br />

• APPLICATIONS<br />

A multipurpose versatility, extensive calculation capability and high performance <strong>of</strong> <strong>the</strong> COND<br />

code allows a wide range <strong>of</strong> most demanding applications, including:<br />

• Fusion and particle accelerator magnets<br />

• MRI-magnets<br />

• Experimental devices for scientific research<br />

• Superconducting generators


GLORY - 3D Transient<br />

<strong>Thermohydraulic</strong> <strong>Analysis</strong> <strong>of</strong> SC<br />

<strong>Magnet</strong> <strong>Systems</strong><br />

• OVERVIEW<br />

The code GLORY is a versatile, integrated s<strong>of</strong>tware for extensive analysis <strong>of</strong> <strong>the</strong>rmohydraulic processes in superconducting magnet systems. An effective<br />

combination <strong>of</strong> problem-oriented packages enables numerical simulation <strong>of</strong> both stationary and transient <strong>the</strong>rmohydraulic processes. The code provides a 3D<br />

dynamic analysis, with estimates <strong>of</strong> <strong>the</strong>rmal field, heat load, heat transfer, and <strong>the</strong>rmal inertia for cooled magnet structures (cables, coils, supports, etc). Flexible,<br />

maximum realistic models allow a comprehensive forecasting simulation to choose <strong>the</strong> best design and materials for each particular application.<br />

• HIGHLIGHTS<br />

Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

• high-volume data processing;<br />

• full-scale real-time ma<strong>the</strong>matical simulation <strong>of</strong> both <strong>the</strong> entire system and separate components;<br />

• enhanced modeling capability;<br />

• easy to adapt for exact needs.<br />

The code provides an analysis <strong>of</strong> transient behavior <strong>of</strong> SC magnet systems for a<br />

wide range <strong>of</strong> geometry's, materials, cooling strategies and operational<br />

conditions. A 1,000÷10,000,000 node finite-element mesh may be used for<br />

calculation depending on <strong>the</strong> accuracy required.


Appl. Math. Dept. <strong>of</strong> STC “SINTEZ”, Efremov Research Institute, St. Petersburg, RF<br />

KOMPOT-T. KOMPOT T. 3-D 3 D Thermostatic<br />

Field Computation<br />

• OVERVIEW<br />

The KOMPOT code is <strong>the</strong> well-proven integrated s<strong>of</strong>tware designed for numerical simulation and analysis <strong>of</strong> 3D <strong>the</strong>rmostatic field. An efficient calculation<br />

algorithm enables a versatile <strong>the</strong>rmal field analysis using medium-scale computers. The numerical simulation provides a desired accuracy with <strong>the</strong> allowance for<br />

complex system geometry and non-linear effects..<br />

• HIGHLIGHTS<br />

• an efficient numerical simulation algorithm capable <strong>of</strong> precise <strong>the</strong>rmostatic field analysis;<br />

• pre- and post processing <strong>of</strong> input/output data;<br />

• prolonged intensive wide-range applications.<br />

PERFORMANCE<br />

The numerical simulation algorithm is based on <strong>the</strong> classical Poisson equation, finite-element<br />

method, and symmetric successive overrelaxation method combined with a polynomial<br />

acceleration <strong>of</strong> a convergence rate. An effective integration with ano<strong>the</strong>r special program<br />

packages using <strong>the</strong> same finite-element mesh makes it possible to obtain <strong>the</strong> heat releases<br />

distribution from <strong>the</strong> steady and eddy currents, induced by electrical and transient magnetic<br />

fields. Special calculating procedures allow to perform a combined <strong>the</strong>rmohydraulic analysis<br />

toge<strong>the</strong>r with <strong>the</strong> codes VINCENTA and COND, that allows take into account <strong>the</strong> heat<br />

exchange with a wide range <strong>of</strong> coolants (liquid and supercritical helium, water, etc) flowing in<br />

cooling channels; take into account <strong>the</strong> boil-<strong>of</strong> <strong>of</strong> coolants on <strong>the</strong> given surfaces<br />

.<br />

REQUIREMENTS<br />

•1000 ÷ 10,000,000 node mesh is possible for field<br />

analysis;<br />

•mid-runtime full-scale precise calculations are provided on<br />

i586 PC or better

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!