07.06.2013 Views

De_Angelis_Alessandro.pdf

De_Angelis_Alessandro.pdf

De_Angelis_Alessandro.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

•<br />

•<br />

•<br />

<br />

<br />

<br />

1


Cluster of very bright stars, Omega Centauri,<br />

as observed from the space:<br />

60,000 K<br />

<br />

<br />

<br />

<br />

2


• <br />

– <br />

<br />

• <br />

– <br />

– <br />

• <br />

– μ<br />

μ<br />

<br />

<br />

• <br />


Accretion Disk 3- 10 r s Black Hole Diameter = 2r s ~ 4 AU<br />

~ parsecs<br />

4


hadronic cascades<br />

p + (>>TeV)<br />

matter<br />

0<br />

- +<br />

(TeV)<br />

In the VHE region,<br />

dN/dE ~ E - (: spectral index)<br />

To distinguish between had/leptonic origin<br />

study Spectral Energy Distribution (SED):<br />

(differential flux) . E 2<br />

e.m. processes<br />

e - (TeV)<br />

E 2 dN/dE<br />

B<br />

(eV)<br />

Synchrotron<br />

(eV-keV)<br />

(TeV)<br />

Inverse Compton<br />

0 decay<br />

energy E<br />

VHE<br />

5


• <br />

– <br />

– <br />

<br />

– <br />

– <br />

<br />

• <br />

– <br />

• <br />

– <br />

<br />

– <br />


edshift z<br />

30 GeV<br />

100 GeV<br />

> 1<br />

region of opacity<br />

= 1 (GRH)<br />

<strong>De</strong> <strong>Angelis</strong>, Galanti, Roncadelli 2011<br />

with Franceschini EBL modeling<br />

ray energy (TeV)<br />

() ~<br />

<br />

<br />

<br />

VHE bck e + e -<br />

<br />

<br />

<br />

<br />

7


• <br />

–<br />

• <br />

<br />

• <br />

<br />

<br />

<br />

e + e -<br />

9


c ~ 1º<br />

e Threshold @<br />

sl: 21 MeV<br />

Maximum of a 1 TeV<br />

shower<br />

~ 8 Km asl<br />

~ 200 photons/m 2 in<br />

the visible<br />

Angular spread ~ 0.5º<br />

Incoming<br />

-ray<br />

~ 120 m<br />

~ 1 o<br />

The Cherenkov technique<br />

~ 10 km<br />

Image intensity<br />

Shower energy<br />

Image orientation<br />

Shower direction<br />

Image shape<br />

Primary particle 10


c ~ 1º<br />

e Threshold @<br />

sl: 21 MeV<br />

Maximum of a 1 TeV<br />

shower<br />

~ 8 Km asl<br />

~ 200 photons/m 2 in<br />

the visible<br />

Angular spread ~ 0.5º<br />

Incoming<br />

-ray<br />

~ 120 m<br />

~ 1 o<br />

The Cherenkov technique<br />

~ 10 km<br />

Image intensity<br />

Shower energy<br />

Image orientation<br />

Shower direction<br />

Image shape<br />

Primary particle 10


VERITAS: 4 telescopes (~12m) in Arizona operational since 2006<br />

VERITAS: 4 telescopes (~12m) in Arizona operational since 2006<br />

<br />

<br />

Major upgrade expected ~end 2011:<br />

Very large (28m) central telescope in construction<br />

13


• <br />

<br />

<br />

<br />

<br />

<br />

<br />

– <br />

<br />

• <br />

<br />

<br />

• <br />

<br />

14


•<br />

<br />

<br />

•<br />

<br />

<br />

<br />

<br />


• <br />

<br />

<br />

<br />

<br />

• <br />

<br />

<br />

<br />

Fermi,<br />

Egret<br />

Magic,<br />

Veritas<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

16


W51: gamma rays come from a<br />

molecular cloud separated from the<br />

pulsar<br />

[Albert et al. ApJ RX J1713.7-3946<br />

664L 87A 2007


x<br />

<br />

x<br />

x<br />

() ~<br />

Heitler 1960<br />

<br />

VHEbck e + e- <br />

<br />

<br />

<br />

<br />

e -<br />

Mean free path<br />

e +<br />

Measurement of spectral features permits 18 to<br />

constrain EBL models


<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

19


edshift z<br />

~ E -2<br />

<br />

<br />

<br />

<strong>De</strong> <strong>Angelis</strong>, Galanti, Roncadelli 2011<br />

with Franceschini EBL modeling<br />

ray energy (TeV)<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

<br />

<br />

<br />

<br />

Selection bias?<br />

New physics ?<br />

<br />

20


– <br />

<br />

– <br />

<br />

• <br />

– <br />

<br />

<br />

• <br />

• <br />

<br />

<br />

• <br />

• <br />

<br />

21


• <br />

<br />

– <br />

– <br />

• <br />

– <br />

– <br />

<br />

– <br />

– <br />

– <br />


<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

23


E P = hc G 1.2 1019 <br />

H 2 = m 2 + p 2 H 2 = m 2 + p 2 1+ E <br />

<br />

<br />

p 1+ m2 <br />

<br />

2 p<br />

H p>><br />

v = H<br />

p<br />

2 + p<br />

2E P<br />

m2 p<br />

1 + 2<br />

2p E P<br />

<br />

+…<br />

<br />

E P<br />

v 1+ E<br />

E P<br />

<br />

+…<br />

<br />

t TE <br />

E P


<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

25


astro-ph/0702008<br />

arXiv:0708.2889<br />

H.E.S.S.<br />

arXiV:0706.0797<br />

<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

MAGIC, Mkn 501<br />

Doubling time ~ 2 min<br />

HESS PKS 2155<br />

z = 0.116<br />

July 2006<br />

Peak flux ~15 x Crab<br />

~50 x average<br />

Doubling times<br />

1-3 min<br />

R BH /c ~ 1...2 . 10 4 s<br />

26


(t) obs 3<br />

2<br />

<br />

<br />

<br />

<br />

E<br />

E s2<br />

<br />

<br />

<br />

2<br />

1<br />

H0 <br />

0<br />

dz'<br />

(1 + z') 2<br />

M (1 + z') 3 + <br />

E s2 > 6 10 10 GeV (~10 -9 M P) (HESS, MAGIC)<br />

z<br />

<br />

<br />

27


= ()<br />

<br />

() ~ <br />

<br />

<br />

r<br />

Begelman/<br />

Navarro<br />

<br />

<br />

<br />

28


• <br />

<br />

–, <br />

–<br />

<br />

• <br />

<br />

• <br />

<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

<br />

<br />

<br />

los<br />

2<br />

dl<br />

<br />

from particle physics<br />

Look to the closest point with M


All-sky map of<br />

simulated gamma ray<br />

signal from DM<br />

annihilation <br />

(Pieri et al 2006)<br />

Satellites<br />

Galactic Center<br />

Good statistics but source<br />

confusion/diffuse background<br />

Low background and good source id,<br />

but low statistics, astrophysical background<br />

Milky Way Halo<br />

Large statistics but diffuse<br />

background<br />

Spectral Features<br />

Lines, endpoint Bremsstrahlung,…<br />

No astrophysical uncertainties, good<br />

source Id, but low sensitivity<br />

because of expected small BR<br />

Extra-galactic<br />

Large statistics, but astrophysics, galactic<br />

diffuse backgrounds<br />

Plus data-driven searches<br />

30


• <br />

• <br />

• <br />

• <br />

<br />

<br />

<br />

<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

31


<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

MAGIC ICRC<br />

2011<br />

all e + e -<br />

Preliminary<br />

e + /e + +e -<br />

<br />

<br />

probe e+/e- ratio at 300-700 GeV<br />

<br />

<br />

?<br />

MAGIC


• LHC may find candidates but cannot prove that<br />

they are the observed Dark Matter, nor localize it<br />

• Direct searches (nuclear recoil) may recognize<br />

local halo WIMPs but cannot prove the nature and<br />

composition of Dark Matter in the sky<br />

• LHC reach limited to some 200-600 GeV; IACT<br />

sensitivity starts at some ~200 GeV (should<br />

improve)<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

33


• <br />

• <br />

• <br />

– <br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

• extend E range beyond 50 TeV<br />

• better angular resolution<br />

• larger FOV<br />

• monitor many objects simult.<br />

• extend E range under 50 GeV<br />

•10x sources<br />

• better flux sensitivity<br />

• lower threshold<br />

34


2 arrays: north+south<br />

all-sky coverage<br />

low energy section<br />

E thresh ~ 10 GeV<br />

4 23 m telescopes<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

core array<br />

100 GeV-10 TeV<br />

~ 23 12 m telescopes<br />

high energy section<br />

~35 tel.<br />

on 10 km 2 area<br />

35


E*F(>E) [ TeV/cm2s] Agile, Fermi, Argo, Hawk: 1 year<br />

Magic, Hess, Veritas, CTA: 50h<br />

Agile<br />

Fermi<br />

Far universe<br />

Pulsars<br />

Fundamental physics<br />

Magic-II<br />

CTA<br />

Argo<br />

Hawc<br />

<br />

Crab<br />

10% Crab<br />

Hess/Veritas<br />

Cosmic rays<br />

at the knee<br />

1% Crab<br />

36


• <br />

– <br />

<br />

– <br />

– <br />

• <br />

• <br />

• <br />

<br />

– <br />

– <br />

• <br />

– <br />

– <br />

– <br />

– <br />

– <br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong>


• <br />

<br />

– <br />

<br />

• <br />

– <br />

• <br />

• <br />

• <br />

• <br />

– <br />

• <br />

– <br />

• <br />

– <br />

– <br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

38


39


• <br />

<br />

– <br />

<br />

• <br />

<br />

• <br />

<br />

<br />


Marvel 1961<br />

• <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

• <br />

<br />

<br />

<br />

<br />

<br />

41


• <br />

<br />

– <br />

• <br />

dN dE dN p<br />

dE p<br />

D x = E <br />

<br />

<br />

E<br />

<br />

p <br />

• <br />

<br />

– <br />

<br />

<br />

• <br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

42


Colours: 0.2 - 6 keV (Chandra)<br />

Contours: 8 GHz radio (VLA)<br />

HST-1<br />

Core<br />

•<br />

Knot D<br />

Knot A<br />

•<br />

•<br />

•<br />

•<br />

<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

VHE<br />

X-ray<br />

Radio<br />

nucleus<br />

nucleus<br />

Peak flux<br />

jet<br />

Chandra<br />

46


• <br />

<br />

<br />

• <br />

<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

47


• <br />

<br />

<br />

• <br />

<br />

<br />

dN <br />

dE<br />

1<br />

2<br />

dN <br />

dE<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

Very accurate input for<br />

neutrino detectors<br />

48


Over 350 publications in high-impact journals:<br />

• <br />

• <br />

• <br />

• <br />

• <br />

• <br />

• <br />

• <br />

• <br />

• <br />

• <br />

Results from HESS, MAGIC and VERITAS<br />

49


• <br />

<br />

<br />

– <br />

• <br />

– <br />

– <br />

– <br />

<br />

50


<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

51


<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

Chandra<br />

<br />

<br />

<br />

<br />

<br />

<br />

Hubble<br />

52


World-wide Collaboration <br />

25 countries<br />

132 institutes<br />

>800 scientists<br />

10 fold sensitivity of current instruments<br />

10 fold energy range<br />

improved angular resolution<br />

two sites (North / South)<br />

operated as observatory<br />

The future in<br />

VHE gamma ray<br />

astronomy:


<strong>De</strong>sign study phase concluded in Fall 2010<br />

<strong>De</strong>sign Concepts for the Cherenkov Telescope Array<br />

(arXiv:1008.3703)<br />

FP7-supported Preparatory Phase: Fall 2010 – Fall 2013<br />

Technical design, sites, construction and operation cost<br />

Legal, governance and finance schemes<br />

Small + medium-sized telescope prototypes<br />

Aim for<br />

start of deployment in early 2014<br />

first data in 2016/17<br />

base arrays complete in late 2018<br />

expanded mid-energy array driven by US<br />

total cost below 200 M


Carbon-fibre<br />

structure<br />

<br />

<br />

27.8 m focal length<br />

4.5 o field of view<br />

0.1 o pixels<br />

400 m 2 dish area<br />

1.5 m sandwich<br />

mirror facets<br />

On (GRB) target<br />

in < 20 sec.


100 m 2 dish area<br />

1.2 m mirror<br />

facets<br />

16 m focal length<br />

7-8 o field of view<br />

0.18 o pixels


Multi-Anode PMT camera option<br />

Under study:<br />

dual-mirror optics with compact photo sensor arrays<br />

single-mirror optics<br />

PMT-based and silicon-based sensors<br />

Not yet conclusive which solution is most cost-effective<br />

One of four<br />

options for<br />

telescope<br />

structure


Wavelenght range<br />

300 – 600 nm<br />

Mirror PSF<br />

O(1’) on axis, worse off axis<br />

Pixel size<br />

0.1 o – 0.2 o<br />

Source localization<br />

5” – 10” for source centroid<br />

Image rate<br />

kHz<br />

Exposure time<br />

single image: O(10 ns)<br />

typical source: 10 – 50 h


+30<br />

-30<br />

<br />

Warning: map not quite accurate<br />

proposals for sites due 6/2011 (S) and 12/2011 (N)<br />

evaluation and downselection to few sites<br />

final selection


Hardware key elements:<br />

- O(100) Telescope structures/drives: very resistant, reliable,<br />

accurate, light-weight (LST)<br />

- O(10.000) m 2 Mirrors: good quality, stable in extreme<br />

conditions, cheap, light-weight<br />

- O(2-3 x10.000) camera channels:<br />

* Photosensors: PMT (and eventually SiPMs)


* Readout Electronics: fast, low dissipation, compact,<br />

reliable, cheap<br />

- Timing/Synchronization: comparable to LHC machine<br />

requirements<br />

- Trigger/Data: comparable to LHC experiments


• <br />

<br />

• <br />

<br />

Fermi<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

HAWC<br />

MILAGRO<br />

HESS<br />

CTA<br />

factor 3<br />

improvement<br />

63


HESS map of the Gal.plane, total exp ~500 hours<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

64


65<br />

<br />

2008 2009 2010 2011 2012 2013 2014 2015<br />

<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong>


• <br />

<br />

• <br />

<br />

<br />

• <br />

– <br />

• <br />

(<br />

– <br />

<br />

• <br />

66


• <br />

<br />

<br />

<br />

• <br />

<br />

<br />

– <br />

<br />

<br />

• <br />

– <br />

<br />

<br />

67


La = ga E <br />

( B )a<br />

<br />

*<br />

<br />

<br />

• <br />

• <br />

• 10 1 <br />

<br />

a<br />

*<br />

P a NP 1<br />

P1 g 2 2 2<br />

a<br />

BT s<br />

4<br />

a a<br />

…<br />

*<br />

*<br />

2 10 3 BT s ga <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2


DARMA<br />

3C279<br />

Note: if conversion “a la<br />

Simet-Hooper-Serpico”,<br />

=> the effect could be directional<br />

• <br />

<br />

<br />

<br />

– <br />

• <br />

69<br />


<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

HESS, PKS 2155<br />

70


1st order<br />

(t) obs E <br />

H0 <br />

E s1<br />

v c 1+ E <br />

<br />

<br />

MAGIC Mkn 501, PLB08<br />

(with J. Ellis et al.)<br />

E s1 ~ 0.04 M P ( ~ -25)<br />

E s1 > 0.02 M P<br />

HESS PKS 2155, PRL08<br />

E s1 > 0.06 M P<br />

GRB X-ray limits:<br />

E s1 > 0.11 M P (Fermi, but…)<br />

1<br />

<br />

z<br />

0<br />

dz'<br />

M P<br />

2 E<br />

+ 2 2<br />

MP (1 + z')<br />

<br />

+ ... <br />

<br />

M (1 + z') 3 + <br />

< 5 MeV<br />

> 1 GeV<br />

0.15-0.25 TeV<br />

0.25-0.6 TeV<br />

0.6-1.2 TeV<br />

1.2-10 TeV<br />

4 min lag<br />

71


• <br />

• <br />

<br />

• <br />

<br />

<br />

<br />

<br />

<br />

(t) obs E <br />

H0 <br />

E s1<br />

1<br />

<br />

z<br />

0<br />

dz'<br />

(1+ z')<br />

M (1+ z') 3 + <br />

~ -12<br />

K(z)~z<br />

t<br />

E<br />

<br />

<br />

<br />

M P<br />

<br />

H0 <br />

1 K(z)<br />

72


• z = 0.903 ± 0.003<br />

• prompt spectrum detected,<br />

significant deviation from Band<br />

function at high E<br />

• High energy photon detected:<br />

31 GeV at T o + 0.83 s<br />

[expected from Ellis & al. (12 ± 5) s]<br />

• tight constraint on Lorentz<br />

Invariance Violation:<br />

– E s1 = M QG > several M Planck<br />

• z = 1.8 ± 0.4<br />

• one of the brightest GRBs<br />

observed by LAT<br />

• after prompt phase, power-low<br />

emission persists in the LAT data as<br />

late as 1 ks post trigger:<br />

highest E photon so far detected:<br />

33.4 GeV, 82 s after GBM trigger<br />

[expected from Ellis & al. (26 ± 13) s]<br />

• much weaker constraints on LIV E s<br />

=> Fermi rules, and 1 st order violations appear unlikely<br />

73


• <br />

– <br />

<br />

– <br />

– <br />

<br />

<br />

74


Better bkgd reduction<br />

Better angular resolution<br />

Better energy resolution


v = H<br />

p<br />

1 m2<br />

2p 2 + p<br />

E P<br />

c<br />

<br />

2 p 2 = E 2 1 E<br />

<br />

<br />

<br />

E s<br />

+ O E <br />

<br />

<br />

E s<br />

= 1<br />

2<br />

<br />

<br />

<br />

= -1<br />

76


1. If c e < c => decay -> e + e - kinematically allowed for gamma with<br />

energies above<br />

E max = m e sqrt(2/abs())<br />

- E > 100 TeV => abs() < 5 x 10 -17<br />

2. If >0 => c e > c => electrons become superluminal for energies larger than<br />

E max /sqrt(2) => Vacuum Cherenkov Radiation.<br />

- E e > 2 TeV from cosmic electron radiation => abs() < 2 x 10 -14<br />

- Modification of -> e+e- threshold. Using Mkn 501 and Mkn 421<br />

spectra observations up to E g > 20 TeV<br />

=> abs() < 1.3 x 10 -15<br />

From MAGIC Mkn501 (taken as a LIV signal): || ~ 2 10 -15


GRH depends on the –ray path and there the Hubble constant and<br />

the cosmological densities enter => if EBL density and intrinsic<br />

spectra are known, the GRH might be used as a distance estimator<br />

GRH behaves differently than other observables already used for cosmology measurements.<br />

EBL constraints are paving<br />

the way for the use of AGN<br />

to fit M and …<br />

PKS2005-489 PKS 2155-304 H2356-309<br />

1ES1959+650 H1426+428<br />

1ES1218+304<br />

Mkn 180<br />

1ES 2344+514<br />

1ES1101-232<br />

Mkn 421<br />

Mkn 501<br />

Blanch & Martinez 2004<br />

Simulated<br />

measurements<br />

79


( E,z)=<br />

dz <br />

dl<br />

z<br />

<br />

dz <br />

0<br />

2<br />

<br />

0<br />

dx x<br />

2<br />

d n( , z )2xE 1+ z<br />

Using the foreseen precision on the<br />

GRH (distance at which (E,z)=1)<br />

measurements of 20 extrapolated<br />

AGN at z>0.2, cosmological<br />

parameters can be fitted.<br />

=> The 2 =2.3 2-parameter<br />

contour might improve by a<br />

factor 2 the 2004’ Supernovae<br />

combined result !<br />

<br />

<br />

2m 2 c 2<br />

( ) 2<br />

Ex 1+z<br />

<br />

( ) 2<br />

[ ]<br />

80


detection of -rays from GC by Cangaroo,<br />

Whipple, HESS, MAGIC<br />

hard E -2.2 spectrum<br />

fit to -annihilation continuum<br />

spectrum leads to: M > 14 TeV<br />

other interpretations possible (probable)<br />

Galactic Center: very crowded sky region, strong exp.<br />

evidence against cuspy profile<br />

Whipple<br />

(95%)<br />

CANGAROO (80%)<br />

H.E.S.S.<br />

Chandra GC survey<br />

NASA/UMass/D.Wang et al.<br />

from W.Hofmann, Heidelberg 2004<br />

no real indication of DM…<br />

The spectrum is featurless!!!<br />

82


• <br />

<br />

<br />

• <br />

<br />

<br />

• <br />

<br />

• <br />

<br />

BOOTES<br />

FORNAX<br />

83


84


<strong>Alessandro</strong> <strong>De</strong> <strong>Angelis</strong><br />

85

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!