The unicellular green alga Dunaliella salina Teod. as a model - Algae

The unicellular green alga Dunaliella salina Teod. as a model - Algae The unicellular green alga Dunaliella salina Teod. as a model - Algae

07.06.2013 Views

Review Algae 2011, 26(1): 3-20 DOI: 10.4490/algae.2011.26.1.003 Open Access The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives Ana A. Ramos 1 , Jürgen Polle 2 , Duc Tran 2 , John C. Cushman 3 , EonSeon Jin 4 and João C. Varela 1, * 1 Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal 2 Brooklyn College, The City University of New York Brooklyn, New York, NY 11210, USA 3 Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557-0330, USA 4 Department of Life Science, Hanyang University, Seoul 133-791, Korea The physiology of the unicellular green alga Dunaliella salina in response to abiotic stress has been studied for several decades. Early D. salina research focused on its remarkable salinity tolerance and ability, upon exposure to various abiotic stresses, to accumulate high concentrations of β-carotene and other carotenoid pigments valued highly as nutraceuticals. The simple life cycle and growth requirements of D. salina make this organism one of the large-scale commercially exploited microalgae for natural carotenoids. Recent advances in genomics and proteomics now allow investigation of abiotic stress responses at the molecular level. Detailed knowledge of isoprenoid biosynthesis mechanisms and the development of molecular tools and techniques for D. salina will allow the improvement of physiological characteristics of algal strains and the use of transgenic algae in bioreactors. Here we review D. salina isoprenoid and carotenoid biosynthesis regulation, and also the biotechnological and genetic transformation procedures developed for this alga that set the stage for its future use as a production system. Key Words: abiotic stress; carotenogenesis; Dunaliella salina; genomics; isoprenoid biosynthesis; lipid biosynthesis; transformation Abbreviations: Acetyl-CoA, acetyl-coenzyme A; CaMV35S, Cauliflower mosaic virus 35S promoter; CAT, chloramphenicol acetyltransferase; CrtISO, carotenoid isomerase; DCA1, carbonic anhydrase; DMAPP, dimethylallyl diphosphate; DXP, 1-deoxy-D-xylulose-5-phosphate; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; DXS, 1-deoxy-Dxylulose 5-phosphate synthase; ESTs, expressed sequence tags; GGPP, geranylgeranyl diphosphate; HbsAg, hepatitis B surface antigen; HDR, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; IPP, isopentenyl diphosphate; LCY-b, lycopene β-cyclase; LCY-e, lycopene ε-cyclase; MEP, 2-C-methyl-D-erythritol 4-phosphate; MVA, mevalonate; NR, nitrate redutase; PAT, phosphinothricin acetyltransferase; PDS, phytoene desaturase; PSY, phytoene synthase; ROS, reactive oxygen species; SV40, simian virus 40; TAG, triacylglycerols; Ubil-Ω, ubiquitin; ZDS, ζ-carotene desaturase; ZISO, 15-cisζ-isomerase INTRODUCTION Microalgae include a very diverse group of prokaryotic and eukaryotic organisms that play important ecological This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 08 January 2011, Accepted 10 February 2011 *Corresponding Author E-mail: jvarela@ualg.pt Tel: +351-289800900, Ext. 7381 Fax: +351-289800069 Copyright © The Korean Society of Phycology 3 http://e-algae.kr pISSN: 1226-2617 eISSN: 2093-0860

Review<br />

<strong>Algae</strong> 2011, 26(1): 3-20<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003<br />

Open Access<br />

<strong>The</strong> <strong>unicellular</strong> <strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> <strong>Teod</strong>. <strong>as</strong> a <strong>model</strong> for<br />

abiotic stress tolerance: genetic advances and future perspectives<br />

Ana A. Ramos 1 , Jürgen Polle 2 , Duc Tran 2 , John C. Cushman 3 , EonSeon Jin 4 and João C. Varela 1, *<br />

1 Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal<br />

2 Brooklyn College, <strong>The</strong> City University of New York Brooklyn, New York, NY 11210, USA<br />

3 Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557-0330, USA<br />

4 Department of Life Science, Hanyang University, Seoul 133-791, Korea<br />

<strong>The</strong> physiology of the <strong>unicellular</strong> <strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> in response to abiotic stress h<strong>as</strong> been studied for several<br />

decades. Early D. <strong>salina</strong> research focused on its remarkable salinity tolerance and ability, upon exposure to various<br />

abiotic stresses, to accumulate high concentrations of β-carotene and other carotenoid pigments valued highly <strong>as</strong><br />

nutraceuticals. <strong>The</strong> simple life cycle and growth requirements of D. <strong>salina</strong> make this organism one of the large-scale<br />

commercially exploited micro<strong>alga</strong>e for natural carotenoids. Recent advances in genomics and proteomics now allow<br />

investigation of abiotic stress responses at the molecular level. Detailed knowledge of isoprenoid biosynthesis mechanisms<br />

and the development of molecular tools and techniques for D. <strong>salina</strong> will allow the improvement of physiological<br />

characteristics of <strong>alga</strong>l strains and the use of transgenic <strong>alga</strong>e in bioreactors. Here we review D. <strong>salina</strong> isoprenoid and<br />

carotenoid biosynthesis regulation, and also the biotechnological and genetic transformation procedures developed for<br />

this <strong>alga</strong> that set the stage for its future use <strong>as</strong> a production system.<br />

Key Words: abiotic stress; carotenogenesis; <strong>Dunaliella</strong> <strong>salina</strong>; genomics; isoprenoid biosynthesis; lipid biosynthesis;<br />

transformation<br />

Abbreviations: Acetyl-CoA, acetyl-coenzyme A; CaMV35S, Cauliflower mosaic virus 35S promoter; CAT, chloramphenicol<br />

acetyltransfer<strong>as</strong>e; CrtISO, carotenoid isomer<strong>as</strong>e; DCA1, carbonic anhydr<strong>as</strong>e; DMAPP, dimethylallyl diphosphate;<br />

DXP, 1-deoxy-D-xylulose-5-phosphate; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomer<strong>as</strong>e; DXS, 1-deoxy-Dxylulose<br />

5-phosphate synth<strong>as</strong>e; ESTs, expressed sequence tags; GGPP, geranylgeranyl diphosphate; HbsAg, hepatitis B<br />

surface antigen; HDR, 4-hydroxy-3-methylbut-2-enyl diphosphate reduct<strong>as</strong>e; IPP, isopentenyl diphosphate; LCY-b, lycopene<br />

β-cycl<strong>as</strong>e; LCY-e, lycopene ε-cycl<strong>as</strong>e; MEP, 2-C-methyl-D-erythritol 4-phosphate; MVA, mevalonate; NR, nitrate<br />

redut<strong>as</strong>e; PAT, phosphinothricin acetyltransfer<strong>as</strong>e; PDS, phytoene desatur<strong>as</strong>e; PSY, phytoene synth<strong>as</strong>e; ROS, reactive<br />

oxygen species; SV40, simian virus 40; TAG, triacylglycerols; Ubil-Ω, ubiquitin; ZDS, ζ-carotene desatur<strong>as</strong>e; ZISO, 15-cisζ-isomer<strong>as</strong>e<br />

INTRODUCTION<br />

Micro<strong>alga</strong>e include a very diverse group of prokaryotic and eukaryotic organisms that play important ecological<br />

This is an Open Access article distributed under the terms of the<br />

Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/)<br />

which permits unrestricted<br />

non-commercial use, distribution, and reproduction in any medium,<br />

provided the original work is properly cited.<br />

Received 08 January 2011, Accepted 10 February 2011<br />

*Corresponding Author<br />

E-mail: jvarela@ualg.pt<br />

Tel: +351-289800900, Ext. 7381 Fax: +351-289800069<br />

Copyright © <strong>The</strong> Korean Society of Phycology 3 http://e-<strong>alga</strong>e.kr pISSN: 1226-2617 eISSN: 2093-0860


<strong>Algae</strong> 2011, 26(1): 3-20<br />

A B C<br />

Fig. 1. <strong>Dunaliella</strong> <strong>salina</strong> cells in different culture conditions. (A) Green cell from a non-stressed culture. (B) Stressed cell turning orange. (C)<br />

Orange cell from a culture exposed to nutrient stress due to β-carotene accumulation. Scale bar represents: 10 µm (<strong>The</strong> photos were kindly provided<br />

by Dr. M. Aksoy).<br />

roles and synthesize a v<strong>as</strong>t array of natural products. Micro<strong>alga</strong>l<br />

species have been widely used <strong>as</strong> simple <strong>model</strong><br />

systems for research on higher plants due to shared physiological<br />

and biochemical reactions (Harris 2001, Hicks<br />

et al. 2001, Rochaix 2002). With f<strong>as</strong>t growth rates and low<br />

production costs relative to other transgenic expression<br />

systems, micro<strong>alga</strong>e provide useful cell factories for the<br />

production of valuable chemical compounds and recombinant<br />

products (e.g., biofuels, novel carotenoids, vaccines<br />

and antibodies) (Fletcher et al. 2007, Mayfield et al.<br />

2007, Greenwell et al. 2010). Various <strong>as</strong>pects of <strong>alga</strong>culture<br />

and the use of micro<strong>alga</strong>e <strong>as</strong> bioreactors have been<br />

reviewed extensively (Chapin 1991, Dunahay et al. 1996,<br />

Geng et al. 2003, Hejazi and Wijffels 2004, León-Bañares<br />

et al. 2004, Pulz and Gross 2004, Rochaix 2004, Walker et<br />

al. 2005c, Chisti 2008, Raja et al. 2008, Rosenberg et al.<br />

2008, Wijffels 2008, Potvin and Zhang 2010).<br />

Among eukaryotic micro<strong>alga</strong>e, the relatively unique<br />

ability to accumulate glycerol and β-carotene in response<br />

to osmotic stress h<strong>as</strong> made the halotolerant, <strong>unicellular</strong>,<br />

<strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> (Fig. 1) an ideal <strong>model</strong> organism<br />

for dissecting the molecular mechanism(s) of osmotic<br />

stress responses (Cowan et al. 1992, Pick 1998). In<br />

contr<strong>as</strong>t to the intensively studied chlorophyte Chlamydomon<strong>as</strong><br />

reinhardtii (Lefebvre and Silflow 1999, Harris<br />

2001, Grossman et al. 2003, 2007, Hema et al. 2007, León<br />

et al. 2007, Merchant et al. 2007), relatively few studies<br />

have investigated D. <strong>salina</strong>. However, <strong>as</strong> D. <strong>salina</strong> is one<br />

of a few micro<strong>alga</strong>e currently cultivated on an industrial<br />

scale, this organism is rapidly becoming the focus of intense<br />

fundamental and applied research. <strong>The</strong> purpose of<br />

this review is to survey recent developments into cellular,<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 4<br />

biochemical, molecular biological, and biotechnological<br />

studies of D. <strong>salina</strong> with a focus on isoprenoid biosynthesis.<br />

GENUS DUNALIELLA<br />

In 1905, <strong>Teod</strong>oresco established the new <strong>alga</strong>l genus<br />

<strong>Dunaliella</strong> (Chlorophyta, Chlorophyceae, Chlamydomonadales,<br />

<strong>Dunaliella</strong>ceae), which mainly includes halophilic<br />

species adapted to hypersaline (0.05-5.5 M NaCl)<br />

environments (Chen and Jiang 2009, Polle et al. 2009).<br />

<strong>Dunaliella</strong> species can be found in euryhaline waters<br />

on all continents. In general, cells of <strong>Dunaliella</strong> species<br />

are of ovoid form, flagellated and lack a rigid polysaccharide<br />

wall, although they are enclosed by a mucilaginous<br />

glycoprotein coat called a glycocalyx (size varying<br />

from 5-25 µm in length and 3-13 µm width) (<strong>Teod</strong>oresco<br />

1905, Borowitzka and Borowitzka 1988, Avron and Ben-<br />

Amotz 1992, Oren 2005). This genus includes more than<br />

20 species and its taxonomic organization b<strong>as</strong>ed on<br />

morphological and physiological characteristics is still<br />

controversial due to large intra-species variation in morphology,<br />

which depends on growth conditions. Consequently<br />

numerous <strong>Dunaliella</strong> isolates were misidentified<br />

previously (Borowitzka and Borowitzka 1988, Pick 1998).<br />

Such erroneous cl<strong>as</strong>sification of <strong>Dunaliella</strong> isolates still<br />

causes problems, for example, when new molecular data<br />

are published, pointing to the need for the establishment<br />

of a robust molecular phylogeny within the genus. A recent<br />

attempt to update and reorganize the genus b<strong>as</strong>ed<br />

on cell morphology and physiology w<strong>as</strong> performed by


Borowitzka and Siva (2007). A more recent cl<strong>as</strong>sification<br />

of <strong>Dunaliella</strong> species using molecular markers indicated<br />

that, most likely, fewer species of <strong>Dunaliella</strong> exist than<br />

those established previously b<strong>as</strong>ed on morphological<br />

and physiological attributes (González et al. 2009). Overall,<br />

systematic molecular data (Olmos et al. 2000, 2009,<br />

Cifuentes et al. 2001, González et al. 2001, 2009, Olmos-<br />

Soto et al. 2002, Gómez and González 2004, Raja et al.<br />

2007b, Hejazi et al. 2010) should be extended and be used<br />

in combination with morphological and physiological<br />

markers to re-evaluate species cl<strong>as</strong>sification.<br />

Some <strong>Dunaliella</strong> strains can accumulate β-carotene<br />

and glycerol, properties with economical interest that<br />

have led, since the 1980s, to the large-scale culture of<br />

these <strong>alga</strong>e in several countries such <strong>as</strong> Australia, China,<br />

Israel, and India with pilot-scale projects attempted<br />

in other countries (e.g., Chile, Spain, Iran) (Ben-Amotz<br />

and Avron 1990, Borowitzka 1999, Pulz 2001, Tseng 2001,<br />

Del Campo et al. 2007). D. <strong>salina</strong> and D. bardawil, which<br />

might be a variety of D. <strong>salina</strong> (Borowitzka and Borowitzka<br />

1988, González et al. 2009), are the main natural sources<br />

of β-carotene (up to about 10-14% of <strong>alga</strong>l dry weight)<br />

and also the most extensively analyzed strains in terms of<br />

physiological abiotic stress adaptations especially under<br />

m<strong>as</strong>s culture conditions (Loeblich 1982, Ben-Amotz and<br />

Avron 1983, Cifuentes et al. 1996, Oren 2005).<br />

In response to several stress or growth limiting conditions<br />

(e.g., salt, temperature, light, and nutrient deficiencies)<br />

D. <strong>salina</strong> synthesizes and accumulates β-carotene<br />

in lipid globules in the stroma of chloropl<strong>as</strong>ts (Borowitzka<br />

et al. 1990, Shaish et al. 1992, Vorst et al. 1994, Katz<br />

et al. 1995, Bhosale 2004, Coesel et al. 2008, Jin and Polle<br />

2009). This high-value compound, mostly composed of<br />

all-trans and 9-cis stereoisomers, h<strong>as</strong> a wide range of important<br />

economical applications such <strong>as</strong> human health,<br />

cosmetic and aquaculture industries (Jiménez and Pick<br />

1993, Murthy et al. 2005, Spolaore et al. 2006, Raja et al.<br />

2007a, Oren 2010). Consequently, understanding stressinduced<br />

carotenoid metabolism and unraveling the regulatory<br />

mechanism(s) of stress tolerance in this organism<br />

are important biotechnological research goals (Xue et al.<br />

2003).<br />

In the p<strong>as</strong>t, use of <strong>Dunaliella</strong> species <strong>as</strong> <strong>model</strong> organisms<br />

had one major disadvantage: lack of established<br />

procedures of genetic and genomic analysis. However,<br />

more recent studies have addressed this shortcoming<br />

(Polle and Song 2009, Smith et al. 2010) and genomic<br />

technologies promise further improvements in such<br />

analyses. <strong>The</strong> most widely used <strong>model</strong> species within the<br />

genus of <strong>Dunaliella</strong> h<strong>as</strong> been D. <strong>salina</strong>. <strong>The</strong>refore, the fol-<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

lowing sections will concern D. <strong>salina</strong> unless otherwise<br />

indicated.<br />

GENES AND PROTEIN IDENTIFICATION<br />

Complex regulatory and signaling networks of stress<br />

response have been uncovered in several <strong>model</strong> plants<br />

and <strong>alga</strong>e using novel genomics, functional, and computational<br />

approaches (Cushman and Bohnert 2000, Shrager<br />

et al. 2003, Grossman et al. 2007, Jain et al. 2007,<br />

Montsant et al. 2007, Urano et al. 2010). <strong>The</strong>se data often<br />

provide initial clues towards the identification and possible<br />

functions of unknown encoded proteins in other<br />

species. Currently, a genome sequencing project is under<br />

way for D. <strong>salina</strong> strain CCAP 19/18 (USDA-DOE Joint<br />

Genome Institute [JGI]). Part of this effort h<strong>as</strong> resulted in<br />

the recent publication of the chloropl<strong>as</strong>t and mitochondrial<br />

genomes of D. <strong>salina</strong> (269 and 28.3 Kb, respectively)<br />

(Smith et al. 2010). Future availability of more genomic<br />

data including the nuclear genome (approximately 300<br />

megab<strong>as</strong>es) (Smith et al. 2010) will be a major step towards<br />

a better understanding of the molecular mechanisms<br />

underlying the response of D. <strong>salina</strong> to abiotic<br />

stress <strong>as</strong> well <strong>as</strong> the development of genetic tools, such <strong>as</strong><br />

nuclear and pl<strong>as</strong>tid transformation.<br />

Gene discovery followed by genome-wide expression<br />

analysis is the initial step to clarify complex cellular abiotic<br />

stress responses. Molecular approaches such <strong>as</strong> the<br />

generation of expressed sequence tags (ESTs) datab<strong>as</strong>es,<br />

microarray analysis, transcriptome analysis, and / or parallel<br />

genomic sequencing can thus provide the required<br />

gene expression data. Partial EST, microarray and cDNA<br />

data are available from a limited number of halophytic<br />

plants including Mesembryanthemum crystallinum<br />

(Kore-eda et al. 2004, Cushman et al. 2008), <strong>The</strong>llungiella<br />

halophila (Amtmann 2009, Taji et al. 2010), and Spartina<br />

alterniflora (Baisakh et al. 2008), and can provide novel<br />

insights into osmoregulation and responses to stress.<br />

Compared with C. reinhardtii, for which more than<br />

200,000 ESTs are stored at NCBI (Jain et al. 2007), only<br />

about 4,100 ESTs (<strong>as</strong> of January 2011) are available for D.<br />

<strong>salina</strong> cells subjected to salinity and light stress (Park et<br />

al. 2006, Alkayal et al. 2010). Profiling of about 2,800 ESTs<br />

revealed elevated expression of protein synthetic apparatus<br />

components in salinity shocked cells (Alkayal et al.<br />

2010).<br />

In addition to ongoing genomic approaches, proteomic<br />

methodologies are also necessary to further characterize<br />

cell stress adaptations mechanisms. Only very<br />

5 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

few studies concerning the protein patterns observed<br />

with salinity stressed D. <strong>salina</strong> cells have been described<br />

(Liska et al. 2004, Katz et al. 2007). <strong>The</strong>se studies revealed<br />

changes in multiple biochemical pathways (e.g., signal<br />

transduction, redox energy production, protein synthesis,<br />

membrane stabilization) in response to salt stress,<br />

suggesting that more than one mechanism may be important<br />

for the unique capacity of salinity tolerance of<br />

D. <strong>salina</strong> cells. In addition, a more recent study investigated<br />

the flagellar proteome (Jia et al. 2010). A total of<br />

520 groups of proteins from D. <strong>salina</strong> flagella have been<br />

found by shotgun proteomics, but only a limited number<br />

of these proteins were identified due, in part, to the lack<br />

of a fully sequenced reference genome.<br />

A B<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 6<br />

SALT STRESS AND ITS REGULATION IN<br />

DUNALIELLA SALINA<br />

<strong>Algae</strong> of the genus <strong>Dunaliella</strong> appear to be unique in<br />

their ability to grow in saturated brine solutions <strong>as</strong> well <strong>as</strong><br />

withstand dr<strong>as</strong>tic changes in salinity due to use of glycerol<br />

and glycine betaine <strong>as</strong> intracellular osmotic metabolites<br />

(Ben-Amotz and Avron 1973, Avron 1986, Chitlaru<br />

and Pick 1991, Mishra et al. 2008, Chen and Jiang 2009).<br />

Consequently, various species of <strong>Dunaliella</strong> (e.g., D. parva,<br />

D. viridis, D. tertiolecta, D. <strong>salina</strong> and D. bioculata)<br />

were used in the p<strong>as</strong>t to elucidate the cellular response<br />

to changes in medium osmolarity (Ben-Amotz and Avron<br />

1973, Borowitzka and Brown 1974, Ahmed and Zidan<br />

Fig. 2. Diagram of the proposed cellular response mechanisms of <strong>Dunaliella</strong> <strong>salina</strong> to abiotic stress, in which a single, large chloropl<strong>as</strong>t occupying<br />

most of the cellular volume is shown. <strong>The</strong> nucleus (Nuc) and mitochondria (M) are drawn in light blue and brown, respectively. Cell adaptation<br />

to carotenogenic conditions such <strong>as</strong> salt upshifts (A) involves an earlier, f<strong>as</strong>t response (drawn in red) to changes in osmolarity that apparently<br />

does not need active transcription to be induced. This response results in the immediate accumulation of compatible solutes such <strong>as</strong> glycerol. A<br />

second, slower response to salt stress (A), nutrient limitation and high light (B) involves signal perception by primary sensors and the activation<br />

of signaling-transduction pathways on the pl<strong>as</strong>ma membrane and photosynthetic apparatus, which in turn alters gene expression in the nucleus<br />

and cytopl<strong>as</strong>m. Translated gene products (e.g., enzymes) are imported into the chloropl<strong>as</strong>t leading to incre<strong>as</strong>ed neutral lipid and isoprenoid<br />

production, the latter via the pl<strong>as</strong>tidial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. <strong>The</strong> concomitant induction of the carotenoid biosynthetic<br />

pathway results in the accumulation of carotenoids in multiple lipid droplets in the stroma, chiefly in the vicinity of thylakoids. <strong>The</strong>re is<br />

evidence that kin<strong>as</strong>es, transcription factors (TF), reactive oxygen species (ROS), and changes in the redox state of the cell (e.g., over-reduction of<br />

the pl<strong>as</strong>toquinone [PQ] pool upon exposure to high light) along with unknown factors (X) may be part of the molecular network regulating the<br />

response of <strong>Dunaliella</strong> <strong>salina</strong> to abiotic stress. A more detailed explanation of the <strong>model</strong> and respective references is given in the text.


1987, Goyal 2007, Mishra et al. 2008). <strong>The</strong> adaptation of D.<br />

<strong>salina</strong> to salt stress (Fig. 2) can be divided into two stages:<br />

i) rapid adjustment of the intracellular concentration of<br />

glycerol and glycine betaine, resembling the osmoregulatory<br />

mechanisms common in fungi and higher plants,<br />

respectively; and ii) a long-term response that might<br />

include neutral lipid biosynthesis and carotenoid overaccumulation.<br />

<strong>The</strong> early rapid response w<strong>as</strong> demonstrated<br />

to be independent of de novo protein biosynthesis<br />

(Sadka et al. 1989). Fluctuations in medium osmolarity<br />

are <strong>as</strong>sumed to result in changes of pl<strong>as</strong>ma membrane<br />

lipid order, thus triggering activation of a protein kin<strong>as</strong>e<br />

c<strong>as</strong>cade similar to that found in fungi (Pick 1998) and ultimately<br />

leading to conversion of starch into glycerol in<br />

the chloropl<strong>as</strong>t. At this time it remains unknown how the<br />

signal is transduced from the cytosol into the chloropl<strong>as</strong>t.<br />

In contr<strong>as</strong>t, long-term acclimation to higher salinities is<br />

thought to include changes in gene expression events<br />

through an <strong>as</strong> yet unidentified transcription factor or factors<br />

followed by de novo protein biosynthesis (Lers et al.<br />

1990). Known salt stress-induced gene products include<br />

transcripts and proteins involved in carbon and iron <strong>as</strong>similation<br />

<strong>as</strong> well <strong>as</strong> carotenoid biosynthesis (Fisher et al.<br />

1997, 1998, Coesel et al. 2008, Ramos et al. 2008, 2009).<br />

Salt stress-induced homologues of proteins playing a<br />

role in amino acid and pyrimidine turnover, protein biosynthesis<br />

and degradation, <strong>as</strong> well <strong>as</strong> Na + extrusion have<br />

also been identified (Liska et al. 2004, Katz et al. 2007).<br />

<strong>The</strong>se results suggest that the late responses of D. <strong>salina</strong><br />

to high salinity are geared towards its survival in these extreme<br />

environmental conditions, <strong>as</strong> lack of CO 2 and iron<br />

are thought to be two major impediments for growth in<br />

aquatic environments (Fisher et al. 1997, 1998). On the<br />

other hand, concomitant carotenoid accumulation may<br />

provide cross-protection against other forms of abiotic<br />

stress (e.g., high light) (Wang et al. 2003) common in saltworks,<br />

a natural habitat of this <strong>alga</strong>.<br />

ISOPRENOID BIOSYNTHESIS AND ITS<br />

REGULATION IN DUNALIELLA SALINA<br />

<strong>The</strong> large group of secondary metabolites known <strong>as</strong><br />

isoprenoids or terpenoids includes several biological and<br />

economical important compounds such <strong>as</strong> carotenoids<br />

(Stahl and Sies 2005). In all living organisms isoprenoids<br />

are synthesized from isopentenyl diphosphate (IPP) and<br />

dimethylallyl diphosphate (DMAPP) obtained from either<br />

a cytosolic mevalonate (MVA) pathway and / or a pl<strong>as</strong>tidial<br />

2-C-methyl-D-erythritol 4-phosphate (MEP) pathway,<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

which is also known <strong>as</strong> the non-MVA or 1-deoxy-D-xylulose-5-phosphate<br />

(DXP) pathway, respectively (Rohmer<br />

et al. 1993, Sacchettini and Poulter 1997, Rohdich et al.<br />

2003, Rohmer 2003). In <strong>green</strong> <strong>alga</strong>e only the pl<strong>as</strong>tid localized<br />

MEP pathway provides the precursors for the biosynthesis<br />

of all isoprenoids, regardless of whether they<br />

are synthesized in the cytosol, such <strong>as</strong> squalene, or in<br />

the pl<strong>as</strong>tid, such <strong>as</strong> carotenoids, chlorophylls, tocopherols<br />

and certain hormones (Chappell 1995, Schwender et<br />

al. 1996, Lichtenthaler et al. 1997, Eisenreich et al. 1998,<br />

2001, Bach et al. 1999, Lichtenthaler 1999, 2000, 2010,<br />

Rohmer 1999). In spite of the physical separation of these<br />

two pathways in distinct cell compartments, several researchers<br />

have reported an apparent crosstalk between<br />

them (K<strong>as</strong>ahara et al. 2002, Bick and Lange 2003, Hemmerlin<br />

et al. 2003, Laule et al. 2003, Dudareva et al. 2005,<br />

Hampel et al. 2005). With only the MEP pathway operating<br />

in D. <strong>salina</strong> (Capa-Robles et al. 2009) to provide<br />

the precursor metabolites IPP and DMAPP for further<br />

isoprenoid biosynthesis, crosstalk is essential to balance<br />

the metabolic needs of different cellular compartments.<br />

Further, crosstalk is necessary not only between the cytosol<br />

and pl<strong>as</strong>tids, but also between isoprenoid and lipid<br />

metabolic pathways (Rabbani et al. 1998), <strong>as</strong> secondary<br />

carotenoids in D. <strong>salina</strong> are sequestered in lipid globules<br />

within the chloropl<strong>as</strong>t, where<strong>as</strong> triacylglycerides are<br />

stored in cytosolic oil bodies (Katz et al. 1995). Currently,<br />

the mechanisms underlying the interactions between<br />

carotenoid and lipid biosynthesis <strong>as</strong> well <strong>as</strong> synthesis of<br />

proteins required to stabilize the carotene-containing<br />

lipid globules in D. <strong>salina</strong> are unknown. Consequently,<br />

further research is necessary not only to understand the<br />

mechanisms involved in the transport of isoprenoid precursor<br />

molecules across membranes, but also to dissect<br />

the biological mechanisms of regulatory communication<br />

between these pathways (Rodríguez-Concepción 2010).<br />

In the particular c<strong>as</strong>e of D. <strong>salina</strong> the molecular information<br />

regarding the isoprenoid biosynthesis pathway is<br />

still very limited and incomplete (Ye et al. 2008), <strong>as</strong> discussed<br />

in the following sections. Hence, an integrated<br />

genomics, proteomics and metabolomics approach will<br />

be required not only to unravel the stress-induced overaccumulation<br />

of carotenoids, but also to study the overall<br />

response of D. <strong>salina</strong> to different abiotic stresses.<br />

MEP pathway<br />

<strong>The</strong> MEP pathway w<strong>as</strong> discovered only in the late 1980s<br />

and since then w<strong>as</strong> identified in several prokaryotic (eubacteria,<br />

cyanobacteria) and eukaryotic (<strong>alga</strong>e and high-<br />

7 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

er plants) organisms (Lichtenthaler 1999, 2010, Rohmer<br />

1999). Green <strong>alga</strong>e (Chlorophyta), including D. <strong>salina</strong>, appear<br />

to have lost the cytosolic MVA pathway (Schwender<br />

et al. 2001, Capa-Robles et al. 2009). In contr<strong>as</strong>t to the cytosolic<br />

MVA pathway, which requires three molecules of<br />

acetyl-coenzyme A (acetyl-CoA) for IPP generation, the<br />

MEP pathway uses pyruvate and glyceraldehyde-3-phosphate<br />

<strong>as</strong> substrates and involves eight pl<strong>as</strong>tid-localized<br />

enzymes (Fig. 3) (Hsieh et al. 2008), which use different<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 8<br />

cofactors and metal ions (Hunter 2007). For higher plants<br />

all the MEP genes, which are encoded in the nucleus, and<br />

the intermediary pathway products have been identified<br />

(Rohdich et al. 2001, Eisenreich et al. 2004). Further, the<br />

MEP pathway in plants w<strong>as</strong> reported to contain at le<strong>as</strong>t<br />

two rate-determining steps and two key enzymes, at the<br />

level of the 1-deoxy-D-xylulose 5-phosphate synth<strong>as</strong>e<br />

(DXS) / 4-hydroxy-3-methylbut-2-enyl diphosphate reduct<strong>as</strong>e<br />

(HDR) and DXS / 1-deoxy-D-xylulose 5-phos-<br />

Fig. 3. Schematic overview of proposed isoprenoid biosynthesis for the micro<strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> (according to published data on higher<br />

plants). GA-3P, glyceraldehyde-3-phosphate; DXS, 1-deoxy-D-xylulose 5-phosphate synth<strong>as</strong>e; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomer<strong>as</strong>e;<br />

MCT, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransfer<strong>as</strong>e; CMK, 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kin<strong>as</strong>e; MDS,<br />

2-C-methyl-D-erythritol 2,4-cyclodiphosphate synth<strong>as</strong>e; HDS, 4-hydroxy-3-methylbut-2-enyl diphosphate synth<strong>as</strong>e; HDR, 4-hydroxy-3-methylbut-<br />

2-enyl diphosphate reduct<strong>as</strong>e; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; IPI1 & 2, isopentenyl pyrophosphate isomer<strong>as</strong>e;<br />

GPP, geranyl diphosphate; GPS, GPP synth<strong>as</strong>e; FPP, farnesyl diphosphate; FPS, FPP synth<strong>as</strong>e; GGPP, geranyl geranyl diphosphate; GGPS, GGPP<br />

synth<strong>as</strong>e; PSY, phytoene synth<strong>as</strong>e; PDS, phytoene desatur<strong>as</strong>e; CrtISO, carotenoid isomer<strong>as</strong>e; ZDS, ζ-carotene desatur<strong>as</strong>e; ZISO, 15-cis-ζ-isomer<strong>as</strong>e;<br />

LCY-b, lycopene β-cycl<strong>as</strong>e; LCY-e, lycopene ε-cycl<strong>as</strong>e; CHY1, carotene β-hydroxyl<strong>as</strong>e; CHY2, carotene ε-hydroxyl<strong>as</strong>e; VDE, violaxanthin deepoxid<strong>as</strong>e;<br />

ZE, zeoxanthin epoxid<strong>as</strong>e; NSY, neoxanthin synth<strong>as</strong>e.


phate reductoisomer<strong>as</strong>e (DXR), respectively (Estévez et<br />

al. 2001, Botella-Pavía et al. 2004, Rodríguez-Concepción<br />

2006, Zulak and Bohlmann 2010). However, the regulatory<br />

mechanisms involved in this biochemical pathway<br />

require further clarification.<br />

For D. <strong>salina</strong>, MEP pathway genes and their regulatory<br />

mechanisms were unknown until recently. All D. <strong>salina</strong><br />

MEP genes have been identified (partial or full-length)<br />

and their respective characterization is now ongoing<br />

(Ramos and Varela unpublished results, Polle and Tran<br />

unpublished results). Considering the clear importance<br />

of this pathway in plant cell biology and the existence of<br />

a coordinated regulation between the MEP pathway and<br />

other downstream pl<strong>as</strong>tidial isoprenoid pathways (Bouvier<br />

et al. 1998, Lois et al. 2000, Rodríguez-Concepción et<br />

al. 2003, Botella-Pavía et al. 2004, Wille et al. 2004, Rodríguez-Concepción<br />

2010, Sun et al. 2010), identification of<br />

genes involved in the MEP pathway in <strong>Dunaliella</strong> represent<br />

the first step in further investigation of isoprenoid<br />

biosynthesis regulation in this <strong>alga</strong>.<br />

In accordance with the finding that de novo protein<br />

biosynthesis is required for carotene over-accumulation<br />

(<strong>as</strong> discussed above), abiotic stresses, specifically nutrient<br />

limitation and high light, seem to be important factors<br />

in the transcriptional regulation of DXS and HDR<br />

(GenBank accession numbers: FJ469276 and FJ040210)<br />

(Ramos et al. 2009). Similarly to its close relative, C. reinhardtii<br />

(Lohr et al. 2005), D. <strong>salina</strong> appears to have<br />

only one nuclear gene coding for each of DXS and HDR.<br />

In contr<strong>as</strong>t to DXS and HDR, DXR (GenBank accession<br />

number: FJ469277) is apparently unresponsive to stress<br />

and also only represented by one gene in the genome<br />

(Ramos and Varela unpublished results, Tran and Polle<br />

unpublished results).<br />

Carotenoid biosynthesis<br />

<strong>The</strong> carotenoid biosynthetic pathway (Fig. 3), <strong>as</strong> an<br />

essential biological and biotechnologically relevant process,<br />

h<strong>as</strong> been extensively investigated in bacteria, fungi,<br />

plants, and some <strong>alga</strong>e. Thus, elucidation and characterization<br />

of genes, enzymes, metabolic intermediates and<br />

regulatory mechanisms have been reported for several<br />

plants and other organisms including <strong>alga</strong>e (Bartley et al.<br />

1994, Sandmann 1994, Hirschberg et al. 1997, Cunningham<br />

and Gantt 1998, Cunningham 2002, Römer and Fr<strong>as</strong>er<br />

2005, Liang et al. 2006, Vidhyavathi et al. 2008).<br />

In pl<strong>as</strong>tids, after the formation of IPP by the MEP pathway<br />

<strong>as</strong> described above, three consecutive condensation<br />

reactions, which are catalyzed by prenyltransfer<strong>as</strong>es (Fig.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

3), lead to the formation of geranylgeranyl diphosphate<br />

(GGPP), which is the precursor of all carotenoids. <strong>The</strong> first<br />

step of carotenoid biosynthesis consists of the condensation<br />

of two molecules of GGPP (C 20 ), by the enzyme phytoene<br />

synth<strong>as</strong>e (PSY), into phytoene (Sandmann 2001).<br />

Subsequent steps then involve several membrane-<strong>as</strong>sociated<br />

or membrane-integrated enzymes performing a<br />

sequence of desaturation (phytoene desatur<strong>as</strong>e [PDS]<br />

and ζ-carotene desatur<strong>as</strong>e [ZDS]) and isomerisation<br />

(carotenoid isomer<strong>as</strong>e [CrtISO] and 15-cis-ζ-isomer<strong>as</strong>e<br />

[ZISO]) reactions (Li et al. 2007) leading to lycopene. Following<br />

ring-formation by cycl<strong>as</strong>es (lycopene ε-cycl<strong>as</strong>e<br />

[LCY-e] and / or lycopene β-cycl<strong>as</strong>e [LCY-b]) synthesis<br />

of α- and β-carotene and further hydroxylation reactions<br />

lead to lutein or violanxanthin from which other endproduct<br />

carotenoids can be formed (Lichtenthaler 1999,<br />

2000, Bouvier et al. 2005). As previously demonstrated for<br />

other <strong>green</strong> <strong>alga</strong>e such <strong>as</strong> C. reinhardtii (Lohr et al. 2005),<br />

it is expected that the ongoing USDA-DOE genome sequencing<br />

project for D. <strong>salina</strong> will show that b<strong>as</strong>ic carotenoid<br />

biosynthesis in D. <strong>salina</strong> is similar to that in higher<br />

plants. However, regardless of this expected similarity of<br />

the b<strong>as</strong>ic biosynthesis pathway, it remains unknown how<br />

9-cis β-carotene is produced by D. <strong>salina</strong> (Ben-Amotz<br />

and Shaish 1992).<br />

To date, few sequences have been published for genes<br />

that code for enzymes involved in the carotenoid biosynthesis<br />

pathway in D. <strong>salina</strong>. Known genes are PSY (Gen-<br />

Bank acession number: AY601075) (Yan et al. 2005), PDS<br />

(GenBank acession number: AY954517) (Zhu et al. 2005)<br />

and ZDS (GenBank acession number: HM754265) (Ye<br />

and Jiang 2010), LCY-b (EU327876) (Ramos et al. 2008).<br />

<strong>The</strong> molecular b<strong>as</strong>is of carotenogenesis in this <strong>alga</strong> is<br />

currently under investigation with several remaining<br />

pathway genes being fully or partially known <strong>as</strong> part of<br />

the current genome sequencing effort.<br />

Abiotic stress (nutrient limitation, high light and salt)<br />

experiments performed revealed that transcriptional<br />

regulation is likely to be an important control step of this<br />

pathway (Ramos et al. 2009). PSY, PDS and LCY-b present<br />

similar expression patterns and nutrient availability<br />

appears to be a crucial inductive factor for β-carotene<br />

accumulation in this micro<strong>alga</strong>. <strong>The</strong>refore, up-regulation<br />

of carotenoid biosynthetic pathway genes may occur in<br />

response to abiotic stress conditions (Coesel et al. 2008,<br />

Ramos et al. 2008), although earlier results indicated the<br />

contrary (see below; Rabbani et al. 1998, Sánchez-Estudillo<br />

et al. 2006). Previous conflicting results that were<br />

published regarding the regulation of PSY and PDS at the<br />

transcript and protein levels might be explained by the<br />

9 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

finding that, in contr<strong>as</strong>t to other known chlorophytes, the<br />

<strong>alga</strong> D. bardawil contains multiple PSY genes (Tran et al.<br />

2009). As in some higher plants (Li et al. 2008a, 2008b)<br />

differential expression of multiple PSY genes might regulate<br />

biosynthesis of carotenoids in <strong>Dunaliella</strong>.<br />

<strong>The</strong> evident complexity of carotenoid biosynthesis observed<br />

in other photosynthetic organisms highlights the<br />

need for an integrated research effort to further understand<br />

the regulation of this pathway in D. <strong>salina</strong> (Lamers<br />

et al. 2008). Results of previous work indicated that<br />

stress-induced carotenoid biosynthesis is regulated at<br />

le<strong>as</strong>t at the level of transcription (Lers et al. 1990). However,<br />

comprehensive examination of transcriptional,<br />

posttranscriptional and metabolic regulatory factors<br />

such <strong>as</strong> redox control (Liska et al. 2004), key control pathway<br />

enzymes, and signaling molecules (e.g., reactive<br />

oxygen species [ROS], SOS pathway and transcription<br />

factors) (Shaish et al. 1993, Xiong et al. 2002, Aarts and Fiers<br />

2003), is fundamental to dissecting the mechanism(s)<br />

that lead to stress-induced β-carotene over-accumulation<br />

in D. <strong>salina</strong> and the development of transgenic strategies<br />

for the use of this <strong>alga</strong> in metabolic engineering of<br />

the carotenoid biosynthesis.<br />

LIPID BIOSYNTHESIS AND ITS APPLICATION<br />

<strong>Dunaliella</strong> species have been found to have unusually<br />

high contents of total lipids, carotenoids and polyunsaturated<br />

fatty acid (PUFA) such <strong>as</strong> 16 : 4 <strong>as</strong> well <strong>as</strong> 18<br />

: 3 (Tornabene et al. 1980, Ben-Amotz et al. 1982, Evans<br />

et al. 1982, Evans and Kates 1984, Mendoza et al. 1999).<br />

<strong>The</strong>se properties of <strong>Dunaliella</strong> species have prompted an<br />

interest in the accumulation of lipids (including sterols)<br />

<strong>as</strong>sociated or not with carotenoid biosynthesis for commercial<br />

use.<br />

D. <strong>salina</strong> exposed to stress conditions, such <strong>as</strong> high<br />

light intensity or nutrient starvation, accumulate<br />

β-carotene in pl<strong>as</strong>tid lipid globules <strong>as</strong> the sequestering<br />

structure (Ben-Amotz and Avron 1983, Jiménez and<br />

Pick 1994, Rabbani et al. 1998). This mechanism is not<br />

unique to <strong>Dunaliella</strong>, <strong>as</strong> a number of micro<strong>alga</strong>e exposed<br />

to stress growth conditions (i.e., high irradiance and nitrogen<br />

starvation) accumulate intra- or extra-pl<strong>as</strong>tidic<br />

lipid bodies composed of both triacylglycerols (TAG) and<br />

carotenoids (Ben-Amotz and Avron 1983, Jiménez and<br />

Pick 1994, Thompson 1996, Rabbani et al. 1998, Boussiba<br />

2000). In D. bardawil the interrelationship between lipid<br />

synthesis, β-carotene accumulation, and chloropl<strong>as</strong>t<br />

lipid globule formation w<strong>as</strong> demonstrated (Rabbani et al.<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 10<br />

1998). In this investigation, carotenoid biosynthetic enzymes,<br />

including PSY or PDS, were not enhanced at the<br />

transcriptional and translational levels under β-carotene<br />

overproducing conditions, where<strong>as</strong> the activity of a key<br />

lipid biosynthesis regulatory enzyme, acetyl-CoA carboxyl<strong>as</strong>e,<br />

incre<strong>as</strong>ed dramatically. Additionally glycerol-<br />

3-phosphate acyltransfer<strong>as</strong>e w<strong>as</strong> enhanced about 8-fold<br />

compared with control conditions. Thus, β-carotene synthesis<br />

might be driven by lipid deposition, or vice versa,<br />

resulting in the sequestration and storage of carotenoid<br />

biosynthetic pathway end products.<br />

Abiotic stress is able to change not only the total content<br />

of fatty acid, but also the composition of the fatty<br />

acids in D. <strong>salina</strong>. Incre<strong>as</strong>ed fatty acid content under<br />

stress conditions (e.g., high irradiance, high salt or nitrogen<br />

starvation) h<strong>as</strong> been described (Cho and Thompson<br />

1986, Mendoza et al. 1999, Abd El-Baky et al. 2004, Lamers<br />

et al. 2010). <strong>The</strong> main PUFA, 18 : 3 (n - 3) and 16 : 4<br />

(n - 3), comprised almost 70% of the total fatty acids in<br />

D. <strong>salina</strong>, where<strong>as</strong> the proportion of 16 : 0 and 18 : 1 incre<strong>as</strong>ed<br />

at the expense of the PUFAs 16 : 4 (n - 3) and 18<br />

: 3 (n - 3) under high irradiance (Mendoza et al. 1999).<br />

Whether or not the observed changes in the 16 : 0 / 16 : 4<br />

fatty acid ratio is related to alterations in the balance between<br />

storage and photosynthetic related fatty acid during<br />

the adaptation to high light remains unclear.<br />

Recently <strong>alga</strong>l-b<strong>as</strong>ed biofuels are gaining widespread<br />

attention and micro<strong>alga</strong>e have been studied for the<br />

production of hydrogen, oils (triglycerides, for biodiesel)<br />

and bioethanol (Ghirardi et al. 2000, Metzger and<br />

Largeau 2005, Miao and Wu 2006, Chisti 2008, Rosenberg<br />

et al. 2008, Wijffels 2008, Greenwell et al. 2010). <strong>The</strong><br />

broadest evaluation of <strong>alga</strong>l species w<strong>as</strong> performed by<br />

the US Department of Energy’s Aquatic Species Program<br />

(ASP) to develop micro<strong>alga</strong>e <strong>as</strong> a source of biodiesel.<br />

ASP scientists screened a large number of micro<strong>alga</strong>e for<br />

growth rate and oil production <strong>as</strong> well <strong>as</strong> composition.<br />

Throughout this project, the ASP recognized that species<br />

selection, optimal cultivation, and genetic diversity, in<br />

addition to metabolic engineering, were critical for commercial<br />

viability (Sheehan et al. 1998).<br />

<strong>Dunaliella</strong> species, including D. <strong>salina</strong>, are candidate<br />

feedstocks for biofuel production (Huesemann and Benemann<br />

2009), because m<strong>as</strong>s production systems for this<br />

<strong>alga</strong> have been established already worldwide. D. <strong>salina</strong><br />

can produce high amounts of lipids in the range from 38<br />

to 44% in terms of dry weight (Abd El-Baky et al. 2004,<br />

Weldy and Huesemann 2007). D. <strong>salina</strong> can be manipulated<br />

e<strong>as</strong>ily for either fatty acid content or composition<br />

by high irradiance, salinity stress and N-deprivation.


However, information about the enzymes related to the<br />

biosynthesis, desaturation and elongation of fatty acids<br />

is limited for the rational manipulation of lipid quantity<br />

and quality. Furthermore, unlike cells under nutrient<br />

stress, exponentially growing D. <strong>salina</strong> displays low lipid<br />

levels. <strong>The</strong>refore, optimal lipid production might involve<br />

a first stage of rapid cell division in hybrid photo-bioreactors<br />

followed by imposition of nutritional stress in outdoor<br />

ponds.<br />

GENETIC MANIPULATION AND BIOTECHNO-<br />

LOGICAL APPLICATIONS<br />

Micro<strong>alga</strong>l strains, either novel or genetically improved,<br />

are indispensable tools for <strong>alga</strong>l biotechnology<br />

companies. Although only non-transgenic strains of D.<br />

<strong>salina</strong> have been used commercially to date, recent development<br />

of tools and methods for genetic engineering<br />

(e.g., electroporation, gl<strong>as</strong>s beads, silicon carbide whiskers,<br />

particle bombardment, Agrobacterium tumefaciensmediated<br />

gene transfer) of micro<strong>alga</strong>e h<strong>as</strong> allowed the<br />

stable transformation of more than 30 different strains<br />

including several Chlorophyta (e.g., C. reinhardtii, Volvox<br />

carteri, Chlorella kessleri) (Fuhrmann 2002, Walker et al.<br />

2005b, Coll 2006, León et al. 2007, Radakovits et al. 2010).<br />

One species that h<strong>as</strong> recently attracted great attention regarding<br />

genetic engineering is D. <strong>salina</strong>.<br />

<strong>The</strong> development of a stable, efficient and reproducible<br />

transformation system depends on several critical<br />

factors such <strong>as</strong> the availability of suitable, highly active<br />

promoters, selective markers (dominant or recessive),<br />

reporter genes and stable transformation methods (Coll<br />

2006, Hallmann 2007). Regarding <strong>Dunaliella</strong>, the species<br />

D. <strong>salina</strong>, D. tertiolecta, and D. viridis have been the main<br />

focus of genetic transformation experiments (Geng et al.<br />

2003, 2004, Sun et al. 2005, 2006, Tan et al. 2005, Walker et<br />

al. 2005a, Feng et al. 2009, Polle and Song 2009).<br />

Early engineering attempts resulted in stable transformation<br />

of D. <strong>salina</strong> with the selective ble gene marker<br />

(zeocin antibiotic resistance) by gl<strong>as</strong>s bead agitation;<br />

however, no evidence of genome integration w<strong>as</strong> presented<br />

(Jin et al. 2001). Subsequently, this problem w<strong>as</strong><br />

overcome by Geng et al. (2003, 2004), who reported nuclear<br />

transformation of D. <strong>salina</strong> by means of electroporation<br />

and stable foreign expression of hepatitis B surface<br />

antigen (HbsAg) under the control of maize ubiquitin<br />

(Ubil-Ω) promoter <strong>as</strong> well <strong>as</strong> the chloramphenicol acetyltransfer<strong>as</strong>e<br />

(CAT) selectable gene under the control of<br />

simian virus 40 (SV40) promoter.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

In addition, the micro-particle bombardment transformation<br />

method w<strong>as</strong> used with the bar gene providing<br />

the selective marker, which encodes for phosphinothricin<br />

acetyltransfer<strong>as</strong>e (PAT) and confers B<strong>as</strong>ta herbicide<br />

tolerance (Walker et al. 2005b, Coll 2006). Three distinct<br />

promoters were tested in different reports: carbonic anhydr<strong>as</strong>e<br />

gene (DCA1) (Lü et al. 2004), actin (Jiang et al.<br />

2005) and Cauliflower mosaic virus 35S promoter (CaM-<br />

V35S) (Tan et al. 2005). <strong>The</strong> latter w<strong>as</strong> the only report<br />

without evidence of stable genome incorporation. Additionally,<br />

another expression system w<strong>as</strong> described in<br />

which the heterologous gene (bar) expression could be<br />

regulated by an inducible promoter. For this purpose, a<br />

D. <strong>salina</strong> nitrate redut<strong>as</strong>e (NR) gene promoter-terminator<br />

c<strong>as</strong>sette with the bar gene w<strong>as</strong> constructed. D. <strong>salina</strong><br />

cells were transformed with this c<strong>as</strong>sette by electroporation<br />

and the bar control expression w<strong>as</strong> observed. Furthermore,<br />

gene integration into the <strong>alga</strong>l genome in the<br />

stable transformants w<strong>as</strong> confirmed (Li et al. 2007).<br />

Recently, three D. <strong>salina</strong> transformation methods were<br />

tested, namely gl<strong>as</strong>s beads, particle bombardment and<br />

electroporation, using GUS (coding for beta-glucuronid<strong>as</strong>e)<br />

gene expression detection. <strong>The</strong> gl<strong>as</strong>s bead transformation<br />

method presented many advantages (simplicity,<br />

low expenses and short transformation time) and the<br />

highest transformation efficiency and reproducibility<br />

(Feng et al. 2009). Development of highly efficient transformation<br />

systems for stable gene expression is necessary<br />

for commercially interesting <strong>alga</strong>e strains such <strong>as</strong><br />

D. <strong>salina</strong>, especially for the improvement of carotenoid<br />

biosynthesis. Genetic engineering of this pathway with<br />

a mutated PDS gene in Haematococcus pluvialis led to<br />

incre<strong>as</strong>ed carotenoid and rapid <strong>as</strong>taxanthin accumulation<br />

(Steinbrenner and Sandmann 2006). <strong>The</strong> PDS gene<br />

w<strong>as</strong> also used in a double-stranded RNA interference<br />

approach for gene expression analysis in D. <strong>salina</strong> electroporated<br />

cells. This gene silencing method proved to<br />

be useful for understanding gene function analysis in<br />

this <strong>alga</strong> (Sun et al. 2008). However, further research in<br />

D. <strong>salina</strong> transgenics is essential for the improvement of<br />

this <strong>alga</strong> <strong>as</strong> a bioreactor and also <strong>as</strong> a molecular toolkit.<br />

<strong>The</strong> recent elucidation of the pl<strong>as</strong>tid genome (Smith et<br />

al. 2010) is a significant step towards this goal and it can<br />

be predicted that stable and routine chloropl<strong>as</strong>t transformation<br />

will be reported soon.<br />

CONCLUSIONS AND FUTURE PERSPECTIVES<br />

<strong>The</strong> progress of modern genomics h<strong>as</strong> led in recent<br />

11 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

years to the complete genome sequencing of about a dozen<br />

micro<strong>alga</strong>l species and a number of genome projects<br />

are currently in progress for several other <strong>alga</strong>e (http://<br />

www.jgi.doe.gov). Indeed one of the earliest <strong>alga</strong>l genomes<br />

sequenced, C. reinhardtii’s, serve <strong>as</strong> an important<br />

reference and a guidepost for further molecular analyses<br />

(Grossman et al. 2007, Merchant et al. 2007). Research on<br />

this <strong>unicellular</strong> <strong>green</strong> <strong>alga</strong> and two diatom species, whose<br />

genomes have recently been sequenced, are now in the<br />

post-genomics stage (Armbrust et al. 2004, Montsant et<br />

al. 2007, Siaut et al. 2007). Despite the considerable available<br />

molecular data regarding these microscopic photosynthetic<br />

organisms, further biotechnology development<br />

is necessary for overall <strong>alga</strong>l commercial exploitation.<br />

With the recent publication of the mitochondrial and<br />

pl<strong>as</strong>tid genomes of D. <strong>salina</strong> (Smith et al. 2010) and the<br />

forthcoming rele<strong>as</strong>e of the nuclear genome by JGI, genome-b<strong>as</strong>ed<br />

and other approaches will become possible<br />

in the near future. For example, development of microarrays<br />

or deep cDNA sequencing methods (Margulies et al.<br />

2005) can be expected to follow in short order and allow<br />

comparative analysis of the transcriptome of cells exposed<br />

to various environmental conditions. <strong>The</strong>se techniques<br />

will allow the study of multiple cellular processes<br />

at the molecular level <strong>as</strong>, for example, the dissection of<br />

the regulatory mechanisms involved in carotenogenesis<br />

and glycerol metabolism. Furthermore, combining genomics<br />

of D. <strong>salina</strong> with proteomics will facilitate analysis<br />

of the structure and function of the unique glycocalyx<br />

and the pl<strong>as</strong>ma membrane of this halotolerant organism.<br />

In comparison to the <strong>alga</strong> C. reinhardtii, more genomic<br />

tool development is still necessary for its close relative,<br />

D. <strong>salina</strong>. At this time highly efficient transformation<br />

systems are not available and genetic crosses cannot be<br />

performed on a routine b<strong>as</strong>is. However, with the genome<br />

sequence becoming available soon, the <strong>alga</strong> D. <strong>salina</strong> <strong>as</strong><br />

a <strong>model</strong> system is about to undergo a major transformation.<br />

<strong>The</strong> short-term outcome of research on this industrially<br />

important species will allow not only an enhanced<br />

understanding of complex metabolic networks, but also<br />

further development of transgenic <strong>alga</strong>l strains for particular<br />

commercial applications (e.g., production of carotenoids<br />

and recombinant proteins).<br />

ACKNOWLEDGEMENTS<br />

AR w<strong>as</strong> supported by the Fundação para a Ciência<br />

e Tecnologia, Portugal, with the studentship SFRH/<br />

BD/13937/2003. Part of the work here described w<strong>as</strong><br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 12<br />

financed by the Portuguese National Budget and the<br />

projects POCTI/MAR/15237/99 and INTERREG159-SAL-<br />

Atlantic Salt Ponds awarded to JCV; by funding from the<br />

Department of Transportation SunGrant Initiative (to<br />

JCC) and NIH Grant P20 RR-016464 from the INBRE Program<br />

of the National Center for Research Resources supporting<br />

the Nevada Genomics, Proteomics and Bioinformatics<br />

Center, and the Nevada Agricultural Experiment<br />

Station; and w<strong>as</strong> supported in part by a grant from the<br />

Development of Marine-Bioenergy program funded by<br />

Ministry of Land, Transport and Maritime Affairs of the<br />

Korean Government.<br />

REFERENCES<br />

Aarts, M. G. M. & Fiers, M. W. E. J. 2003. What drives plant<br />

stress genes? Trends Plant Sci. 8:99-102.<br />

Abd El-Baky, H. H., El-Baz, F. K. & El-Baroty, G. S. 2004. Pro-<br />

duction of lipids rich in omega 3 fatty acids from the<br />

halotolerant <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong>. Biotechnology<br />

3:102-108.<br />

Ahmed, A. M. & Zidan, M. A. 1987. Glycerol production by<br />

<strong>Dunaliella</strong> bioculata. J. B<strong>as</strong>ic Microbiol. 27:419-425.<br />

Alkayal, F., Albion, R. L., Tillett, R. L., Hathwaik, L. T., Lemos,<br />

M. S. & Cushman, J. C. 2010. Expressed sequence tag<br />

(EST) profiling in hyper saline shocked <strong>Dunaliella</strong> sali-<br />

na reveals high expression of protein synthetic appara-<br />

tus components. Plant Sci. 179:437-449.<br />

Amtmann, A. 2009. Learning from evolution: <strong>The</strong>llungiella<br />

generates new knowledge on essential and critical com-<br />

ponents of abiotic stress tolerance in plants. Mol. Plant<br />

2:3-12.<br />

Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Marti-<br />

nez, D., Putnam, N. H., Zhou, S., Allen, A. E., Apt, K. E.,<br />

Bechner, M., Brzezinski, M. A., Chaal, B. K., Chiovitti, A.,<br />

Davis, A. K., Demarest, M. S., Detter, J. C., Glavina, T.,<br />

Goodstein, D., Hadi, M. Z., Hellsten, U., Hildebrand, M.,<br />

Jenkins, B. D., Jurka, J., Kapitonov, V. V., Kröger, N., Lau,<br />

W. W. Y., Lane, T. W., Larimer, F. W., Lippmeier, J. C., Luc<strong>as</strong>,<br />

S., Medina, M., Montsant, A., Obornik, M., Parker, M. S.,<br />

Palenik, B., Pazour, G. J., Richardson, P. M., Rynearson,<br />

T. A., Saito, M. A., Schwartz, D. C., Thamatrakoln, K., Val-<br />

entin, K., Vardi, A., Wilkerson, F. P. & Rokhsar, D. S. 2004.<br />

<strong>The</strong> genome of the diatom Thal<strong>as</strong>siosira pseudonana:<br />

ecology, evolution, and metabolism. Science 306:79-86.<br />

Avron, M. 1986. <strong>The</strong> osmotic components of halotolerant al-<br />

gae. Trends Biochem. Sci. 11:5-6.<br />

Avron, M. & Ben-Amotz, A. 1992. <strong>Dunaliella</strong>: physiology, bio-<br />

chemistry, and biotechnology. CRC Press, Boca Raton,


FL, 256 pp.<br />

Bach, T. J., Boronat, A., Campos, N., Ferrer, A. & Vollack, K. U.<br />

1999. Mevalonate biosynthesis in plants. Crit. Rev. Bio-<br />

chem. Mol. Biol. 34:107-122.<br />

Baisakh, N., Subudhi, P. K. & Varadwaj, P. 2008. Primary re-<br />

sponses to salt stress in a halophyte, smooth cordgr<strong>as</strong>s<br />

(Spartina alterniflora Loisel.). Funct. Integr. Genomics<br />

8:287-300.<br />

Bartley, G. E., Scolnik, P. A. & Giuliano, G. 1994. Molecular<br />

biology of carotenoid biosynthesis in plants. Annu. Rev.<br />

Plant Physiol. Plant Mol. Biol. 45:287-301.<br />

Ben-Amotz, A. & Avron, M. 1973. <strong>The</strong> role of glycerol in the<br />

osmotic regulation of the halophilic <strong>alga</strong> <strong>Dunaliella</strong><br />

parva. Plant Physiol. 51:875-878.<br />

Ben-Amotz, A. & Avron, M. 1983. On the factors which deter-<br />

mine m<strong>as</strong>sive β-carotene accumulation in the halotoler-<br />

ant <strong>alga</strong> <strong>Dunaliella</strong> bardawil. Plant Physiol. 72:593-597.<br />

Ben-Amotz, A. & Avron, M. 1990. <strong>The</strong> biotechnology of culti-<br />

vating the halotolerant <strong>alga</strong> <strong>Dunaliella</strong>. Trends Biotech-<br />

nol. 8:121-126.<br />

Ben-Amotz, A., Katz, A. & Avron, M. 1982. Accumulation of<br />

β-carotene in halotolerant <strong>alga</strong>e: purification and char-<br />

acterization of β-carotene-rich globules from Dunaliel-<br />

la bardawil (Chlorophyceae). J. Phycol. 18:529-537.<br />

Ben-Amotz, A. & Shaish, A. 1992. β-carotene biosynthesis. In<br />

Avron, M. & Ben-Amotz, A. (Eds.) <strong>Dunaliella</strong>: Physiology,<br />

Biochemistry and Biotechnology. CRC Press, Boca Ra-<br />

ton, FL, pp. 206-216.<br />

Bhosale, P. 2004. Environmental and cultural stimulants in<br />

the production of carotenoids from microorganisms.<br />

Appl. Microbiol. Biotechnol. 63:351-361.<br />

Bick, J. A. & Lange, B. M. 2003. Metabolic cross talk between<br />

cytosolic and pl<strong>as</strong>tidial pathways of isoprenoid biosyn-<br />

thesis: unidirectional transport of intermediates across<br />

the chloropl<strong>as</strong>t envelope membrane. Arch. Biochem.<br />

Biophys. 415:146-154.<br />

Borowitzka, L. J. & Brown, A. D. 1974. <strong>The</strong> salt relations of<br />

marine and halophilic species of the <strong>unicellular</strong> <strong>green</strong><br />

<strong>alga</strong>, <strong>Dunaliella</strong>: the role of glycerol <strong>as</strong> a compatible sol-<br />

ute. Arch. Microbiol. 96:37-52.<br />

Borowitzka, M. A. 1999. Commercial production of microal-<br />

gae: ponds, tanks, tubes and fermenters. J. Biotechnol.<br />

70:313-321.<br />

Borowitzka, M. A. & Borowitzka, L. J. 1988. <strong>Dunaliella</strong>. In<br />

Borowitzka, M. A. & Borowitzka, L. J. (Eds.) Micro-<strong>alga</strong>l<br />

Biotechnology. Cambridge University Press, Cambridge,<br />

pp. 27-58.<br />

Borowitzka, M. A., Borowitzka, L. J. & Kessly, D. 1990. Effects<br />

of salinity incre<strong>as</strong>e on carotenoid accumulation in the<br />

<strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong>. J. Appl. Phycol. 2:111-119.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

Borowitzka, M. A. & Siva, C. J. 2007. <strong>The</strong> taxonomy of the<br />

genus <strong>Dunaliella</strong> (Chlorophyta, <strong>Dunaliella</strong>les) with<br />

emph<strong>as</strong>is on the marine and halophilic species. J. Appl.<br />

Phycol. 19:567-590.<br />

Botella-Pavía, P., Besumbes, Ó., Phillips, M. A., Carretero-<br />

Paulet, L., Boronat, A. & Rodríguez-Concepción, M.<br />

2004. Regulation of carotenoid biosynthesis in plants:<br />

evidence for a key role of hydroxymethylbutenyl di-<br />

phosphate reduct<strong>as</strong>e in controlling the supply of pl<strong>as</strong>-<br />

tidial isoprenoid precursors. Plant J. 40:188-199.<br />

Boussiba, S. 2000. Carotenogenesis in the <strong>green</strong> <strong>alga</strong> Hae-<br />

matococcus pluvialis: cellular physiology and stress re-<br />

sponse. Physiol. Plant. 108:111-117.<br />

Bouvier, F., d’Harlingue, A., Suire, C., Backhaus, R. A. & Ca-<br />

mara, B. 1998. Dedicated roles of pl<strong>as</strong>tid transketol<strong>as</strong>es<br />

during the early onset of isoprenoid biogenesis in pep-<br />

per fruits. Plant Physiol. 117:1423-1431.<br />

Bouvier, F., Rahier, A. & Camara, B. 2005. Biogenesis, molecu-<br />

lar regulation and function of plant isoprenoids. Prog.<br />

Lipid Res. 44:357-429.<br />

Capa-Robles, W., Paniagua-Michel, J. & Soto, J. O. 2009. <strong>The</strong><br />

biosynthesis and accumulation of β-carotene in Du-<br />

naliella <strong>salina</strong> proceed via the glyceraldehyde 3-phos-<br />

phate/pyruvate pathway. Nat. Prod. Res. 23:1021-1028.<br />

Chapin, F. S. III. 1991. Integrated responses of plants to<br />

stress. BioScience 41:29-36.<br />

Chappell, J. 1995. Biochemistry and molecular biology of the<br />

isoprenoid biosynthetic pathway in plants. Annu. Rev.<br />

Plant Physiol. Plant Mol. Biol. 46:521-547.<br />

Chen, H. & Jiang, J. -G. 2009. Osmotic responses of Dunaliel-<br />

la to the changes of salinity. J. Cell Physiol. 219:251-258.<br />

Chisti, Y. 2008. Biodiesel from micro<strong>alga</strong>e beats bioethanol.<br />

Trends Biotechnol. 26:126-131.<br />

Chitlaru, E. & Pick, U. 1991. Regulation of glycerol synthe-<br />

sis in response to osmotic changes in <strong>Dunaliella</strong>. Plant<br />

Physiol. 96:50-60.<br />

Cho, S. H. & Thompson, G. A. Jr. 1986. Properties of a fatty<br />

acid hydrol<strong>as</strong>e preferentially attacking monogalactosyl-<br />

diacylglycerols in <strong>Dunaliella</strong> <strong>salina</strong> chloropl<strong>as</strong>ts. Bio-<br />

chim. Biophys. Acta 878:353-359.<br />

Cifuentes, A. S., González, M. A., Inostroza, I. & Aguilera,<br />

A. 2001. Reappraisal of physiological attributes of nine<br />

strains of <strong>Dunaliella</strong> (Chlorophyceae): growth and pig-<br />

ment content across salinity gradient. J. Phycol. 37:334-<br />

344.<br />

Cifuentes, A. S., González, M. A. & Parra, O. O. 1996. <strong>The</strong> ef-<br />

fect of salinity on the growth and carotenogenesis in two<br />

Chilean strains of <strong>Dunaliella</strong> <strong>salina</strong> <strong>Teod</strong>oresco. Biol.<br />

Res. 29:227-236.<br />

Coesel, S. N., Baumgartner, A. C., Teles, L. M., Ramos, A.<br />

13 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

A., Henriques, N. M., Cancela, L. & Varela, J. C. S. 2008.<br />

Nutrient limitation is the main regulatory factor for ca-<br />

rotenoid accumulation and for Psy and Pds steady state<br />

transcript levels in <strong>Dunaliella</strong> <strong>salina</strong> (Chlorophyta)<br />

exposed to high light and salt stress. Mar. Biotechnol.<br />

10:602-611.<br />

Coll, J. M. 2006. Methodologies for transferring DNA into eu-<br />

karyotic micro<strong>alga</strong>e. Span. J. Agric. Res. 4:316-330.<br />

Cowan, A. K., Rose, P. D. & Horne, L. G. 1992. <strong>Dunaliella</strong> sa-<br />

lina: a <strong>model</strong> system for studying the response of plant<br />

cells to stress. J. Exp. Bot. 43:1535-1547.<br />

Cunningham, F. X. Jr. 2002. Regulation of carotenoid syn-<br />

thesis and accumulation in plants. Pure Appl. Chem.<br />

74:1409-1417.<br />

Cunningham, F. X. Jr. & Gantt, E. 1998. Genes and enzymes<br />

of carotenoid biosynthesis in plants. Annu. Rev. Plant<br />

Physiol. Plant Mol. Biol. 49:557-583.<br />

Cushman, J. C. & Bohnert, H. J. 2000. Genomic approaches<br />

to plant stress tolerance. Curr. Opin. Plant Biol. 3:117-<br />

124.<br />

Cushman, J. C., Tillett, R. L., Wood, J. A., Branco, J. M. &<br />

Schlauch, K. A. 2008. Large-scale mRNA expression<br />

profiling in the common ice plant, Mesembryanthe-<br />

mum crystallinum, performing C 3 photosynthesis<br />

and Cr<strong>as</strong>sulacean acid metabolism (CAM). J. Exp. Bot.<br />

59:1875-1894.<br />

Del Campo, J. A., García-González, M. & Guerrero, M. G.<br />

2007. Outdoor cultivation of micro<strong>alga</strong>e for carotenoid<br />

production: current state and perspectives. Appl. Mi-<br />

crobiol. Biotechnol. 74:1163-1174.<br />

Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt,<br />

M., Rhodes, D., Boland, W. & Gershenzon, J. 2005. <strong>The</strong><br />

nonmevalonate pathway supports both monoterpene<br />

and sesquiterpene formation in snapdragon flowers.<br />

Proc. Natl. Acad. Sci. U. S. A. 102:933-938.<br />

Dunahay, T. G., Jarvis, E. E., Dais, S. S. & Roessler, P. G.<br />

1996. Manipulation of micro<strong>alga</strong>l lipid production us-<br />

ing genetic engineering. Appl. Biochem. Biotechnol.<br />

57/58:223-231.<br />

Eisenreich, W., Bacher, A., Arigoni, D. & Rohdich, F. 2004. Bio-<br />

synthesis of isoprenoids via the non-mevalonate path-<br />

way. Cell. Mol. Life Sci. 61:1401-1426.<br />

Eisenreich, W., Rohdich, F. & Bacher, A. 2001. Deoxyxylulose<br />

phosphate pathway to terpenoids. Trends Plant Sci.<br />

6:78-84.<br />

Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D.,<br />

Zenk, M. H. & Bacher, A. 1998. <strong>The</strong> deoxyxylulose phos-<br />

phate pathway of terpenoid biosynthesis in plants and<br />

microorganisms. Chem. Biol. 5:R221-R233.<br />

Estévez, J. M., Cantero, A., Reindl, A., Reichler, S. & Léon, P.<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 14<br />

2001. 1-Deoxy-D-xylulose-5-phosphate synth<strong>as</strong>e, a lim-<br />

iting enzyme for pl<strong>as</strong>tidic isoprenoid biosynthesis in<br />

plants. J. Biol. Chem. 276:22901-22909.<br />

Evans, R. W. & Kates, M. 1984. Lipid composition of halo-<br />

philic species of <strong>Dunaliella</strong> from the Dead Sea. Arch.<br />

Microbiol. 140:50-56.<br />

Evans, R. W., Kates, M., Ginzburg, M. & Ginzburg, B. -Z. 1982.<br />

Lipid composition of halotolerant <strong>alga</strong>e, <strong>Dunaliella</strong> par-<br />

va Lerche and <strong>Dunaliella</strong> tertiolecta. Biochim. Biophys.<br />

Acta 712:186-195.<br />

Feng, S., Xue, L., Liu, H. & Lu, P. 2009. Improvement of ef-<br />

ficiency of genetic transformation for <strong>Dunaliella</strong> <strong>salina</strong><br />

by gl<strong>as</strong>s beads method. Mol. Biol. Rep. 36:1433-1439.<br />

Fisher, M., Gokhman, I., Pick, U. & Zamir, A. 1997. A struc-<br />

turally novel transferrin-like protein accumulates in<br />

the pl<strong>as</strong>ma membrane of the <strong>unicellular</strong> <strong>green</strong> <strong>alga</strong> Du-<br />

naliella <strong>salina</strong> grown in high salinities. J. Biol. Chem.<br />

272:1565-1570.<br />

Fisher, M., Zamir, A. & Pick, U. 1998. Iron uptake by the halo-<br />

tolerant <strong>alga</strong> <strong>Dunaliella</strong> is mediated by a pl<strong>as</strong>ma mem-<br />

brane transferrin. J. Biol. Chem. 273:17553-17558.<br />

Fletcher, S. P., Muto, M. & Mayfield, S. P. 2007. Optimization<br />

of recombinant protein expression in the chloropl<strong>as</strong>ts<br />

of <strong>green</strong> <strong>alga</strong>e. Adv. Exp. Med. Biol. 616:90-98.<br />

Fuhrmann, M. 2002. Expanding the molecular toolkit for<br />

Chlamydomon<strong>as</strong> reinhardtii: from history to new fron-<br />

tiers. Protist 153:357-364.<br />

Geng, D., Wang, Y., Wang, P., Li, W. & Sun, Y. 2003. Stable ex-<br />

pression of hepatitis B surface antigen gene in Dunaliel-<br />

la <strong>salina</strong> (Chlorophyta). J. Appl. Phycol. 15:451-456.<br />

Geng, D. -G., Han, Y., Wang, Y. -Q., Wang, P., Zhang, L. -M., Li,<br />

W. -B. & Sun, Y. -R. 2004. Construction of a system for the<br />

stable expression of foreign genes in <strong>Dunaliella</strong> <strong>salina</strong>.<br />

Acta Bot. Sin. 46:342-346.<br />

Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M.,<br />

Greenbaum, E. & Melis, A. 2000. Micro<strong>alga</strong>e: a <strong>green</strong><br />

source of renewable H 2 . Trends Biotechnol. 18:506-511.<br />

Gómez, P. I. & González, M. A. 2004. Genetic variation among<br />

seven strains of <strong>Dunaliella</strong> <strong>salina</strong> (Chlorophyta) with<br />

industrial potential, b<strong>as</strong>ed on RAPD banding patterns<br />

and on nuclear ITS rDNA sequences. Aquaculture<br />

233:149-162.<br />

González, M. A., Coleman, A. W., Gómez, P. I. & Montoya, R.<br />

2001. Phylogenetic relationship among various strains<br />

of <strong>Dunaliella</strong> (Chlorophyceae) b<strong>as</strong>ed on nuclear ITS<br />

rDNA sequences. J. Phycol. 37:604-611.<br />

González, M. A., Gómez, P. I. & Polle, J. E. W. 2009. Taxonomy<br />

and phylogeny of the Genus <strong>Dunaliella</strong>. In Ben-Amotz,<br />

A., Polle, J. E. W. & Subba Rao, D. V. (Eds.) <strong>The</strong> Alga Du-<br />

naliella: Biodiversity, Physiology, Genomics and Biotech-


nology. Science Publishers, Einfield, NH, pp.15-44.<br />

Goyal, A. 2007. Osmoregulation in <strong>Dunaliella</strong>, Part I: Effects<br />

of osmotic stress on photosynthesis, dark respiration<br />

and glycerol metabolism in <strong>Dunaliella</strong> tertiolecta and its<br />

salt-sensitive mutant (HL 25/8). Plant Physiol. Biochem.<br />

45:696-704.<br />

Greenwell, H. C., Laurens, L. M. L., Shields, R. J., Lovitt, R. W.<br />

& Flynn, K. J. 2010. Placing micro<strong>alga</strong>e on the biofuels<br />

priority list: a review of the technological challenges. J.<br />

R. Soc. Interface 7:703-726.<br />

Grossman, A. R., Croft, M., Gladyshev, V. N., Merchant, S. S.,<br />

Posewitz, M. C., Prochnik, S. & Spalding, M. H. 2007.<br />

Novel metabolism in Chlamydomon<strong>as</strong> through the lens<br />

of genomics. Curr. Opin. Plant Biol. 10:190-198.<br />

Grossman, A. R., Harris, E. E., Hauser, C., Lefebvre, P. A., Mar-<br />

tinez, D., Rokhsar, D., Shrager, J., Silflow, C. D., Stern, D.,<br />

Vallon, O. & Zhang, Z. 2003. Chlamydomon<strong>as</strong> reinhardtii<br />

at the crossroads of genomics. Eukaryot. Cell 2:1137-<br />

1150.<br />

Hallmann, A. 2007. Algal transgenics and biotechnology.<br />

Transgenic Plant J. 1:81-98.<br />

Hampel, D., Mosandl, A. & Wüst, M. 2005. Biosynthesis of<br />

mono- and sesquiterpenes in carrot roots and leaves<br />

(Daucus carota L.): metabolic cross talk of cytosolic<br />

mevalonate and pl<strong>as</strong>tidial methylerythritol phosphate<br />

pathways. Phytochemistry 66:305-311.<br />

Harris, E. H. 2001. Chlamydomon<strong>as</strong> <strong>as</strong> a <strong>model</strong> organism.<br />

Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:363-406.<br />

Hejazi, M. A., Barzegari, A., Gharajeh, N. H. & Hejazi, M. S.<br />

2010. Introduction of a novel 18S rDNA gene arrange-<br />

ment along with distinct ITS region in the saline water<br />

micro<strong>alga</strong> <strong>Dunaliella</strong>. Saline Systems 6:4.<br />

Hejazi, M. A. & Wijffels, R. H. 2004. Milking of micro<strong>alga</strong>e.<br />

Trends Biotechnol. 22:189-194.<br />

Hema, R., Senthil-Kumar, M., Shivakumar, S., Chan-<br />

dr<strong>as</strong>ekhara Reddy, P. & Udayakumar, M. 2007. Chlam-<br />

ydomon<strong>as</strong> reinhardtii, a <strong>model</strong> system for functional<br />

validation of abiotic stress responsive genes. Planta<br />

226:655-670.<br />

Hemmerlin, A., Hoeffler, J. -F., Meyer, O., Tritsch, D., Kagan,<br />

I. A., Grosdemange-Billiard, C., Rohmer, M. & Bach, T. J.<br />

2003. Cross-talk between the cytosolic mevalonate and<br />

the pl<strong>as</strong>tidial methylerythritol phosphate pathways in<br />

tobacco bright yellow-2 cells. J. Biol. Chem. 278:26666-<br />

26676.<br />

Hicks, G. R., Hironaka, C. M., Dauvillee, D., Funke, R. P.,<br />

D’Hulst, C., Waffenschmidt, S. & Ball, S. G. 2001. When<br />

simpler is better. Unicellular <strong>green</strong> <strong>alga</strong>e for discovering<br />

new genes and functions in carbohydrate metabolism.<br />

Plant Physiol. 127:1334-1338.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

Hirschberg, J., Cohen, M., Harker, M., Lotan, T., Mann, V. &<br />

Pecker, I. 1997. Molecular genetics of the carotenoid<br />

biosynthesis pathway in plants and <strong>alga</strong>e. Pure Appl.<br />

Chem. 69:2151-2158.<br />

Hsieh, M. -H., Chang, C. -Y., Hsu, S. -J. & Chen, J. -J. 2008.<br />

Chloropl<strong>as</strong>t localization of methylerythritol 4-phos-<br />

phate pathway enzymes and regulation of mitochondri-<br />

al genes in ispD and ispE albino mutants in Arabidopsis.<br />

Plant Mol. Biol. 66:663-673.<br />

Huesemann, M. H. & Benemann, J. R. 2009. Biofuels from<br />

micro<strong>alga</strong>e: review of products, processes and potential,<br />

with special focus on <strong>Dunaliella</strong> sp. In Ben-Amotz, A.,<br />

Polle, J. E. W. & Subba Rao, D. V. (Eds.) <strong>The</strong> Alga Dunaliel-<br />

la: Biodiversity, Physiology, Genomics and Biotechnology.<br />

Science Publishers, Einfield, NH, pp. 445-474.<br />

Hunter, W. N. 2007. <strong>The</strong> non-mevalonate pathway of isopren-<br />

oid precursor biosynthesis. J. Biol. Chem. 282:21573-<br />

21577.<br />

Jain, M., Shrager, J., Harris, E. H., Halbrook, R., Grossman, A.<br />

R., Hauser, C. & Vallon, O. 2007. EST <strong>as</strong>sembly supported<br />

by a draft genome sequence: an analysis of the Chlam-<br />

ydomon<strong>as</strong> reinhardtii transcriptome. Nucleic Acids Res.<br />

35:2074-2083.<br />

Jia, Y., Xue, L., Li, J. & Liu, H. 2010. Isolation and proteomic<br />

analysis of the halotolerant <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> fla-<br />

gella using shotgun strategy. Mol. Biol. Rep. 37:711-716.<br />

Jiang, G. -Z., Lü, Y. -M., Niu, X. -L. & Xue, L. -X. 2005. <strong>The</strong> ac-<br />

tin gene promoter-driven bar <strong>as</strong> a dominant selectable<br />

marker for nuclear transformation of <strong>Dunaliella</strong> <strong>salina</strong>.<br />

Acta Genet. Sin. 32:424-433.<br />

Jiménez, C. & Pick, U. 1993. Differential reactivity of<br />

β-carotene isomers from <strong>Dunaliella</strong> bardawil toward<br />

oxygen radicals. Plant Physiol. 101:385-390.<br />

Jiménez, C. & Pick, U. 1994. Differential stereoisomer com-<br />

position of β, β-carotene in thylakoids and in pigment<br />

globules in <strong>Dunaliella</strong>. J. Plant Physiol. 143:257-263.<br />

Jin, E. & Polle, J. E. W. 2009. Carotenoid biosynthesis in Du-<br />

naliella (Chlorophyta). In Ben-Amotz, A., Polle, J. E. W. &<br />

Subba Rao, D. V. (Eds.) <strong>The</strong> Alga <strong>Dunaliella</strong>: Biodiversity,<br />

Physiology, Genomics and Biotechnology. Science Pub-<br />

lishers, Einfield, NH, pp. 147-172.<br />

Jin, E., Polle, J. E. W. & Melis, A. 2001. Involvement of zeaxan-<br />

thin and of the Cbr protein in the repair of photosystem<br />

II from photoinhibition in the <strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> sa-<br />

lina. Biochim. Biophys. Acta 1506:244-259.<br />

K<strong>as</strong>ahara, H., Hanada, A., Kuzuyama, T., Takagi, M., Kamiya,<br />

Y. & Yamaguchi, S. 2002. Contribution of the mevalonate<br />

and methylerythritol phosphate pathways to the bio-<br />

synthesis of gibberellins in Arabidopsis. J. Biol. Chem.<br />

277:45188-45194.<br />

15 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

Katz, A., Jiménez, C. & Pick, U. 1995. Isolation and charac-<br />

terization of a protein <strong>as</strong>sociated with carotene globules<br />

in the <strong>alga</strong> <strong>Dunaliella</strong> bardawil. Plant Physiol. 108:1657-<br />

1664.<br />

Katz, A., Waridel, P., Shevchenko, A. & Pick, U. 2007. Salt-in-<br />

duced changes in the pl<strong>as</strong>ma membrane proteome of<br />

the halotolerant <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> <strong>as</strong> revealed by<br />

blue native gel electrophoresis and nano-LC-MS/MS<br />

analysis. Mol. Cell. Proteomics 6:1459-1472.<br />

Kore-eda, S., Cushman, M. A., Akselrod, I., Bufford, D., Fred-<br />

rickson, M., Clark, E. & Cushman, J. C. 2004. Transcript<br />

profiling of salinity stress responses by large-scale ex-<br />

pressed sequence tag analysis in Mesembryanthemum<br />

crystallinum. Gene 341:83-92.<br />

Lamers, P. P., Janssen, M., De Vos, R. C. H., Bino, R. J. & Wi-<br />

jffels, R. H. 2008. Exploring and exploiting carotenoid<br />

accumulation in <strong>Dunaliella</strong> <strong>salina</strong> for cell-factory ap-<br />

plications. Trends Biotechnol. 26:631-638.<br />

Lamers, P. P., van de Laak, C. C. W., Ka<strong>as</strong>enbrood, P. S., Lorier,<br />

J., Janssen, M., De Vos, R. C. H., Bino, R. J. & Wijffels, R.<br />

H. 2010. Carotenoid and fatty acid metabolism in light-<br />

stressed <strong>Dunaliella</strong> <strong>salina</strong>. Biotechnol. Bioeng. 106:638-<br />

648.<br />

Laule, O., Fürholz, A., Chang, H. -S., Zhu, T., Wang, X., Heif-<br />

etz, P. B., Gruissem, W. & Lange, M. 2003. Crosstalk be-<br />

tween cytosolic and pl<strong>as</strong>tidial pathways of isoprenoid<br />

biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad.<br />

Sci. U. S. A. 100:6866-6871.<br />

Lefebvre, P. A. & Silflow, C. D. 1999. Chlamydomon<strong>as</strong>: the cell<br />

and its genomes. Genetics 151:9-14.<br />

León, R., Galván, A. & Fernández, E. 2007. Transgenic micro-<br />

<strong>alga</strong>e <strong>as</strong> <strong>green</strong> cell factories: advances in experimental<br />

medicine and biology. Springer-Verlag, New York, 125<br />

pp.<br />

León-Bañares, R., González-Ballester, D., Galván, A. &<br />

Fernández, E. 2004. Transgenic micro<strong>alga</strong>e <strong>as</strong> <strong>green</strong> cell-<br />

factories. Trends Biotechnol. 22:45-52.<br />

Lers, A., Biener, Y. & Zamir, A. 1990. Photoinduction of m<strong>as</strong>-<br />

sive β-carotene accumulation by the <strong>alga</strong> <strong>Dunaliella</strong><br />

bardawil: kinetics and dependence on gene activation.<br />

Plant Physiol. 93:389-395.<br />

Li, F., Vallabhaneni, R. & Wurtzel, E. T. 2008a. PSY3, a new<br />

member of the phytoene synth<strong>as</strong>e gene family con-<br />

served in the Poaceae and regulator of abiotic stress-<br />

induced root carotenogenesis. Plant Physiol. 146:1333-<br />

1345.<br />

Li, F., Vallabhaneni, R., Yu, J., Rocheford, T. & Wurtzel, E. T.<br />

2008b. <strong>The</strong> maize phytoene synth<strong>as</strong>e gene family: over-<br />

lapping roles for carotenogenesis in endosperm, pho-<br />

tomorphogenesis, and thermal stress tolerance. Plant<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 16<br />

Physiol. 147:1334-1346.<br />

Li, J., Xue, L., Yana, H., Wang, L., Liu, L., Lu, Y. & Xie, H. 2007.<br />

<strong>The</strong> nitrate reduct<strong>as</strong>e gene-switch: a system for regulat-<br />

ed expression in transformed cells of <strong>Dunaliella</strong> <strong>salina</strong>.<br />

Gene 403:132-142.<br />

Liang, C., Zhao, F., Wei, W., Wen, Z. & Qin, S. 2006. Carotenoid<br />

biosynthesis in cyanobacteria: structural and evolution-<br />

ary scenarios b<strong>as</strong>ed on comparative genomics. Int. J.<br />

Biol. Sci. 2:197-207.<br />

Lichtenthaler, H. K. 1999. <strong>The</strong> 1-deoxy-D-xylulose-5-phos-<br />

phate pathway of isoprenoid biosynthesis in plants.<br />

Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:47-65.<br />

Lichtenthaler, H. K. 2000. Non-mevalonate isoprenoid bio-<br />

synthesis: enzymes, genes and inhibitors. Biochem. Soc.<br />

Trans. 28:785-789.<br />

Lichtenthaler, H. K. 2010. <strong>The</strong> non-mevalonate DOXP/MEP<br />

(deoxyxylulose 5-phosphate/mehtylerythritol 4-phos-<br />

phate) pathway of chloropl<strong>as</strong>t isoprenoid and pigment<br />

biosynthesis. In Rebeiz, C. A., Benning, C., Bohnert, H.<br />

J., Daniell, H., Hoober, J. K., Lichtenthaler, H. K., Portis,<br />

A. R. & Tripathy, B. C. (Eds.) Advances in Photosynthesis<br />

and Respiration, Vol 31. <strong>The</strong> Chloropl<strong>as</strong>ts: B<strong>as</strong>ics and Ap-<br />

plications. Springer, Dordrecht, pp. 95-118.<br />

Lichtenthaler, H. K., Schwender, J., Disch, A. & Rohmer, M.<br />

1997. Biosynthesis of isoprenoids in higher plant chlo-<br />

ropl<strong>as</strong>ts proceeds via a mevalonate independent path-<br />

way. FEBS Lett. 400:271-274.<br />

Liska, A. J., Shevchenko, A., Pick, U. & Katz, A. 2004. Enhanced<br />

photosynthesis and redox energy production contribute<br />

to salinity tolerance in <strong>Dunaliella</strong> <strong>as</strong> revealed by homol-<br />

ogy-b<strong>as</strong>ed proteomics. Plant Physiol. 136:2806-2817.<br />

Loeblich, L. A. 1982. Photosynthesis and pigments influ-<br />

enced by light intensity and salinity in the halophile<br />

<strong>Dunaliella</strong> <strong>salina</strong> (Chlorophyta). J. Mar. Biol. Assoc. U.<br />

K. 62:493-508.<br />

Lohr, M., Im, C. -S., & Grossman, A. R. 2005. Genome-b<strong>as</strong>ed<br />

examination of chlorophyll and carotenoid biosyn-<br />

thesis in Chlamydomon<strong>as</strong> reinhardtii. Plant Physiol.<br />

138:490-515.<br />

Lois, L. M., Rodríguez-Concepción, M., Gallego, F., Campos,<br />

N. & Boronat, A. 2000. Carotenoid biosynthesis during<br />

tomato fruit development: regulatory role of 1-deoxy-D-<br />

xylulose 5-phosphate synth<strong>as</strong>e. Plant J. 22:503-513.<br />

Lü, Y. -M., Jiang, G. -Z., Niu, X. -L., Hou, G. -Q., Zhang, G. -X.<br />

& Xue, L. -X. 2004. Cloning and functional analyses of<br />

promoters of two carbonic anhydr<strong>as</strong>e genes from Du-<br />

naliella <strong>salina</strong>. Acta Genet. Sin. 31:1157-1166.<br />

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader,<br />

J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y.<br />

-J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X.


V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk,<br />

G. P., Jando, S. C., Alenquer, M. L. I., Jarvie, T. P., Jirage,<br />

K. B., Kim, J. -B., Knight, J. R., Lanza, J. R., Leamon, J.<br />

H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H.,<br />

Makhijani, V. B., McDade, K. E., McKenna, M. P., My-<br />

ers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B.<br />

P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F.,<br />

Simpson, J. W., Sriniv<strong>as</strong>an, M., Tartaro, K. R., Tom<strong>as</strong>z, A.,<br />

Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner,<br />

M. P., Yu, P., Begley, R. F. & Rothberg, J. M. 2005. Genome<br />

sequencing in microfabricated high-density picolitre<br />

reactors. Nature 437:376-380.<br />

Mayfield, S. P., Manuell, A. L., Chen, S., Wu, J., Tran, M., Siefk-<br />

er, D., Muto, M. & Marin-Navarro, J. 2007. Chlamydomo-<br />

n<strong>as</strong> reinhardtii chloropl<strong>as</strong>ts <strong>as</strong> protein factories. Curr.<br />

Opin. Biotechnol. 18:126-133.<br />

Mendoza, H., Martel, A., Jiménez del Río, M. & García Reina,<br />

G. 1999. Oleic acid is the main fatty acid related with<br />

carotenogenesis in <strong>Dunaliella</strong> <strong>salina</strong>. J. Appl. Phycol.<br />

11:15-19.<br />

Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Kar-<br />

powicz, S. J., Witman, G. B., Terry, A., Salamov, A., Fritz-<br />

Laylin, L. K., Maréchal-Drouard, L., Marshall, W. F., Qu,<br />

L. -H., Nelson, D. R., Sanderfoot, A. A., Spalding, M. H.,<br />

Kapitonov, V. V., Ren, Q., Ferris, P., Lindquist, E., Shapiro,<br />

H., Luc<strong>as</strong>, S. M., Grimwood, J., Schmutz, J., Cardol, P.,<br />

Cerutti, H., Chanfreau, G., Chen, C. -L., Cognat, V., Croft,<br />

M. T., Dent, R., Dutcher, S., Fernández, E., Fukuzawa,<br />

H., González-Ballester, D., González-Halphen, D., Hall-<br />

mann, A., Hanikenne, M., Hippler, M., Inwood, W., Jab-<br />

bari, K., Kalanon, M., Kur<strong>as</strong>, R., Lefebvre, P. A., Lemaire,<br />

S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets,<br />

L., Mittag, M., Mittelmeier, T., Moroney, J. V., Moseley,<br />

J., Napoli, C., Nedelcu, A. M., Niyogi, K., Novoselov, S.<br />

V., Paulsen, I. T., Pazour, G., Purton, S., Ral, J. -P., Riaño-<br />

Pachón, D. M., Riekhof, W., Rymarquis, L., Schroda, M.,<br />

Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S.<br />

L., Allmer, J., Balk, J., Bisova, K., Chen, C. -J., Eli<strong>as</strong>, M.,<br />

Gendler, K., Hauser, C., Lamb, M. R., Ledford, H., Long,<br />

J. C., Minagawa, J., Page, M. D., Pan, J., Pootakham, W.,<br />

Roje, S., Rose, A., Stahlberg, E., Terauchi, A. M., Yang, P.,<br />

Ball, S., Bowler, C., Dieckmann, C. L., Gladyshev, V. N.,<br />

Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber,<br />

B., Rajamani, S., Sayre, R. T., Brokstein, P., Dubchak, I.,<br />

Goodstein, D., Hornick, L., Huang, Y. W., Jhaveri, J., Luo,<br />

Y., Martínez, D., Ngau, W. C. A., Otillar, B., Poliakov, A.,<br />

Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev,<br />

I. V., Rokhsar, D. S. & Grossman, A. R. 2007. <strong>The</strong> Chlam-<br />

ydomon<strong>as</strong> genome reveals the evolution of key animal<br />

and plant functions. Science 318:245-250.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

Metzger, P. & Largeau, C. 2005. Botryococcus braunii: a rich<br />

source for hydrocarbons and related ether lipids. Appl.<br />

Microbiol. Biotechnol. 66:486-496.<br />

Miao, X. & Wu, Q. 2006. Biodiesel production from heterotro-<br />

phic micro<strong>alga</strong>l oil. Bioresour. Technol. 97:841-846.<br />

Mishra, A., Mandoli, A. & Jha, B. 2008. Physiological charac-<br />

terization and stress-induced metabolic responses of<br />

<strong>Dunaliella</strong> <strong>salina</strong> isolated from salt pan. J. Ind. Micro-<br />

biol. Biotechnol. 35:1093-1101.<br />

Montsant, A., Allen, A. E., Coesel, S., De Martino, A., Falcia-<br />

tore, A., Mangogna, M., Siaut, M., Heijde, M., Jabbari, K.,<br />

Maheswari, U., Rayko, E., Vardi, A., Apt, K. E., Berges, J.<br />

A., Chiovitti, A., Davis, A. K., Thamatrakoln, K., Hadi, M.<br />

Z., Lane, T. W., Lippmeier, J. C., Martinez, D., Parker, M.<br />

S., Pazour, G. J., Saito, M. A., Rokhsar, D. S., Armbrust,<br />

E. V. & Bowler, C. 2007. Identification and comparative<br />

genomic analysis of signaling and regulatory compo-<br />

nents in the diatom Thal<strong>as</strong>siosira pseudonana. J. Phy-<br />

col. 43:585-604.<br />

Murthy, K. N. C., Vanitha, A., Rajesha, J., Swamy, M. M., Sow-<br />

mya, P. R. & Ravishankar, G. A. 2005. In vivo antioxidant<br />

activity of carotenoids from <strong>Dunaliella</strong> <strong>salina</strong>: a <strong>green</strong><br />

micro<strong>alga</strong>. Life Sci. 76:1381-1390.<br />

Olmos, J., Ochoa, L., Paniagua-Michel, J. & Contrer<strong>as</strong>, R. 2009.<br />

DNA fingerprinting differentiation between β-carotene<br />

hyperproducer strains of <strong>Dunaliella</strong> from around the<br />

world. Saline Systems 5:5.<br />

Olmos, J., Paniagua, J. & Contrer<strong>as</strong>, R. 2000. Molecular iden-<br />

tification of <strong>Dunaliella</strong> sp. utilizing the 18S rDNA gene.<br />

Lett. Appl. Microbiol. 30:80-84.<br />

Olmos-Soto, J., Paniagua-Michel, J., Contrer<strong>as</strong>, R. & Trujillo,<br />

L. 2002. Molecular identification of β-carotene hyper-<br />

producing strains of <strong>Dunaliella</strong> from saline environ-<br />

ments using species-specific oligonucleotides. Biotech-<br />

nol. Lett. 24:365-369.<br />

Oren, A. 2005. A hundred years of <strong>Dunaliella</strong> research: 1905-<br />

2005. Saline Systems 1:2.<br />

Oren, A. 2010. Industrial and environmental applications of<br />

halophilic microorganisms. Environ. Technol. 31:825-<br />

834.<br />

Park, S., Polle, J. E. W., Melis, A., Lee, T. K. & Jin, E. 2006. Up-<br />

regulation of photoprotection and PSII-repair gene ex-<br />

pression by irradiance in the <strong>unicellular</strong> <strong>green</strong> <strong>alga</strong> Du-<br />

naliella <strong>salina</strong>. Mar. Biotechnol. 8:120-128.<br />

Pick, U. 1998. <strong>Dunaliella</strong>: a <strong>model</strong> extremophilic <strong>alga</strong>. Israel<br />

J. Plant Sci. 46:131-139.<br />

Polle, J. E. W. & Song, Q. 2009. Development of genetics and<br />

molecular tool kits for species of the <strong>unicellular</strong> <strong>green</strong><br />

<strong>alga</strong> <strong>Dunaliella</strong> (Chlorophyta). In Ben-Amotz, A., Polle,<br />

J. E. W. & Subba Rao, D. V. (Eds.) <strong>The</strong> Alga <strong>Dunaliella</strong>: Bio-<br />

17 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

diversity, Physiology, Genomics and Biotechnology. Sci-<br />

ence Publishers, Einfield, NH, pp. 403-422.<br />

Polle, J. E. W., Tran, D., & Ben-Amotz, A. 2009. History, dis-<br />

tribution, and habitats of <strong>alga</strong>e of the genus <strong>Dunaliella</strong><br />

<strong>Teod</strong>oresco (Chlorophyceae). In Ben-Amotz, A., Polle, J.<br />

E. W. & Subba Rao, D. V. (Eds.) <strong>The</strong> Alga <strong>Dunaliella</strong>: Bio-<br />

diversity, Physiology, Genomics and Biotechnology. Sci-<br />

ence Publishers, Einfield, NH, pp. 1-14.<br />

Potvin, G. & Zhang, Z. 2010. Strategies for high-level recom-<br />

binant protein expression in transgenic micro<strong>alga</strong>e: a<br />

review. Biotechnol. Adv. 28:910-918.<br />

Pulz, O. 2001. Photobioreactors: production systems for<br />

phototrophic microorganisms. Appl. Microbiol. Bio-<br />

technol. 57:287-293.<br />

Pulz, O. & Gross, W. 2004. Valuable products from biotech-<br />

nology of micro<strong>alga</strong>e. Appl. Microbiol. Biotechnol.<br />

65:635-648.<br />

Rabbani, S., Beyer, P., Lintig, J. v., Hugueney, P. & Kleinig, H.<br />

1998. Induced β-carotene synthesis driven by triacyl-<br />

glycerol deposition in the <strong>unicellular</strong> <strong>alga</strong> <strong>Dunaliella</strong><br />

bardawil. Plant Physiol. 116:1239-1248.<br />

Radakovits, R., Jinkerson, R. E., Darzins, A. & Posewitz, M. C.<br />

2010. Genetic engineering of <strong>alga</strong>e for enhanced biofuel<br />

production. Eukaryot. Cell 9:486-501.<br />

Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S. & Ren-<br />

g<strong>as</strong>amy, R. 2008. A perspective on the biotechnological<br />

potential of micro<strong>alga</strong>e. Crit. Rev. Microbiol. 34:77-88.<br />

Raja, R., Hemaiswarya, S. & Reng<strong>as</strong>amy, R. 2007a. Exploita-<br />

tion of <strong>Dunaliella</strong> for β-carotene production. Appl. Mi-<br />

crobiol. Biotechnol. 74:517-523.<br />

Raja, R., Iswarya, S. H., Bal<strong>as</strong>ubramanyam, D. & Reng<strong>as</strong>amy,<br />

R. 2007b. PCR-identification of <strong>Dunaliella</strong> <strong>salina</strong> (Vol-<br />

vocales, Chlorophyta) and its growth characteristics.<br />

Microbiol. Res. 162:168-176.<br />

Ramos, A., Coesel, S., Marques, A., Rodrigues, M., Baumgart-<br />

ner, A., Noronha, J., Rauter, A., Brenig, B. & Varela, J.<br />

2008. Isolation and characterization of a stress-induc-<br />

ible <strong>Dunaliella</strong> <strong>salina</strong> Lcy-β gene encoding a functional<br />

lycopene β-cycl<strong>as</strong>e. Appl. Microbiol. Biotechnol. 79:819-<br />

828.<br />

Ramos, A. A., Marques, A. R., Rodrigues, M., Henriques, N.,<br />

Baumgartner, A., C<strong>as</strong>tilho, R., Brenig, B. & Varela, J. C.<br />

2009. Molecular and functional characterization of a<br />

cDNA encoding 4-hydroxy-3-methylbut-2-enyl diphos-<br />

phate reduct<strong>as</strong>e from <strong>Dunaliella</strong> <strong>salina</strong>. J. Plant Physiol.<br />

166:968-977.<br />

Rochaix, J. -D. 2002. Chlamydomon<strong>as</strong>, a <strong>model</strong> system for<br />

studying the <strong>as</strong>sembly and dynamics of photosynthetic<br />

complexes. FEBS Lett. 529:34-38.<br />

Rochaix, J. -D. 2004. Genetics of the biogenesis and dynam-<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 18<br />

ics of the photosynthetic machinery in eukaryotes.<br />

Plant Cell 16:1650-1660.<br />

Rodríguez-Concepción, M. 2006. Early steps in isoprenoid<br />

biosynthesis: multilevel regulation of the supply of com-<br />

mon precursors in plant cells. Phytochem. Rev. 5:1-15.<br />

Rodríguez-Concepción, M. 2010. Supply of precursors for<br />

carotenoid biosynthesis in plants. Arch. Biochem. Bio-<br />

phys. 504:118-122.<br />

Rodríguez-Concepción, M., Querol, J., Lois, L. M., Impe-<br />

rial, S. & Boronat, A. 2003. Bioinformatic and molecular<br />

analysis of hydroxymethylbutenyl diphosphate syn-<br />

th<strong>as</strong>e (GCPE) gene expression during carotenoid accu-<br />

mulation in ripening tomato fruit. Planta 217:476-482.<br />

Rohdich, F., Kis, K., Bacher, A. & Eisenreich, W. 2001. <strong>The</strong> non-<br />

mevalonate pathway of isoprenoids: genes, enzymes<br />

and intermediates. Curr. Opin. Chem. Biol. 5:535-540.<br />

Rohdich, F., Zepeck, F., Adam, P., Hecht, S., Kaiser, J., Laupitz,<br />

R., Grāwert, T., Amslinger, S., Eisenreich, W., Bacher, A. &<br />

Arigoni, D. 2003. <strong>The</strong> deoxyxylulose phosphate pathway<br />

of isoprenoid biosynthesis: studies on the mechanisms<br />

of the reactions catalyzed by IspG and IspH protein.<br />

Proc. Natl. Acad. Sci. U. S. A. 100:1586-1591.<br />

Rohmer, M. 1999. <strong>The</strong> discovery of a mevalonate-indepen-<br />

dent pathway for isoprenoid biosynthesis in bacteria,<br />

<strong>alga</strong>e and higher plants. Nat. Prod. Rep. 16:565-574.<br />

Rohmer, M. 2003. Mevalonate-independent methylerythri-<br />

tol phosphate pathway for isoprenoid biosynthesis: elu-<br />

cidation and distribution. Pure Appl. Chem. 75:375-387.<br />

Rohmer, M., Knani, M., Simonin, P., Sutter, B. & Sahm, H.<br />

1993. Isoprenoid biosynthesis in bacteria: a novel path-<br />

way for the early steps leading to isopentenyl diphos-<br />

phate. Biochem. J. 295:517-524.<br />

Römer, S. & Fr<strong>as</strong>er, P. D. 2005. Recent advances in carotenoid<br />

biosynthesis, regulation and manipulation. Planta<br />

221:305-308.<br />

Rosenberg, J. N., Oyler, G. A., Wilkinson, L. & Betenbaugh,<br />

M. J. 2008. A <strong>green</strong> light for engineered <strong>alga</strong>e: redirect-<br />

ing metabolism to fuel a biotechnology revolution. Curr.<br />

Opin. Biotechnol. 19:430-436.<br />

Sacchettini, J. C. & Poulter, C. D. 1997. Creating isoprenoid<br />

diversity. Science 277:1788-1789.<br />

Sadka, A., Lers, A., Zamir, A. & Avron, M. 1989. A critical ex-<br />

amination of the role of de novo protein synthesis in the<br />

osmotic adaptation of the halotolerant <strong>alga</strong> <strong>Dunaliella</strong>.<br />

FEBS Lett. 244:93-98.<br />

Sánchez-Estudillo, L., Freile-Pelegrin, Y., Rivera-Madrid, R.,<br />

Robledo, D. & Narváez-Zapata, J. A. 2006. Regulation<br />

of two photosynthetic pigment-related genes during<br />

stress-induced pigment formation in the <strong>green</strong> <strong>alga</strong>,<br />

<strong>Dunaliella</strong> <strong>salina</strong>. Biotechnol. Lett. 28:787-791.


Sandmann, G. 1994. Carotenoid biosynthesis in microor-<br />

ganisms and plants. Eur. J. Biochem. 223:7-24.<br />

Sandmann, G. 2001. Carotenoid biosynthesis and biotech-<br />

nological application. Arch. Biochem. Biophys. 385:4-<br />

12.<br />

Schwender, J., Gemünden, C. & Lichtenthaler, H. K. 2001.<br />

Chlorophyta exclusively use the 1-deoxyxylulose<br />

5-phosphate/2-C-methylerythritol 4-phosphate path-<br />

way for the biosynthesis of isoprenoids. Planta 212:416-<br />

423.<br />

Schwender, J., Seemann, M., Lichtenthaler, H. K. & Rohmer,<br />

M. 1996. Biosynthesis of isoprenoids (carotenoids, ste-<br />

rols, prenyl side-chains of chlorophylls and pl<strong>as</strong>toqui-<br />

none) via a novel pyruvate/glyceraldehyde 3-phosphate<br />

non-mevalonate pathway in the <strong>green</strong> <strong>alga</strong> Scenedes-<br />

mus obliquus. Biochem. J. 316:73-80.<br />

Shaish, A., Avron, M., Pick, U. & Ben-Amotz, A. 1993. Are ac-<br />

tive oxygen species involved in induction of β-carotene<br />

in <strong>Dunaliella</strong> bardawil? Planta 190:363-368.<br />

Shaish, A., Ben-Amotz, A. & Avron, M. 1992. Biosynthesis of<br />

β-carotene in <strong>Dunaliella</strong>. Methods Enzymol. 213:439-<br />

444.<br />

Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. 1998.<br />

A look back at the U. S. Department of Energy’s Aquatic<br />

Species Program: biodiesel from <strong>alga</strong>e. NREL/TP-580-<br />

24190. National Renewable Energy Laboratory, Golden,<br />

CO, 328 pp.<br />

Shrager, J., Hauser, C., Chang, C. -W., Harris, E. H., Davies,<br />

J., McDermott, J., Tamse, R., Zhang, Z. & Grossman, A.<br />

R. 2003. Chlamydomon<strong>as</strong> reinhardtii genome project: a<br />

guide to the generation and use of the cDNA informa-<br />

tion. Plant Physiol. 131:401-408.<br />

Siaut, M., Heijde, M., Mangogna, M., Montsant, A., Coesel,<br />

S., Allen, A., Manfredonia, A., Falciatore, A. & Bowler, C.<br />

2007. Molecular toolbox for studying diatom biology in<br />

Phaeodactylum tricornutum. Gene 406:23-35.<br />

Smith, D. R., Lee, R. W., Cushman, J. C., Magnuson, J. K., Tran,<br />

D. & Polle, J. E. W. 2010. <strong>The</strong> <strong>Dunaliella</strong> <strong>salina</strong> organelle<br />

genomes: large sequences, inflated with intronic and in-<br />

tergenic DNA. BMC Plant Biol. 10:83.<br />

Spolaore, P., Joannis-C<strong>as</strong>san, C., Duran, E. & Isambert, A.<br />

2006. Commercial applications of micro<strong>alga</strong>e. J. Biosci.<br />

Bioeng. 101:87-96.<br />

Stahl, W. & Sies, H. 2005. Bioactivity and protective effects of<br />

natural carotenoids. Biochim. Biophys. Acta 1740:101-<br />

107.<br />

Steinbrenner, J. & Sandmann, G. 2006. Transformation of the<br />

<strong>green</strong> <strong>alga</strong> Haematococcus pluvialis with a phytoene de-<br />

satur<strong>as</strong>e for accelerated <strong>as</strong>taxanthin biosynthesis. Appl.<br />

Environ. Microbiol. 72:7477-7484.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

Sun, G., Zhang, X., Sui, Z. & Mao, Y. 2008. Inhibition of pds<br />

gene expression via the RNA interference approach<br />

in <strong>Dunaliella</strong> <strong>salina</strong> (Chlorophyta). Mar. Biotechnol.<br />

10:219-226.<br />

Sun, T. -H., Liu, C. -Q., Hui, Y. -Y., Wu, W. -K., Zhou, Z. -G. &<br />

Lu, S. 2010. Coordinated regulation of gene expression<br />

for carotenoid metabolism in Chlamydomon<strong>as</strong> rein-<br />

hardtii. J. Integr. Plant Biol. 52:868-878.<br />

Sun, Y., Gao, X., Li, Q., Zhang, Q. & Xu, Z. 2006. Functional<br />

complementation of a nitrate reduct<strong>as</strong>e defective mu-<br />

tant of a <strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> viridis by introducing the<br />

nitrate reduct<strong>as</strong>e gene. Gene 377:140-149.<br />

Sun, Y., Yang, Z., Gao, X., Li, Q., Zhang, Q. & Xu, Z. 2005. Ex-<br />

pression of foreign genes in <strong>Dunaliella</strong> by electropora-<br />

tion. Mol. Biotechnol. 30:185-192.<br />

Taji, T., Komatsu, K., Katori, K., Kaw<strong>as</strong>aki, Y., Sakata, Y., Tana-<br />

ka, S., Kobay<strong>as</strong>hi, M., Toyoda, A., Seki, M. & Shinozaki,<br />

K. 2010. Comparative genomic analysis of 1047 com-<br />

pletely sequenced cDNAs from an Arabidopsis-related<br />

<strong>model</strong> halophyte, <strong>The</strong>llungiella halophila. BMC Plant<br />

Biol. 10:261.<br />

Tan, C., Qin, S., Zhang, Q., Jiang, P. & Zhao, F. 2005. Establish-<br />

ment of a micro-particle bombardment transformation<br />

system for <strong>Dunaliella</strong> <strong>salina</strong>. J. Microbiol. 43:361-365.<br />

<strong>Teod</strong>oresco, E. C. 1905. Organisation et developpement du<br />

<strong>Dunaliella</strong>, nouveau genre de Volvocacee-Polyblephari-<br />

dee. Beih. z. Bot. Centralbl. 18:215-232.<br />

Thompson, G. A. Jr. 1996. Lipids and membrane function in<br />

<strong>green</strong> <strong>alga</strong>e. Biochim. Biophys. Acta 1302:17-45.<br />

Tornabene, T. G., Holzer, G. & Peterson, S. L. 1980. Lipid pro-<br />

file of the halophilic <strong>alga</strong>, <strong>Dunaliella</strong> <strong>salina</strong>. Biochim.<br />

Biophys. Res. Commun. 96:1349-1356.<br />

Tran, D., Haven, J., Qiu, W. -G. & Polle, J. E. W. 2009. An up-<br />

date on carotenoid biosynthesis in <strong>alga</strong>e: phylogenetic<br />

evidence for the existence of two cl<strong>as</strong>ses of phytoene<br />

synth<strong>as</strong>e. Planta 229:723-729.<br />

Tseng, C. K. 2001. Algal biotechnology industries and re-<br />

search activities in China. J. Appl. Phycol. 13:375-380.<br />

Urano, K., Kurihara, Y., Seki, M. & Shinozaki, K. 2010. ‘Omics’<br />

analyses of regulatory networks in plant abiotic stress<br />

responses. Curr. Opin. Plant Biol. 13:132-138.<br />

Vidhyavathi, R., Venkatachalam, L., Sarada, R. & Ravishan-<br />

kar, G. A. 2008. Regulation of carotenoid biosynthetic<br />

genes expression and carotenoid accumulation in the<br />

<strong>green</strong> <strong>alga</strong> Haematococcus pluvialis under nutrient<br />

stress conditions. J. Exp. Bot. 59:1409-1418.<br />

Vorst, P., Baard, R. L., Mur, L. R., Korthals, H. J. & van den<br />

Ende, H. 1994. Effect of growth arrest on carotene accu-<br />

mulation and photosynthesis in <strong>Dunaliella</strong>. Microbiol-<br />

ogy 140:1411-1417.<br />

19 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

Walker, T. L., Becker, D. K., Dale, J. L. & Collet, C. 2005a. To-<br />

wards the development of a nuclear transformation<br />

system for <strong>Dunaliella</strong> tertiolecta. J. Appl. Phycol. 17:363-<br />

368.<br />

Walker, T. L., Collet, C. & Purton, S. 2005b. Algal transgenics<br />

in the genomic era. J. Phycol. 41:1077-1093.<br />

Walker, T. L., Purton, S., Becker, D. K. & Collet, C. 2005c. Mi-<br />

cro<strong>alga</strong>e <strong>as</strong> bioreactors. Plant Cell Rep. 24:629-641.<br />

Wang, B., Zarka, A., Trebst, A. & Boussiba, S. 2003. Astaxan-<br />

thin accumulation in Haematococcus pluvialis (Chlo-<br />

rophyceae) <strong>as</strong> an active photoprotective process under<br />

high irradiance. J. Phycol. 39:1116-1124.<br />

Weldy, C. S. & Huesemann, M. 2007. Lipid production by Du-<br />

naliella <strong>salina</strong> in batch culture: effects of nitrogen limi-<br />

tation and light intensity. U. S. Department of Energy<br />

Journal of Undergraduate Research 7:115-122.<br />

Wijffels, R. H. 2008. Potential of sponges and micro<strong>alga</strong>e for<br />

marine biotechnology. Trends Biotechnol. 26:26-31.<br />

Wille, A., Zimmermann, P., Vranová, E., Fürholz, A., Laule,<br />

O., Bleuler, S., Hennig, L., Prelić, A., von Rohr, P., Thiele,<br />

L., Zitzler, E., Gruissem, W. & Bühlmann, P. 2004. Sparse<br />

graphical Gaussian <strong>model</strong>ing of the isoprenoid gene<br />

network in Arabidopsis thaliana. Genome Biol. 5:R92.<br />

Xiong, L., Schumaker, K. S. & Zhu, J. -K. 2002. Cell Signal-<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 20<br />

ing during cold, drought, and salt stress. Plant Cell 14<br />

Suppl:S165-S183.<br />

Xue, L., Pan, W., Jiang, G. & Wang, J. 2003. Transgenic Du-<br />

naliella <strong>salina</strong> <strong>as</strong> a bioreactor. USA Patent Application<br />

2003/0066107.<br />

Yan, Y., Zhu, Y. -H., Jiang, J. -G. & Song, D. -L. 2005. Cloning<br />

and sequence analysis of the phytoene synth<strong>as</strong>e gene<br />

from a <strong>unicellular</strong> chlorophyte, <strong>Dunaliella</strong> <strong>salina</strong>. J. Ag-<br />

ric. Food Chem. 53:1466-1469.<br />

Ye, Z. -W. & Jiang, J. -G. 2010. Analysis of an essential caro-<br />

tenogenic enzyme: ζ-carotene desatur<strong>as</strong>e from uni-<br />

cellular <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong>. J. Agric. Food Chem.<br />

58:11477-11482.<br />

Ye, Z. -W., Jiang, J. -G. & Wu, G. -H. 2008. Biosynthesis and<br />

regulation of carotenoids in <strong>Dunaliella</strong>: progresses and<br />

prospects. Biotechnol. Adv. 26:352-360.<br />

Zhu, Y. -H., Jiang, J. -G., Yan, Y. & Chen, X. -W. 2005. Isola-<br />

tion and characterization of phytoene desatur<strong>as</strong>e cDNA<br />

involved in the β-carotene biosynthetic pathway in Du-<br />

naliella <strong>salina</strong>. J. Agric. Food Chem. 53:5593-5597.<br />

Zulak, K.G. & Bohlmann, J. 2010. Terpenoid biosynthesis and<br />

specialized v<strong>as</strong>cular cells of conifer defense. J. Integr.<br />

Plant Biol. 52:86-97.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!