07.06.2013 Views

EBDW Overcoming Challenges in Extendiing Optical ... - Sematech

EBDW Overcoming Challenges in Extendiing Optical ... - Sematech

EBDW Overcoming Challenges in Extendiing Optical ... - Sematech

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>EBDW</strong> <strong>EBDW</strong> <strong>Overcom<strong>in</strong>g</strong> <strong>Overcom<strong>in</strong>g</strong> <strong>Challenges</strong><br />

<strong>Challenges</strong><br />

<strong>in</strong> <strong>in</strong> Extend<strong>in</strong>g<br />

Extend<strong>in</strong>g<br />

<strong>Optical</strong> <strong>Optical</strong> 193 193 nm nm Lithography<br />

Lithography<br />

Dave Liu, Ted Prescop<br />

Oct 22, 2010 – Kobe, Japan


1. Industry Trend<br />

2010 Int’l Symposium on Litho Extensions<br />

Outl<strong>in</strong>e<br />

Logic layout for DFM: One Direction, Fixed Pitch<br />

<strong>EBDW</strong> as Complementary Lithography<br />

2. Top <strong>EBDW</strong> Challenge: Throughput<br />

3. Top Lithography Challenge: Overlay Accuracy<br />

4. <strong>EBDW</strong> Can Overcome <strong>Challenges</strong> and Extend <strong>Optical</strong><br />

2


Industry Trend # 1: 1D Layout, 1 Pitch<br />

• Intel, TSMC and others adopt<strong>in</strong>g highly regular Logic layouts<br />

“… allowed logic poly layout to be one pitch and one direction …”<br />

– Intel Technology Journal (Vol. 12, Issue 2, 2008)<br />

“… draws a lithography-optimized lithography optimized pattern with uniform density<br />

through unidirectional poly on a fixed pitch…” pitch…”<br />

– TSMC press release (June 2010)<br />

2010 Int’l Symposium on Litho Extensions<br />

Courtesy Tela Innovations<br />

3


Industry Trend # 2: Complementary Litho<br />

• Borodovsky (Intel) shows 193 nm immersion (193i) requires<br />

5 masks for 11 nm Node (40nm pitch) HVM <strong>in</strong> 2015:<br />

1 to create the l<strong>in</strong>es and 4 to break cont<strong>in</strong>uity (“cut” l<strong>in</strong>es)<br />

Mask Count:<br />

1<br />

2<br />

3<br />

4<br />

5<br />

– Borodovsky, Y. (Maskless Litho and Multibeam Mask Workshop 2010) 2010<br />

2010 Int’l Symposium on Litho Extensions<br />

4


Yan Borodovsky’s Borodovsky s Realistic Solution<br />

• Borodovsky (Intel) shows 193 nm immersion (193i) requires<br />

5 masks for 11 nm Node (40nm pitch) HVM <strong>in</strong> 2015:<br />

1 to create the l<strong>in</strong>es and 4 to break cont<strong>in</strong>uity (“cut” l<strong>in</strong>es)<br />

• <strong>EBDW</strong> can cut l<strong>in</strong>es and elim<strong>in</strong>ate all 4 “cut cut” masks<br />

Mask Count:<br />

1<br />

2010 Int’l Symposium on Litho Extensions<br />

This is Complementary Lithography<br />

5


Top challenges for “Maskless Maskless Lithography” Lithography <strong>in</strong> 2009 ITRS*:<br />

1. 1. WWafer<br />

Wafer Throughput<br />

Beam Current<br />

Pattern<strong>in</strong>g Speed<br />

* http://www.itrs.net/L<strong>in</strong>ks/2009ITRS/2009Chapters_2009Tables/2009_Litho.pdf<br />

2010 Int’l Symposium on Litho Extensions<br />

Top <strong>EBDW</strong> <strong>Challenges</strong><br />

2. Cost Control and Return on Investment (ROI)<br />

3. Die-to Die to-database database <strong>in</strong>spection of wafer patterns<br />

4. Pattern placement - <strong>in</strong>clud<strong>in</strong>g stitch<strong>in</strong>g<br />

5. Controll<strong>in</strong>g variability between beams <strong>in</strong> multibeam<br />

systems<br />

6


Throughput Challenge # 1: Beam Current<br />

• E-beam beam current identified as a throughput challenge<br />

What e-beam e beam current is required to achieve 5 wph?<br />

Beam current required for 5 wph<br />

(Resist Dose) * (5% Writ<strong>in</strong>g Area) / (Write Time) = Beam Current<br />

20 µC/cm 2 * 5% * π * (15 cm) 2 / 720 seconds = 1.0 µA<br />

• How does Multibeam deliver 1.0 µA? A?<br />

2010 Int’l Symposium on Litho Extensions<br />

7


High-Current High Current E-Beam E Beam Column<br />

• Each column has TFE (1) e-source source<br />

TFE brightness: 200 µA/ A/sr sr<br />

25 nA at wafer (5 keV beam, 22 nm FWHM (2) )<br />

25 nA at wafer (50 keV beam, 10 nm FWHM)<br />

• All-electrostatic All electrostatic (no magnetic field)<br />

Faster deflection<br />

Smaller diameter (22 mm outer diameter)<br />

88 columns <strong>in</strong> a 30x30 mm array<br />

120 columns <strong>in</strong> a 25x25 mm array<br />

(1) TFE = Thermal Field Emitter<br />

(2) FWHM = Full Width Half Max beam spot size<br />

2010 Int’l Symposium on Litho Extensions<br />

8


• Identical columns are arrayed <strong>in</strong> a row<br />

E-Beam Beam Column<br />

2010 Int’l Symposium on Litho Extensions<br />

Column Array<br />

9


2010 Int’l Symposium on Litho Extensions<br />

Column Array<br />

• Identical columns are arrayed <strong>in</strong> a row<br />

• Row becomes 2-D 2 D array<br />

• Throughput rema<strong>in</strong>s the same for all wafer sizes<br />

10


Vector-Scan Vector Scan Pattern<strong>in</strong>g Strategy<br />

• Column array is stationary<br />

• Stage speed is very slow<br />

• Stage travel is very small<br />

L<strong>in</strong>ear Stage<br />

Sub-fields<br />

Frame size ~50 µm<br />

2010 Int’l Symposium on Litho Extensions<br />

11<br />

Beam from each<br />

column writes<br />

~30mm x ~30mm<br />

Vector scanned<br />

shaped beams


Beam Current is Achievable<br />

• To achieve 5 wph …<br />

We only pattern critical layers with low pattern density (~5%)<br />

We use multiple columns <strong>in</strong> parallel to pattern each wafer<br />

Total beam current required for 5 wph = 1.0 µA<br />

Beam current required per column = 10 nA<br />

• For Complementary Lithography, Multibeam’s<br />

Multibeam s<br />

column has more than enough current<br />

2010 Int’l Symposium on Litho Extensions<br />

12


Throughput Challenge # 2: Pattern<strong>in</strong>g Speed<br />

• Pattern<strong>in</strong>g speed identified as a throughput challenge<br />

High pattern<strong>in</strong>g speed required at high resolution<br />

What pattern<strong>in</strong>g speed is required to achieve 5 wph?<br />

(Assume: 300 mm wafer, 5% pattern density, 100 columns, 20nm features) features<br />

• 5 wph requires: (88*10 9 ) / (720 s) = 120 MHz<br />

… or 8 ns per shot<br />

2010 Int’l Symposium on Litho Extensions<br />

Number of shapes written per column<br />

= π * (15 cm) 2 * 5% / 100 / (20nm) 2<br />

= 88 Giga-shots / column<br />

… How do we achieve this high pattern<strong>in</strong>g speed?<br />

13


Pattern<strong>in</strong>g Speed is Achievable<br />

• We optimize vector-scan vector scan strategy<br />

Need only one beam shape for l<strong>in</strong>e-cutt<strong>in</strong>g l<strong>in</strong>e cutt<strong>in</strong>g<br />

M<strong>in</strong>imize electronics overhead for blank<strong>in</strong>g and settl<strong>in</strong>g<br />

~80% of pattern is “neighbor<strong>in</strong>g<br />

cuts” with almost no overhead<br />

~20% of pattern is “random<br />

cuts” with higher overhead<br />

2010 Int’l Symposium on Litho Extensions<br />

14<br />

Portion of a logic block<br />

Courtesy of Tela Innovations<br />

Optimiz<strong>in</strong>g scan path further <strong>in</strong>creases throughput


Wafer Throughput - Achievable<br />

Pattern critical layers only<br />

Vector-scan shaped beam<br />

Array multiple columns<br />

Cluster multiple modules<br />

S<strong>in</strong>gle Module<br />

(Multibeam Inside) Cluster Configuration<br />

2010 Int’l Symposium on Litho Extensions<br />

Low-density patterns: ~5%<br />

Optimize scan path, reduce data storage and<br />

reduce data transfer rate to each column<br />

Scalable architecture to boost throughput<br />

Cluster<strong>in</strong>g to meet HVM requirements<br />

top view<br />

15<br />

Cluster Configuration


Other Lithography <strong>Challenges</strong><br />

Common Challenge for All Lithography:<br />

1. Overlay Accuracy<br />

2. Critical Dimension Uniformity (CDU)<br />

3. L<strong>in</strong>e Edge Roughness (LER)<br />

2010 Int’l Symposium on Litho Extensions<br />

16


Overlay Accuracy Challenge<br />

• Problem: Beam Drift<br />

High energy beams: less drift, but thermal control is challeng<strong>in</strong>g<br />

Low energy beams: sensitive to drift due to charg<strong>in</strong>g<br />

For example, if 1 mV static charge causes 1 nm beam drift at 50 keV,<br />

the same charge will cause 10 nm drift at 5 keV<br />

• Solutions to Overcome Beam Drift<br />

Conductive layer <strong>in</strong> resist: prevent wafer charg<strong>in</strong>g<br />

Off-axis Off axis optical alignment: register column-array column array position<br />

BSE (1) detector (SEM mode): register position of every beam<br />

(1) BSE = back ackscattered cattered electron lectron<br />

2010 Int’l Symposium on Litho Extensions<br />

17


2010 Int’l Symposium on Litho Extensions<br />

Thermal Budget<br />

• Thermal budget identified as overlay challenge<br />

Energy deposited <strong>in</strong>to wafer =<br />

(Voltage) * (Resist Dose) * (5% Writ<strong>in</strong>g Area)<br />

5 keV * 20 µC/cm 2 * 5% * π * (15 cm) 2 = 3.5 Joules<br />

Expansion of wafer =<br />

(Energy) / (Wafer Heat Capacity) * (300mm Wafer Expansion)<br />

3.5 Joules / (87 Joules/ºC) * (690 nm/ºC/300mm) = 28 nm<br />

Exposure Energy<br />

5 keV, 20 µC/cm 2<br />

20 keV, 80 µC/cm 2<br />

Joules/wafer<br />

3.5<br />

56<br />

Net expansion (nm)<br />

over 300mm<br />

18<br />

28<br />

450<br />

Net expansion (nm),<br />

99% heat transfer<br />

0.28<br />

4.5


2010 Int’l Symposium on Litho Extensions<br />

Alignment Mark Contrast<br />

Image Contrast<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

260nm Au/Si<br />

350nm SiO 2 on 260nm Au/Si<br />

0<br />

0 5 10 15 20 25 30 35<br />

Beam Energy (keV)<br />

– Greeneich, Greeneich,<br />

J. (Contrast for gold marks on silicon under SiO 2 )<br />

19<br />

Image contrast depends on<br />

electron penetrat<strong>in</strong>g depth<br />

(called “Bethe Range”)


Beam Energy Trade-offs Trade offs for Overlay<br />

Thermal control<br />

Beam drift<br />

Alignment mark signal<br />

2010 Int’l Symposium on Litho Extensions<br />

High Energy<br />

20<br />

≥ 10 keV<br />

☺<br />

☺<br />

Best Overlay Results at ~10 keV<br />

Low Energy<br />

≤ 5 keV<br />


Overlay Accuracy is Achievable<br />

• One beam per column: column:<br />

for maximum<br />

control of each beam<br />

• BSE detector (SEM-mode)<br />

(SEM mode): to scan<br />

alignment marks for direct registration<br />

• Optimized beam energy: for best Overlay<br />

2010 Int’l Symposium on Litho Extensions<br />

21


Multibeam’s Multi-column Architecture<br />

Overcomes Key <strong>Challenges</strong> <strong>in</strong> <strong>EBDW</strong><br />

• Throughput<br />

Pattern low-density low density critical layers<br />

Vector-scanned Vector scanned shaped beams<br />

Scalable array of multiple columns<br />

Cluster multiple column-array column array modules for HVM<br />

• Overlay<br />

BSE detector for each beam<br />

Adjustable beam energy<br />

Complementary <strong>EBDW</strong> will extend 193nm <strong>Optical</strong> Litho<br />

2010 Int’l Symposium on Litho Extensions<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!