06.06.2013 Views

Neonicotinoid Pesticides and Bees - The Food and Environment ...

Neonicotinoid Pesticides and Bees - The Food and Environment ...

Neonicotinoid Pesticides and Bees - The Food and Environment ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Neonicotinoid</strong> <strong>Pesticides</strong> <strong>and</strong> <strong>Bees</strong><br />

Report to Syngenta Ltd<br />

January 2013<br />

Fera produced this report for a commercial client <strong>and</strong> publication of this work shall not be regarded<br />

as an endorsement of that client. To the maximum extent permitted by law, FERA excludes all<br />

representations, warranties, <strong>and</strong> conditions relating to the report <strong>and</strong> the use of it <strong>and</strong> to the<br />

accuracy of third party data <strong>and</strong> research contained in the report. FERA, its suppliers <strong>and</strong><br />

employees (whether or not involved in producing, maintaining or delivering the report) are not liable<br />

for any loss or damage arising from your use of, or reliance upon the information contained in the<br />

report (including without limitation <strong>and</strong> direct, indirect or consequential losses or loss of business or<br />

profits, whether or not such loss was foreseeable or Fera is advised of the possibility of such loss).<br />

You should be aware that use of the report <strong>and</strong> its content is at your own risk.<br />

Part of the data provided in this report has been collated as part of a publically tendered contract<br />

from <strong>The</strong> European <strong>Food</strong> St<strong>and</strong>ards Agency (EFSA). However, this report shall not be considered<br />

as a either a scientific output or endorsement adopted by EFSA, <strong>and</strong> EFSA fully reserves its rights,<br />

view <strong>and</strong> position as regards the issues addressed <strong>and</strong> the conclusions reached in this report.


This report refers to Thompson H M (2012) Interactions Between <strong>Pesticides</strong> <strong>and</strong> Other Factors in<br />

Effects on <strong>Bees</strong> which was produced under contract to EFSA <strong>and</strong> the full version of which can be<br />

found at<br />

http://www.efsa.europa.eu/en/supporting/pub/340e.htm.<br />

It should be noted that the report was not produced by EFSA. EFSA reserves its rights, view <strong>and</strong><br />

position as regards the issues addressed <strong>and</strong> conclusions reached in the document, without<br />

prejudice to the rights of the authors.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees<br />

Report to Syngenta Ltd


Contents<br />

1. Executive Summary ............................................................................................................. 3<br />

2 Introduction ............................................................................................................................. 12<br />

3 Methodology adopted .............................................................................................................. 13<br />

4 Results .................................................................................................................................... 14<br />

4.1 Mode of Action <strong>and</strong> Metabolism of <strong>Neonicotinoid</strong> Insecticides .............................. 14<br />

4.1.1 Mode of Action ..................................................................................................... 14<br />

4.1.2 Metabolism .......................................................................................................... 15<br />

4.1.3 Conclusions ......................................................................................................... 17<br />

4.2 Acute Toxicity of neonicotinoids ............................................................................ 18<br />

4.2.1 Honeybees ........................................................................................................... 18<br />

4.2.2 Other bee species ................................................................................................ 23<br />

4.3 Multiple exposure to pesticides (including substances used in bee medication) <strong>and</strong><br />

potential additive <strong>and</strong> cumulative effects. ........................................................................ 35<br />

4.3.1 Conclusions ......................................................................................................... 38<br />

4.4 Interactions between neonicotinoids <strong>and</strong> disease ................................................. 39<br />

4.5 Exposure of bees to pesticides ............................................................................. 41<br />

4.6 Sublethal <strong>and</strong> chronic effects of neonicotinoids..................................................... 44<br />

4.6.1 Honeybees ........................................................................................................... 44<br />

4.6.2 Bumblebees ......................................................................................................... 44<br />

5. References ....................................................................................................................... 101<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 2 of 133<br />

Report to Syngenta Ltd


1. Executive Summary<br />

Mode of action <strong>and</strong> metabolism of neonicotinoids in bees<br />

<strong>Neonicotinoid</strong>s have been shown to bind to the lig<strong>and</strong> gated ion channels at the α-bungarotoxin<br />

site on the nicotinic acetylcholine receptor (nAChR) <strong>and</strong> primarlily affect the post synaptic nAChRs.<br />

Once bound to the nAChR, neonicotinoids are not broken down by acetylcholinesterase like<br />

acetylcholine resulting in over-stimulation of the nervous system <strong>and</strong> a build up of acetylcholine in<br />

the synapse.<br />

<strong>The</strong> midgut in the honeybee is a major site of metabolism for ingested pesticides <strong>and</strong> interactions<br />

between chemicals at least in part may be influenced by effects on the detoxifying enzymes within<br />

the midgut, including microsomal oxidases, glutathione S transferases <strong>and</strong> esterases.<br />

Synergists of both Phase I <strong>and</strong> Phase II enzymes have been used to identify the metabolic<br />

pathways used in neonicotinoid detoxification <strong>and</strong> confirmed the role mixed function oxidases in<br />

the metabolism of many neonicotinoids. However P450s probably have a lesser role in the<br />

metabolism of imidacloprid which has an elimination half life of 5 hours. <strong>The</strong> main imidacloprid<br />

metabolites, urea derivative <strong>and</strong> 6-chloronicotinic acid, are found particularly in the mid gut <strong>and</strong><br />

rectum <strong>and</strong> 4/5-hydroxy-imidacloprid <strong>and</strong> olefin are found mostly in the head, thorax <strong>and</strong> abdomen<br />

all of which are nAChR rich tissues <strong>and</strong> levels peaked 4 hours after ingestion.. Both of the latter<br />

metabolites have insecticidal properties (the olefin has toxicity similar to imidacloprid <strong>and</strong> both bind<br />

to the nAChR) <strong>and</strong> may be responsible for delayed onset of death. <strong>The</strong>se profiles can be related<br />

to the two distinct phases to imidacloprid poisoning after acute exposure. <strong>The</strong>re is a rapid onset of<br />

neurotoxicity in the form of hyper responsiveness, hyperactivity, <strong>and</strong> trembling; mortality is delayed<br />

until at least four hours post exposure.<br />

Acetamiprid is readily metabolised by mixed function oxidases, to seven main metabolites (none of<br />

which are insecticidal). Although metabolism is fast, the half life of acetamiprid approx 25 minutes<br />

but only 40% of the total radioactivity eliminated after 72 hours suggesting that the metabolites<br />

persist within the honeybee. <strong>The</strong> lower toxicity of acetamiprid is thought to be due to this rapid<br />

metabolism to relatively non-toxic metabolites.<br />

Acute toxicity of neonicotinoids<br />

In general, LD50 values are lower for oral exposure than for contact exposure, except for<br />

acetamiprid which is the reverse; this may be explained by low hydrophobicity <strong>and</strong> poor<br />

penetration through the cuticle of these compounds. <strong>The</strong> chloronicotinyl insecticides<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 3 of 133<br />

Report to Syngenta Ltd


(thiamethoxam, clothianidin, imidacloprid) are more toxic than the cyano substituted (thiacloprid,<br />

acetamiprid)<br />

<strong>The</strong> oral toxicity of imidacloprid, which has been extensively reported within the literature; is highly<br />

variable with 48 hour oral LD50 values ranging from 3.7 to as high as 400 ng/bee.<br />

Data across pesticides generally suggests that the toxicity to Apis mellifera reflects that in other<br />

bee species when it is expressed on a weight basis <strong>and</strong> is supported by data for the chloronicotinyl<br />

insecticides but there are far less robust data for the cyano substituted neonicotinoids.<br />

Synergism between neonicotinoids <strong>and</strong> other pesticides (update EFSA review)<br />

<strong>Pesticides</strong> widely used both in the agricultural <strong>and</strong> urban environment (pest control <strong>and</strong> home <strong>and</strong><br />

garden uses) as well as by beekeepers to control pests, e.g. fluvalinate, amitraz, coumaphos to<br />

control varroa, are detectable in bees <strong>and</strong> hive matrices. Exposure of honeybees to any single<br />

pesticide application may occur over the short term or, unlike many organisms, over a longer<br />

period if residues are present in pollen <strong>and</strong>/or nectar stored within the colony or due to migration of<br />

lipophilic compounds into wax. <strong>The</strong>se more persistent residues are likely to be available to the<br />

colony over a period of time depending on the active ingredient <strong>and</strong> the frequency of use, e.g.<br />

multiple applications.<br />

<strong>Bees</strong> may be exposed to mixtures of products applied to plants on which they forage. Recent data<br />

indicates the extent of mixing of formulations that occur on arable, vegetable orchards <strong>and</strong> soft fruit<br />

crops in the UK <strong>and</strong> includes tank mixing of EBI fungicides with neonicotinoid insecticides. In<br />

addition to the application of products as tank mixes, the increasing use of seed treatments raises<br />

the possible scenario of nectar, pollen or guttation water containing active ingredients also being<br />

contaminated with sprays applied during the flowering period, e.g. oilseed rape.<br />

Although many reports of residues in pollen being returned to the hive by foragers are published<br />

the majority of these are based on individual pesticide residues rather than assessments of the<br />

total pesticide residue levels <strong>and</strong> the data are often not reported in sufficient detail to determine the<br />

residue levels of the individual components within multiple detections. Data reported for residues of<br />

chemicals applied by beekeepers in honeybee colonies have primarily been directed at single<br />

varroacides with some limited data after antibiotic dosing. Those that are available show that very<br />

high levels of varroacides may be present within colonies <strong>and</strong> are regularly detected in live bees<br />

<strong>The</strong> risk from most mixtures can be assessed using the additive approaches of concentration<br />

addition (or dose addition) <strong>and</strong> independent action (IA). In identifying the relevance of synergy in<br />

determining the toxicity of mixtures it is important to underst<strong>and</strong> the route of metabolism of<br />

pesticides in honeybees <strong>and</strong> the effects of age, season etc on this. <strong>The</strong> role of oxidative<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 4 of 133<br />

Report to Syngenta Ltd


metabolism in detoxification of the cyano-substituted neonicotinoids in bees is highlighted by the<br />

increase in toxicity of acetamiprid <strong>and</strong> thiacloprid in combination with the EBI fungicides. <strong>The</strong><br />

majority of synergistic effects observed in honeybees have been ascribed to inhibition rather than<br />

induction of P450s involved in pesticide metabolism.<br />

<strong>The</strong> level of exposure to the synergist also affects the scale of the synergy. <strong>The</strong> effect of exposure<br />

on the scale of synergy is important as many of the laboratory studies have been undertaken with<br />

high doses of synergists, e.g. 3-10 µg/bee <strong>and</strong> at more realistic exposure levels such high<br />

increases of toxicity have not been observed even under laboratory conditions. Contact <strong>and</strong> oral<br />

dosing with combinations of a range of EBI fungicides at more realistic exposure levels with<br />

neonicotinoid insecticides showed only low levels of synergy. <strong>The</strong>re are no reports of interactions<br />

between varroacides <strong>and</strong> neonicotinoid pesticides but recent data suggest that antibiotics used in<br />

colonies may affect susceptibility to both varroacides <strong>and</strong> other pesticides<br />

Interactions between neonicotinoids <strong>and</strong> disease (update EFSA review)<br />

Honeybees are known to suffer from a wide array of bacterial, fungal <strong>and</strong> viral pathogens as well<br />

as ecto- <strong>and</strong> endo-parasite. Multiple infections are common <strong>and</strong> the impact of some pathogens can<br />

be far higher in the presence of other associated pests <strong>and</strong> diseases. Honeybees have a well-<br />

developed immune system for coping with bacterial <strong>and</strong> fungal infections although their immune<br />

response to viral pathogens is less well understood <strong>and</strong> there has been significant interest recently<br />

on the potential for pesticides to affect the susceptibility of bees to diseases. This has been<br />

highlighted by high pesticide residues reported in honeybee colonies in the USA <strong>and</strong> the<br />

importance of microbial communities within the hive which may be affected by pesticide residues<br />

as well as impacting on the bees directly.<br />

<strong>The</strong> dense crowding within social <strong>and</strong> eusocial bee colonies together with the relatively<br />

homeostatic nest environment with stored resources of pollen <strong>and</strong> nectar/honey results in<br />

conditions conducive to increased susceptibility to disease. This has resulted in the evolution of<br />

both individual <strong>and</strong> social immunity in the honeybee <strong>and</strong> bumble bee<br />

Factors other than pesticides can impact on the immune system in honeybees <strong>and</strong> increase<br />

susceptibility to disease, e.g. other diseases, the immunsuppressive effects of Varroa destructor,<br />

antibiotics, sulphonamides <strong>and</strong> metals <strong>and</strong> immunostimulators have been proposed. Confinement<br />

of colonies can result in immune suppression <strong>and</strong> oxidative stress in colonies <strong>and</strong> poor habitat<br />

quality may result in lowered immune response. One key factor is that although colonies show<br />

qualitatively similar immune responses the colony is a significant factor in the level of the response,<br />

i.e. there are large variations between colonies on the level of the response. <strong>The</strong>re have also been<br />

suggestions that stress, e.g. isolation, weakens individual immunocompetence. This may explain<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 5 of 133<br />

Report to Syngenta Ltd


why some immune competence effects are evident in under laboratory conditions but not in<br />

colonies.<br />

Pollen is the primary source of protein in honeybees is well established to affect longevity,<br />

development of the hypopharyngeal gl<strong>and</strong>s <strong>and</strong> ovaries <strong>and</strong> the susceptibility to pathogens. Pollen<br />

quantity does not affect individual or social immunity, however, diet diversity (polyfloral pollen)<br />

increases glucose oxidase activity which has a key role in social immunity <strong>and</strong> protein quality has<br />

been reported to affect melanisation, e.g. of the gut wall. This parallels observations of immune<br />

function in other insects where antibacterial activity was higher for individuals fed high-quality diets.<br />

Pollen is also important for haemocyte function in honeybees <strong>and</strong> has been shown to be a key<br />

parameter in bumble bees<br />

<strong>The</strong> major fungal disease of honeybees is the microsporidian Nosema. It appears that N. ceranae<br />

spore count, unlike N. apis, is not a useful measure of the state of a colony’s health <strong>and</strong> in-hive<br />

bees are unsuitable as indicators of the degree of infection of the colony N. ceranae infection but<br />

not N apis infection appears to significantly suppresses the honey bee immune response. Such<br />

immune suppression would also increase susceptibility to other bee pathogens. After infection with<br />

N. apis the honey bee immune system quickly activates defence mechanisms, which includes the<br />

increase in the expression of genes encoding antimicrobial peptides <strong>and</strong> other immunity-related<br />

enzymes. Whereas N. ceranae infection seems to suppress the immune response by reducing the<br />

transcription of some of these genes.<br />

<strong>The</strong>re have been conflicting reports over the interactions between imidacloprid <strong>and</strong> Nosema which<br />

are confounded by the effects of Nosema on the energetic of individuals <strong>and</strong> results in<br />

significantl;y increased food intake. A similar issue was identified in an increase in mortality was<br />

observed when bees (five days after emergence) were infected with 125,000 spores of N ceranae<br />

<strong>and</strong> after a further 10 days were exposed to sublethal (LD50/100) doses of thiacloprid or fipronil for<br />

10 days. <strong>The</strong> bees clearly showed energetic stress after Nosema infection by their increased<br />

consumption of sucrose with infected bees consuming approximately twice the amount of sucrose<br />

compared with uninfected bees. Although there was no apparent difference in overall daily intake<br />

when exposed to the insecticides, there were large difference in intake on day 1 of the pesticide<br />

exposure period<br />

<strong>The</strong>re was one report identified which suggests that N ceranae may increase the susceptibility of<br />

bees to fipronil but there were inconsistencies in the reported results. <strong>The</strong> data do show the<br />

variability of mortality caused by N ceranae: N ceranae mortality ranged between 22 <strong>and</strong> 39%<br />

when dosed on day 0 <strong>and</strong> between 22 <strong>and</strong> 37% when dosed on day 7 <strong>and</strong> fipronil resulted in 29-<br />

31% mortality whether dosed from day 0 or day 7.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 6 of 133<br />

Report to Syngenta Ltd


It is also vital to underst<strong>and</strong> the disease status of individuals used in pesticide assessments since<br />

both the honeybee (Apis mellifera) <strong>and</strong> the bumble-bee (Bombus terrestris) perform poorly in<br />

proboscis extension reflex (PER) memory tests when their immune systems were challenged by<br />

lipopolysaccharide.<br />

Honeybees are the target of a large number of viruses with a total of 18 identified to date. Often<br />

virus vectoring by Varroa, which is a significant stressor in honeybee colonies by feeding on the<br />

haemolymph causes a variety of physical <strong>and</strong> physiological effects on the colony, <strong>and</strong> results in<br />

infections from viruses which are otherwise present as covert infections resulting in severe disease<br />

<strong>and</strong> mortality within the colony. In addition viruses can be transmitted within the colony by<br />

trophallaxis, contact, faeces <strong>and</strong> salivary gl<strong>and</strong> secretions. However to date there are no reports of<br />

interactions between neonicotinoids <strong>and</strong> viruses<br />

Exposure (update EFSA review) including available data from incident monitoring schemes<br />

<strong>Bees</strong> are exposed to pesticides via a number of routes <strong>and</strong> the relative importance of each<br />

depends on the life stage of the insect <strong>and</strong> the mode of application of the pesticide. Adults may be<br />

exposed directly to pesticides through direct overspray or flying through spray drift, by consumption<br />

of pollen <strong>and</strong> nectar (which may contain directly over-sprayed or systemic residues), by contact<br />

with treated surfaces (such as resting on recently treated leaves or flowers), by contact with dusts<br />

generated during drilling of treated seeds, or by exposure to guttation fluid potentially as a source<br />

of water or as dried residues on the surface of leaves. <strong>The</strong> exposure of larvae is primarily via<br />

processed pollen <strong>and</strong> nectar in brood food. Data available in the literature includes residues in<br />

pollen, wax <strong>and</strong> nectar within colonies, pollen <strong>and</strong> nectar residues from plants, in pollen loads on<br />

bees returning to the hives <strong>and</strong> in adult workers. Such data also includes the residues of<br />

veterinary medicines detected <strong>and</strong> the distribution of chemicals around the hive.<br />

<strong>The</strong> routes of exposure of bees to pesticides has been assessed <strong>and</strong> recently reviewed in an<br />

EFSA Scientific Opinion particularly in relation to quantifying uptake <strong>and</strong> extended to include other<br />

non-Apis species where data were available. <strong>The</strong> exposure of bumble bees to pesticides has also<br />

been reviewed <strong>and</strong> showed there are key times in the year when exposure of queens may be<br />

particularly important in determining the fate of a colony.<br />

A review of residues in bees after pesticide applications in the EFSA review (2012) provides<br />

evidence of the exposure of bees to applications aggregated through all routes of exposure, i.e.<br />

through direct overspray, foraging on treated crops <strong>and</strong> consumption of treated food <strong>and</strong> water as<br />

samples were collected over time after exposure. This showed peak residues in the first sample<br />

after application with declines for spray applications over the following week. No data from<br />

systemic seed or soil application field studies were available but residues of imidacloprid <strong>and</strong> its<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 7 of 133<br />

Report to Syngenta Ltd


metabolite 6-chloronicotinic acid <strong>and</strong> fipronil <strong>and</strong> its metabolites were detected at low levels in<br />

monitoring studies<br />

Studies on residues deposited as dust containing neonicotinoids are summarised obviously this<br />

does not take into account recent EU requirements to limit dust emissions through the use of<br />

professionally treated seeds <strong>and</strong> deflectors. Drift during agricultural treatment determines the<br />

deposition of pesticides within a small distance from the field edge. What is less obvious is how to<br />

calculate the drift onto flowering weeds in the field margin as dust drift is unlikely to behave in the<br />

same way as spray drift due to the wide variations in particle size. Unfortunately the deposition<br />

data generated to date for grasses <strong>and</strong> flowering weeds in flower margins have limitations in terms<br />

of the reporting of sowing rates <strong>and</strong> seed treatment rates.<br />

Contact of bees with treated surfaces may occur through resting on treated leaves or during<br />

foraging on treated flowers. <strong>The</strong> major issue is that bees do not come into contact with the treated<br />

plant over the entire surface of their body but primarily through their feet; however during resting<br />

<strong>and</strong> cleaning they may transfer residues from their feet to other parts of their bodies.<br />

<strong>The</strong> exposure of bees to pesticides in pollen depends on both the residues present <strong>and</strong> the<br />

amounts of pollen collected by the bees. <strong>The</strong> amount of pollen collected by a colony per day is<br />

highly variable <strong>and</strong> depends on pollen availability, crop species <strong>and</strong> the needs of the colony. On<br />

oilseed rape the amount of pollen collected varied with the stage of flowering with most collected in<br />

the latter stage. Bee bread is pollen processed from the pollen loads by bees for storage by<br />

combining with nectar or honey <strong>and</strong> addition of antimicrobial agents. This results in higher<br />

residues in bee bread than in pollen which may relate to differences in availability for residue<br />

analysis following processing of the pollen by bees.<br />

Flower morphology is an important factor in the pesticide content of nectar: flowers in which the<br />

nectar is deeper, such as clover, were less contaminated than shallower flowers such as cabbage<br />

<strong>and</strong> nectar yield/flower was less important in determining pesticide content. To date, there are no<br />

reports of pesticide residues in aphid honeydew after spray application but the intake by bees may<br />

be expected to be similar to that of nectar sources.<br />

Residues in honey formed from contaminated nectar <strong>and</strong> stored within the hive will depend on the<br />

concentration of nectar through evaporation of water to produce honey <strong>and</strong> degradation of<br />

residues through biological <strong>and</strong> chemical factors in honey. Both factors are slow <strong>and</strong> counter each<br />

other to some extent <strong>and</strong> there are differences between honey contained in open <strong>and</strong> sealed cells.<br />

<strong>The</strong> residues of neonicotinoids pesticides detected in stored nectar <strong>and</strong> honey in field studies <strong>and</strong><br />

available monitoring data for samples taken directly from colonies are summarised. Monitoring<br />

data for processed honey has been excluded as honey is combined from a large number of<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 8 of 133<br />

Report to Syngenta Ltd


colonies <strong>and</strong> therefore residues may be diluted. For pesticides (not acaracides) the residues<br />

detected in the monitoring studies are lower than those reported in field studies.<br />

Water is collected by honeybees to dilute thickened honey, to produce brood food from stored<br />

pollen, to maintain humidity within the hive <strong>and</strong> to maintain temperature within the brood area.<br />

Water is not stored in combs by temperate bee colonies. <strong>The</strong> amount of water required depends<br />

on the outside air temperature <strong>and</strong> humidity, the strength of the colony <strong>and</strong> the amount of brood<br />

present. <strong>The</strong> production of water by evaporation of nectar to form honey may address at least<br />

some of this need. Water consumption by honeybee colonies has been assessed using confined of<br />

colonies provided with a source of water within the hive. To date there have been no published<br />

studies that demonstrate significant exposure of bees to guttating crops as a source of water in the<br />

field. Guttation fluid is unlikely to be identified by honeybees as a source of sugar due to the low<br />

levels present. <strong>Bees</strong> are less subject to dessication than most terrestrial insects due to their nectar<br />

diet <strong>and</strong> high metabolic water production<br />

<strong>Bees</strong>wax is produced by worker bees within the colony to house stores of nectar <strong>and</strong> pollen <strong>and</strong> for<br />

brood production. Production begins when the worker is slightly less than one week old, peaking at<br />

around two weeks <strong>and</strong> then reducing. It takes between 24 <strong>and</strong> 48 hours for any particular<br />

honeybee worker to produce a moderate-sized wax scale. If unchanged by a beekeeper wax within<br />

the colony may accumulate lipophilic residues over time both from contaminated pollen <strong>and</strong> nectar<br />

brought into the hive <strong>and</strong> from chemicals used within the hive, e.g. varroacides. <strong>The</strong>re are no<br />

reports of neonicotinoids in beeswax from colonies<br />

Propolis is collected by bees as resin from trees, e.g. buds, primarily poplars <strong>and</strong> pine trees <strong>and</strong> is<br />

used within the hives to block small gaps <strong>and</strong> as a defense at the hive entrance against ants etc.<br />

<strong>and</strong> also as an anti-bacterial antifungal agent within the hive. <strong>The</strong> main propolis plants in Europe<br />

are poplar, birch, oak, alder, willow <strong>and</strong> hazel. Foragers collect the resin in their pollen baskets to<br />

return it to the hive <strong>and</strong> can carry approximately 10 mg. <strong>The</strong> chemical composition of propolis<br />

varies between sources but is a mixture of resins, terpenes <strong>and</strong> volatiles. Due to the range of<br />

sources of propolis <strong>and</strong> storage within the hive it can contain a range of contaminants but only a<br />

small number of reports exist of trace residues of pesticides present in propolis collected from<br />

colonies <strong>and</strong> propolis tinctures prepared from this <strong>and</strong> no reports of neonicotinoid pesticides<br />

<strong>The</strong>re are three possible sources of inhalation exposure of bees to pesticides. During applications<br />

of pesticides (is a similar manner to flying through spray), through vapour generated from residues<br />

on the crop after application <strong>and</strong> from stored pollen <strong>and</strong> nectar within the hive (<strong>and</strong> potentially<br />

water evaporated within the hive). <strong>The</strong>re are no reports of exposure associated with inhalation of<br />

neonicotinoid pesticide residues.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 9 of 133<br />

Report to Syngenta Ltd


Nectar collected by foragers from plants is transferred to in-hive bees at the colony entrance which<br />

then to further bees for transport to storage or brood combs. During spring <strong>and</strong> summer large<br />

quantities of nectar are stored for use in periods of shortage, e.g. during breaks in nectar flow,<br />

periods of poor weather, or for over-wintering. Nectar is placed both in storage combs <strong>and</strong> also in<br />

brood combs close to larvae so it is readily available for brood rearing. <strong>The</strong> majority of published<br />

studies relate to in-hive treatments with varroacides <strong>and</strong> antibiotics <strong>and</strong> solely measured residues<br />

in honey intended for human consumption. However, there are a small number of studies which<br />

specifically address the distribution of incoming contaminated nectar within hives, including that<br />

releasing just six foragers fed with radiolabelled sμgar into a colony resulted in about 20% of the<br />

workers in the brood area receiving some labelled food within 3.5 hours <strong>and</strong> this included nurse<br />

bees which demonstrated the potential exposure of brood. <strong>The</strong> nectar delivered to brood comb is<br />

used rapidly by nurse bees to feed larvae.<br />

For spray applications the residue per unit dose (RUD) can be calculated <strong>and</strong> used to determine<br />

the relative amounts of a pesticide available through each routes of exposure. <strong>The</strong> data for all<br />

routes of exposure is currently limited <strong>and</strong> would benefit feom a larger dataset.<br />

For seed treatments <strong>and</strong> soil applications the data available for calculation of an RUD approach is<br />

far more limited <strong>and</strong> there are a number of issues which require additional research, e.g. crop<br />

dependence, concentration dependence <strong>and</strong> active ingredient dependency of the RUD.<br />

Overspray can be related to the surface area of the bee which suggests the RUD for honeybees<br />

should be increased but although the surface area of bumble bees is likely to increase significantly<br />

due to their greater size they are also far more variable in size making any predictions unreliable.<br />

For bumble bees intake data are far more limited than for honeybees but some data are available<br />

for adults from queenless microcolonies under laboratory conditions. For larvae intake of sucrose<br />

is unclear but an approximation is available. However, the intake of foragers is not reported <strong>and</strong><br />

therefore the data only relate to intake for metabolic requirements. <strong>The</strong>re data can be used to<br />

identify possible RUDs but limited confidence can be held in these.<br />

<strong>The</strong>re was insufficient data available to assess the exposure of solitary bee species.<br />

Sublethal <strong>and</strong> chronic effects of neonicotinoids,<br />

A large number of studies have been undertaken on the sublethal <strong>and</strong> chronic effects of<br />

neonicotinoid pesticides on bees using a number of different exposure scenarios <strong>and</strong> endpoints<br />

<strong>and</strong> by far the majority of the reported literature relates to imidacloprid that a large number of<br />

dosing studies have been conducted at dose rates <strong>and</strong> concentrations in excess of the reported<br />

maximum concentrations for imidacloprid <strong>and</strong> thiamethoxam in nectar following use as seed<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 10 of 133<br />

Report to Syngenta Ltd


treatments. Where effects were observed at or below rates of imidaclorpid close to the maximum<br />

reported in nectar only one appears to be a non-biomarker effect at the colony level. <strong>The</strong>re were<br />

far fewer studies with thiamethoxam <strong>and</strong> none reported effects at or below the maximum field<br />

nectar residue reported following seed treatment.<br />

<strong>The</strong> vast majority of studies with non-Apis species have been undertaken with bumble bees <strong>and</strong><br />

again in the majority imidacloprid was used at concentrations in excess of the maximum rate<br />

reported in nectar although 2 studies report effects following continuous dosing at field realistic<br />

rates. Only a small number of studies have been undertaken in bumble bees with clothianidin <strong>and</strong><br />

thiamethoxam <strong>and</strong> they have not been reported to show effects at field realistic rates.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 11 of 133<br />

Report to Syngenta Ltd


2. Introduction<br />

This literature review encompasses specific aspects of <strong>Neonicotinoid</strong> pesticide impacts on<br />

bees:<br />

1. Mode of action <strong>and</strong> metabolism of neonicotinoids in bees<br />

2. Acute toxicity of neonicotinoids<br />

3. Synergism between neonicotinoids <strong>and</strong> other pesticides (update EFSA review)<br />

4. Interactions between neonicotinoids <strong>and</strong> disease (update EFSA review)<br />

5. Exposure (update EFSA review) including available data from incident monitoring<br />

schemes key differences from honeybees including available data from incident<br />

monitoring schemes<br />

6. Sublethal <strong>and</strong> chronic effects of neonicotinoids,<br />

Sections 3-5 draw heavily on the EFSA review (2012)<br />

http://www.efsa.europa.eu/en/supporting/pub/340e.htm <strong>and</strong> are not reproduced here<br />

<strong>The</strong> key considerations in compiling the data were:<br />

To primarily concentrate on European data<br />

Where already covered in recent EFSA review (Thompson 2012) provide any<br />

additional information, e.g. more recent papers<br />

How much can be toxicity <strong>and</strong> exposure be extrapolated from honeybees to other<br />

bees- what are the key differences – can these be quantified?<br />

Can the exposure data in the sublethal/chronic studies be compared to estimated<br />

field exposure?<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 12 of 133<br />

Report to Syngenta Ltd


3. Methodology adopted<br />

<strong>The</strong> set of search terms selected <strong>and</strong> databases searched for the study are shown in<br />

Appendix 1. All search results are fully documented in Appendix 1. <strong>The</strong> database was<br />

searched for duplicates which were removed <strong>and</strong> the cleaned database transferred to<br />

EndNote. <strong>The</strong> literature was evaluated systematically <strong>and</strong> the criteria for including or<br />

excluding the references stated (see Appendix 1).<br />

Any reports of studies that were identified as useful were evaluated to assess their reliability.<br />

Reliability covers the inherent quality of the test relating to the test methodology <strong>and</strong> the way<br />

the performance <strong>and</strong> results of the test are described. <strong>The</strong> criteria used for assessing<br />

reliability of the identified literature were based on that identified in “Submission of scientific<br />

peer-reviewed open literature for the approval of pesticide active substances under<br />

Regulation (EC) No 1107/2009” which provides a definition of scientific peer-reviewed open<br />

literature <strong>and</strong> instructions on how to minimise bias in the identification, selection <strong>and</strong><br />

inclusion of peer-reviewed open literature in dossiers, according to the principles of<br />

systematic review (i.e. methodological rigour, transparency, reproducibility). For each<br />

identified data source the reason for inclusion or exclusion is clearly stated in the main report<br />

for those included <strong>and</strong> in Appendix 1 for those excluded.<br />

<strong>The</strong> information from previous reports <strong>and</strong> the review of ‘new’ literature was combined to<br />

provide an overview of the interactions between pesticides <strong>and</strong> other factors in effects on<br />

bees considering:<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 13 of 133<br />

Report to Syngenta Ltd


4. Results<br />

2.1 Mode of Action <strong>and</strong> Metabolism of <strong>Neonicotinoid</strong><br />

Insecticides<br />

In depth studies have been undertaken to fully underst<strong>and</strong> the mechanisms involved in both<br />

neonicotinoid mode of action <strong>and</strong> target sites in addition to the detoxification mechanisms.<br />

Most of the bee studies have been directed at the neonicotinoid imidacloprid, although one<br />

paper has investigated the metabolism of acetamiprid. Clothianidin is a metabolite of<br />

thiamethoxam in honeybees.<br />

2.1.1 Mode of Action<br />

In insects, including the honeybee, acetylcholine is the main neurotransmitter; it binds to<br />

nicotinic acetylcholine receptors (nAChR) mediating fast cholinergic synaptic transmission<br />

(Barbara et al., 2008; Thany et al., 2010). Honeybee sensory <strong>and</strong> motor functions are<br />

dependent on central <strong>and</strong> cholinergic pathways (Tomizawa <strong>and</strong> Yamamoto, 1992; Barbara<br />

et al., 2008). Although widely distributed throughout the body, key areas of cholinergic<br />

transmission in the honeybee are the antennal lobes <strong>and</strong> mushroom bodies (thought to be<br />

involved in some aspects of olfactory conditioning, e.g. odour disrimination) located in the<br />

head (Barbara et al., 2008).<br />

<strong>Neonicotinoid</strong>s have been shown to bind to the lig<strong>and</strong> gated ion channels (LGIC) at the αbungarotoxin<br />

site on nAChR, along with other lig<strong>and</strong>s including acetylcholine (Lind et al.,<br />

1999; Liu <strong>and</strong> Casida, 1993; Matsuo et al., 1998; Nakayama <strong>and</strong> Sukekawa, 1998; Schmuck<br />

et al., 2003; Tomizawa et al., 1995; Tomizawa <strong>and</strong> Yamamoto, 1992; Tomizawa <strong>and</strong><br />

Yamamoto, 1993). Although nAChRs are located on both the pre <strong>and</strong> post-synaptic<br />

membrane, neonicotinoids are more likely to affect post synaptic nAChRs (Buckingham et<br />

al., 1997). Once bound to the nAChR, neonicotinoids are not broken down by<br />

acetylcholinesterase like acetylcholine. This leads to over-stimulation of the nervous system<br />

<strong>and</strong> a build up of acetylcholine in the synapse.<br />

Studies have confirmed that neonicotinoids bind to a single binding site in honeybees<br />

(Tomizawa et al., 1995). Studies evaluating the effects of neonicotinoids on continued nerve<br />

transmission across the synapses, have identified different binding properties. Imidacloprid<br />

is a partial agonist of the nAChR that binds to the acetylcholine (ACh) recognition site<br />

(Barbara et al., 2008; Barbara et al., 2005; Benzidane et al., 2011; Deglise et al., 2002).<br />

Clothianidin was found to be a full agonist in cockroaches (Periplaneta americana) although<br />

this has not been confirmed in honeybees (Benzidane et al., 2011). Nitenpyram, despite<br />

having a neonicotinoid structure, behaves more like nicotine in that it was found to bind to<br />

both the ACh site <strong>and</strong> an allosteric site within the nAChR (Tomizawa <strong>and</strong> Yamamoto, 1993).<br />

Other insect species, such as the peach potato aphid (Myzus persicae) appear to have an<br />

allosteric binding interaction between at least two nicotinic binding sites (Lind et al., 1999).<br />

<strong>The</strong> LGIC are pentameric molecules composed of five identical subunits (homomeric<br />

receptors) or different subunits (heteromeric receptors) arranged round a central pore, which<br />

is selective to Na + , K + <strong>and</strong> Ca 2+ cations (Millar <strong>and</strong> Lansdell, 2012; Thany et al., 2007).<br />

Genome studies have identified 11 nAChR subunit genes in the honeybee (Jones et al.,<br />

2007; Jones et al., 2006), compared with 10 each in the fruit fly (Drosophila melanogaster)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 14 of 133<br />

Report to Syngenta Ltd


<strong>and</strong> mosquito (Anopheles mellifera) (Jones et al., 2007). Although studies by Le Novere et<br />

al. (2002) <strong>and</strong> Millar (2003) cited in Millar <strong>and</strong> Lansdell (2012) identified seventeen subunits<br />

in vertebrates (α1 – α10, β1- β4, γ, δ, ε), only α <strong>and</strong> β subunits have been found in the<br />

honeybee (Dupuis et al., 2011). <strong>The</strong> combination of subunits determines the functional <strong>and</strong><br />

pharmacological properties of the receptor (Jones et al., 2007) however, it is thought that the<br />

α subunits of two adjacent cysteine residues in Loop C are important in ACh binding (Kao<br />

et.al (1984) cited in Jones et al., (2007)). <strong>The</strong>re are core nAChR subunits that are conserved<br />

between different insect species with over 60% homology in their amino acid sequences<br />

(Jones et al., 2007; Sattelle, 2009). However, the fruit fly, mosquito <strong>and</strong> honeybee have at<br />

least one divergent subunit with less than 20% homology (Sattelle, 2009). <strong>The</strong> subunits<br />

found in the honeybee are α1, α2, α3, α4, α5, α6, α8, α7, α9, β1, β2 (Dupuis et al., 2011) of<br />

which only α5, α8 <strong>and</strong> α9 have not been sequenced (Rocher <strong>and</strong> March<strong>and</strong>-Geneste,<br />

2008). Different combinations of subunits within the LIGC are present in different receptors<br />

throughout the body <strong>and</strong> may explain the susceptibility of some areas of the honeybee<br />

compared with others. For example, α2, α8 <strong>and</strong> β1 subunits were expressed in adult<br />

honeybee Kenyon Cells, where as an additional subunit α7 found in the Antennal Lobes<br />

(Dupuis et al., 2011).<br />

Through structure activity relationship (SAR) it has been possible to identify the 3pyridylmethylamine<br />

moiety as essential for providing the insecticidal properties of<br />

neonicotinoids (Tomizawa <strong>and</strong> Yamamoto, 1992; Tomizawa <strong>and</strong> Yamamoto, 1992;<br />

Tomizawa <strong>and</strong> Yamamoto, 1993; Yamamoto et al., 1995). Furthermore the difference in<br />

binding affinity at the nAChR may explain differences in toxicity between species (Matsuo et<br />

al., 1998; Rocher <strong>and</strong> March<strong>and</strong>-Geneste, 2008; Tomizawa <strong>and</strong> Yamamoto, 1993;<br />

Yamamoto et al., 1995).<br />

2.1.2 Metabolism<br />

2.1.2.1 Detoxifying enzymes in honeybees<br />

<strong>The</strong> honeybee genome has substantially fewer protein coding genes than Drosophila<br />

melanogaster <strong>and</strong> Anopheles gambiae with some of the most marked differences occurring<br />

in three superfamilies encoding xenobiotic detoxifying enzymes (Claudianos et al., 2006).<br />

This variation makes extrapolation of responses to both individual pesticides <strong>and</strong> pesticide<br />

mixtures between species less reliable as there are only about half as many of the three<br />

major xenobiotic metabolising enzymes glutathione-S-transferases (GSTs), cytochrome<br />

P450 monooxygenases (P450s) <strong>and</strong> carboxyl/cholinesterases (CCEs) in the honeybee. <strong>The</strong><br />

glutathione-S-transferase group of enzymes catalyse the metabolism of pesticides by<br />

conjugation of reduced glutathione — via a sulfhydryl group — to electrophilic centers on a<br />

wide variety of substrates. <strong>The</strong> P450s catalyse a range of reactions including oxidation <strong>and</strong><br />

demethylation which may result in decrease in activity or produce active metabolites, e.g. the<br />

conversion of the neonicotinoid thiamethoxam to clothianidin.<br />

<strong>The</strong> midgut in the honeybee is a major site of metabolism for ingested pesticides <strong>and</strong><br />

interactions between chemicals at least in part may be influenced by effects on the<br />

detoxifying enzymes within the midgut, including microsomal oxidases, glutathione S<br />

transferases <strong>and</strong> esterases. Microsomal oxidase assay required intact midgut because an<br />

inhibitor of P450 is released when midguts are dissected <strong>and</strong> midgut microsomal<br />

preparations contained mainly cytochrome P-420, the inactive form of cytochrome P-450,<br />

which may explain the low microsomal oxidase activity in microsomes (Johnson et al 2009).<br />

<strong>The</strong> microsomal oxidase activities include aldrin epoxidase activity which is inhibited by<br />

malathion <strong>and</strong> permethrin, N-demethylase activity which is induced by diazinon <strong>and</strong> EPN<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 15 of 133<br />

Report to Syngenta Ltd


<strong>and</strong> O-demethlase activity which is induced by diazinon. Of the glutathione S-transferases,<br />

aryltransferase activity is significantly induced by diazinon <strong>and</strong> moderately induced by<br />

permethrin. Carboxylesterase activity is moderately inhibited by malathion <strong>and</strong> permethrin<br />

(Suh <strong>and</strong> Shim, 1988; Yu et al., 1984).<br />

<strong>The</strong> P450s are thought to play a central role in insects in the metabolism of phytochemicals<br />

(Li et al., 2007). Examples of such phytochemicals relevant to honeybees are the flavonoids<br />

(flavonoles e.g.quercetin, kaempherol, galangin, fisetin, flavanones e.g. pinocembrin,<br />

naringin, hesperidin <strong>and</strong> flavones e.g. apigenin, acacetin, chrysin, luteolin) which occur as<br />

glycosides in nectar <strong>and</strong> are hydrolysed to aglycones during the formation of honey <strong>and</strong> are<br />

also present in propolis <strong>and</strong> pollen (Viuda-Martos et al., 2008). However, when compared<br />

with other insects there are a significantly lower number of CYP3 clans (which include the<br />

CYP6s <strong>and</strong> CYP9s) associated with xenobiotic metabolism encoded in the honeybee<br />

genome (Johnson et al., 2010). Although this may be related to the reduced exposure to<br />

chemically-defended plant tissues there is some suggestion that others e.g. the CYP6AS<br />

subfamily, have undergone an expansion relative to other insects (Mao et al., 2011). CYP6<br />

enzymes are recognised as being involved in the metabolism of dietary constituents in<br />

herbivorous insects (Liu et al., 2006). <strong>The</strong>refore this expansion may be due to the presence<br />

of specific phytochemicals in the diet, e.g. in pollen <strong>and</strong> nectar, which may be concentrated<br />

in honey <strong>and</strong> bee bread (Adler, 2000). <strong>The</strong> link to phytochemical exposure in honeybees is<br />

supported by the upregulation of three of the CYP6AS genes in response to consumption of<br />

honey (Johnson, 2008).<br />

Detailed studies by Suchail et al. (2004a; 2004b) using radiolabelled [C 14 ] imidacloprid have<br />

identified the distribution <strong>and</strong> metabolic pathways of imidacloprid in honeybees. Imidacloprid<br />

is readily metabolised (possibly by mixed function oxidases (Phase I metabolism)) to more<br />

water soluble products with an elimination half life of 5 hours; there is no evidence of<br />

conjugation prior to elimination. Six <strong>and</strong> 24 hours after ingestion of imidacloprid at 20 <strong>and</strong> 50<br />

µg/kg -1 bee, no imidacloprid was detected in the honeybee (Suchail et al., 2004b). <strong>The</strong>re are<br />

5 metabolic products; 6-chloronicotinic acid is formed by the oxidative cleavage of the<br />

imidacloprid methylene bridge, urea derivative is formed by the reduction of the nitro group,<br />

hydroxylation of the imidazolidine ring to form 4,5-dihydroxy-imidacloprid <strong>and</strong> then 4/5hydroxy-imidacloprid,<br />

<strong>and</strong> the dehydration of the 4/5-hydroxy-imidacloprid <strong>and</strong>/or<br />

desaturation of the imidazolidine moiety of imidacloprid to for olefin. <strong>The</strong> main metabolites<br />

are the urea derivative <strong>and</strong> 6-chloronicotinic acid. Unlike mammals, there was no guanidine<br />

derivative detected (Suchail, et al. 2004).<br />

Suchail et al., (2004a) also reported the distribution of imidacloprid <strong>and</strong> its metabolites<br />

throughout the body of the honeybee. <strong>The</strong> rapid appearance of metabolites throughout the<br />

body, combined with variations in the kinetic profile suggests that metabolism also occurs<br />

outside of the main focus in the midgut. <strong>The</strong> main metabolites, urea derivative <strong>and</strong> 6chloronicotinic<br />

acid, were found particularly in the mid gut <strong>and</strong> rectum. In addition, 4/5hydroxy-imidacloprid<br />

<strong>and</strong> olefin were found mostly in the head, thorax <strong>and</strong> abdomen, all of<br />

which are nAChR rich tissues. Furthermore, concentrations of these two metabolites peaked<br />

4 hours after ingestion of 100 µg kg -1 bee.<br />

<strong>The</strong>se profiles can be related to the two distinct phases to imidacloprid poisoning after acute<br />

exposure. <strong>The</strong>re is a rapid onset of neurotoxicity in the form of hyper responsiveness,<br />

hyperactivity, <strong>and</strong> trembling; mortality is delayed until at least four hours post exposure<br />

(Suchail et al., 2004a; Suchail et al., 2004b; Suchail et al., 2001). Insecticidal properties<br />

were found with olefin, <strong>and</strong> 4/5-hydroxy-imidacloprid all of which retain nitroguanidine<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 16 of 133<br />

Report to Syngenta Ltd


(CH4N4O2). LD50 values show that the olefin (48 hour oral LD50 >36 ng/bee), in particular, is<br />

of similar toxicity to imidacloprid (48 hour oral LD50 41 ng/bee) to bees (Nauen et al., 2001).<br />

Furthermore, both metabolites were found to bind to the nAChR. <strong>The</strong> delayed onset of<br />

death is thought to be as a result of the appearance of these toxic metabolites (Nauen et al.,<br />

2001; Schmuck et al., 2003).<br />

A similar metabolic fate study was conducted by (Brunet et al., 2005) using radiolabelled<br />

[ 14 C]-acetamiprid. Acetamiprid is readily metabolised by mixed function oxidases. Seven<br />

metabolites were detected, with the main ones being 6-choronicotinic acid (IC 0) <strong>and</strong> U1.<br />

Although metabolism is fast, with 50% of acetamiprid metabolised 30 minutes after oral<br />

dosing with 100µg kg -1 bee, only 40% of the total radioactivity was eliminated after 72 hours .<br />

This suggests that both the metabolites <strong>and</strong> parent compound persist within the honeybee.<br />

However, none of the breakdown products have insecticidal qualities (Iwasa et al., 2004).<br />

<strong>The</strong> low toxicity of acetamiprid to honeybees is believed to be because of this rapid<br />

metabolism (half life 25 min).<br />

Brunet et al., (2005) also evaluated the distribution of acetamiprid <strong>and</strong> its metabolites in<br />

different compartments of the honeybee. Acetamiprid was rapidly distributed in all<br />

compartments <strong>and</strong> metabolised. Initially, acetamiprid was mainly detected in nAChR tissues<br />

of the abdomen, head <strong>and</strong> thorax with a distribution profile similar to that of imidacloprid<br />

(Suchail et al., 2004a). However unlike imidacloprid, significant levels of metabolites were<br />

detected at 72 hours throughout the honeybee compartments.<br />

<strong>The</strong> metabolism of neonicotinoids was further explored by Iwasa et al., (2004), who used<br />

synergists of both Phase I <strong>and</strong> Phase II enzymes to identify the metabolic pathways used in<br />

neonicotinoid detoxification. This study confirmed the role mixed function oxidases in the<br />

metabolism of many neonicotinoids. However, the toxicity of imidacloprid was not increased<br />

by the presence of potent cytochrome P450 inhibitors, such as piperonyl butoxide <strong>and</strong><br />

Ergosterol Biosynthesis Inhibitors (EBI) suggesting P450s have a lesser role.<br />

2.1.3 Conclusions<br />

<strong>Neonicotinoid</strong>s have been shown to bind to the lig<strong>and</strong> gated ion channels at the αbungarotoxin<br />

site on the nicotinic acetylcholine receptor (nAChR) <strong>and</strong> primarlily affect the<br />

post synaptic nAChRs. Once bound to the nAChR, neonicotinoids are not broken down by<br />

acetylcholinesterase like acetylcholine resulting in over-stimulation of the nervous system<br />

<strong>and</strong> a build up of acetylcholine in the synapse.<br />

<strong>The</strong> midgut in the honeybee is a major site of metabolism for ingested pesticides <strong>and</strong><br />

interactions between chemicals at least in part may be influenced by effects on the<br />

detoxifying enzymes within the midgut, including microsomal oxidases, glutathione S<br />

transferases <strong>and</strong> esterases.<br />

Synergists of both Phase I <strong>and</strong> Phase II enzymes have been used to identify the metabolic<br />

pathways used in neonicotinoid detoxification <strong>and</strong> confirmed the role mixed function<br />

oxidases in the metabolism of many neonicotinoids. However P450s probably have a lesser<br />

role in the metabolism of imidacloprid which has an elimination half life of 5 hours. <strong>The</strong> main<br />

imidacloprid metabolites, urea derivative <strong>and</strong> 6-chloronicotinic acid, are found particularly in<br />

the mid gut <strong>and</strong> rectum <strong>and</strong> 4/5-hydroxy-imidacloprid <strong>and</strong> olefin are found mostly in the<br />

head, thorax <strong>and</strong> abdomen all of which are nAChR rich tissues <strong>and</strong> levels peaked 4 hours<br />

after ingestion.. Both of the latter metabolites have insecticidal properties (the olefin has<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 17 of 133<br />

Report to Syngenta Ltd


toxicity similar to imidacloprid <strong>and</strong> both bind to the nAChR) <strong>and</strong> may be responsible for<br />

delayed onset of death. <strong>The</strong>se profiles can be related to the two distinct phases to<br />

imidacloprid poisoning after acute exposure. <strong>The</strong>re is a rapid onset of neurotoxicity in the<br />

form of hyper responsiveness, hyperactivity, <strong>and</strong> trembling; mortality is delayed until at least<br />

four hours post exposure.<br />

Acetamiprid is readily metabolised by mixed function oxidases, to seven main metabolites<br />

(none of which are insecticidal). Although metabolism is fast, the half life of acetamiprid<br />

approx 25 minutes but only 40% of the total radioactivity eliminated after 72 hours<br />

suggesting that the metabolites persist within the honeybee. <strong>The</strong> lower toxicity of<br />

acetamiprid is thought to be due to this rapid metabolism to relatively non-toxic metabolites.<br />

2.2 Acute Toxicity of neonicotinoids<br />

2.2.1 Honeybees<br />

Toxicity data from the ANSES Agritox databse are shown in<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 18 of 133<br />

Report to Syngenta Ltd


Table 1. Most publications have concentrated on oral <strong>and</strong> contact LD50 imidacloprid, but<br />

other neonicotinoids are represented along with imidacloprid metabolites (Table 8); Contact<br />

exposure can be from either of two methods; directly where the dose is applied to the body<br />

of the bee, or indirectly where bees are exposed through contact with a contaminated<br />

surface. All the studies have reported at the effects of neonicotinoids on worker bees <strong>and</strong><br />

have concentrated on Apis mellifera <strong>and</strong> its subspecies; however one study has looked at<br />

toxicity in the Indian Honeybee (Apis cerana indica) (Jeyalakshmi et al., 2011). In general,<br />

LD50 values are lower for oral exposure than for contact exposure, except for acetamiprid<br />

which is the reverse. For imidacloprid this may be explained its low hydrophobicity <strong>and</strong> poor<br />

penetration through the cuticle (Yamamoto et al., 1995). Residue data undertaken for the UK<br />

Wildlife Incident Investigation Scheme suggests that there is only slow penetration of the<br />

neonicotinoid active ingredients through the cuticle (Figure 1)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 19 of 133<br />

Report to Syngenta Ltd


Table 1: Oral <strong>and</strong> contact 48 LD50 values for neonicotinoid pesticides in honeybees from<br />

ANSES Agritox database (http://www.dive.afssa.fr/agritox/php/fiches.php) or 1 EPA factsheets (United<br />

States <strong>Environment</strong>al Protection Agency)<br />

Insecticide Exposure Route 48 LD50<br />

Acetamiprid<br />

Clothianidin<br />

Dinotefuran<br />

Imidacloprid<br />

Thiacloprid<br />

Thiamethoxam<br />

Oral 14.5 µg/bee<br />

Contact 8.1 µg/bee<br />

Oral 3.79 ng/bee<br />

Contact 44.3 ng/bee<br />

Oral 23 ng/bee<br />

Contact 47 ng/bee<br />

Oral 3.7 ng/bee<br />

Contact 81 ng/bee<br />

Oral 17.32 µg/bee<br />

Contact 38.83 µg/bee<br />

Oral 5 ng/bee<br />

Contact 24 ng/bee<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 20 of 133<br />

Report to Syngenta Ltd


Figure 1: Relationship between dose applied <strong>and</strong> residue after 4 hours in bees dosed by<br />

contact <strong>and</strong> oral exposure with imidacloprid, acetamiprid <strong>and</strong> thiacloprid (from Defra report<br />

PS2548 <strong>and</strong> PS2549).<br />

<strong>The</strong>re is a greater degree of variability within the published data than is evident from<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 21 of 133<br />

Report to Syngenta Ltd


Table 1. It is particularly true for imidacloprid which has been extensively reported within the<br />

literature; Table 2 shows 48 hour oral LD50 values ranging from 3.7 to over 109 ng/bee with<br />

values as high as 400 ng/bee identified at Fera (Defra project PS2368).<br />

Table 2: Mean, maximum <strong>and</strong> minimum LD50 values for imidacloprid in honeybees (Apis sp),<br />

compiled from published data that is expressed as ng/bee (Table 1).<br />

Exposure route Exposure time (hours) Mean LD50 (ng/bee) n Max – Min (ng/bee)<br />

Oral 24 112.7 5 191.0 – 3.2<br />

48 44.3 14 109.6 – 3.7<br />

72 64.0 5 97.4 – 31<br />

96 43.5 2 50 - 37<br />

Contact 24 15.9 4 23.8 – 6.7<br />

48 80.6 11 242.6 – 6.7<br />

72 104.0 1 n/a<br />

Variability could be due to a number of factors, such as different test conditions, honeybee<br />

species, <strong>and</strong>/or timing in the season. Inter-laboratory variation was highlighted by Nauen et<br />

al., (2001) <strong>and</strong> Schmuck et al., (2003) who presented data on 48 hour acute oral toxicity for<br />

imidacloprid provided by laboratories in Germany <strong>and</strong> the United Kingdom following<br />

internationally adopted guidelines (EPPO 170, 1992). LD50 values ranged 2 fold (Table 3,<br />

Table 8). Hashimoto et al., (2003) found that oral LC50 values for thiamethoxam were 0.047<br />

ng/mL for newly emerged worker bees increasing to 0.101 ng/mL for 21 day old worker<br />

bees. A similar pattern was seen with contact LC50 ranging from 3.21 mg/mL in newly<br />

emerged worker bees to 4.51 mg/mL in 14 day old worker bees however the experimental<br />

details do not allow the study to be fully reconstructed.<br />

Table 3: Acute contact toxicity (48 hours) of imidacloprid to honeybees derived by different<br />

laboratories using honeybees from different apiaries. Based on data presented by (Nauen et al.,<br />

2001; Schmuck et al., 2003)<br />

Contact LD50 ng/bee 95 % confidence<br />

limits<br />

Test Period Origin of Honeybees<br />

61.0 26.0 – 90.0 May 2000 Germany II<br />

50 9.1 – 71.0 May 2000 United Kingdom<br />

42.0 20.0 – 59.0 May 2000 Germany III<br />

42.9 34.6 – 53.2 May 2000 Germany IV<br />

74.9 61.8 – 90.9 July 2000 Germany V<br />

Inter-hive variablity was studied by Laurino et al., (2010) who looked at acute oral toxicity of<br />

clothianidin, imidacloprid <strong>and</strong> thiamethoxam on three different strains of the Italian honeybee<br />

(Apis mellifera ligustica) by using bees from three different hives. Other factors such as<br />

methodology <strong>and</strong> timing were st<strong>and</strong>ardised. Variation between the three hives was small<br />

(Table 4), <strong>and</strong> the toxicity of the three neonicotinoids tested is in line with other published<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 22 of 133<br />

Report to Syngenta Ltd


data. <strong>The</strong> LD50 for imidacloprid is higher than those of Nauen et al., (2001) <strong>and</strong> Schmuck et<br />

al., (2003) however, there is some overlap between the ranges of the two sets of data. <strong>The</strong><br />

variation observed for clothianidin <strong>and</strong> thiamethoxam is less.<br />

Table 4: Mean oral LD50 values for three neonicotinoid insecticides. Data taken from (Laurino et<br />

al., 2010)<br />

Duration (hours) Clothianidin Imidacloprid Thiamethoxam<br />

Mean 95% CI Mean 95% CI Mean 95% CI<br />

24 4.48 3.96 – 4.90 183.78 174.5 -190.7 3.55 2.82 – 4.43<br />

48 4.32 3.86 – 4.65 104.12 99.53 – 108.99 3.35 2.68 – 4.25<br />

72 4.21 3.81 – 4.50 72.94 49.55 – 95.15 2.88 2.59 – 3.13<br />

Suchail et al., (2000) identified differences in LD50 response to imidacloprid between two<br />

subspecies of honeybees Apis mellifera mellifera (the dark European Honeybee) <strong>and</strong> Apis<br />

mellifera caucasica (the Caucasian Honeybee). Similar values were obtained for oral<br />

exposure of 5.4 <strong>and</strong> 6.6 ng/bee LD50 (24 hour) <strong>and</strong> 4.8 <strong>and</strong> 6.5 ng/bee LD50 (48 hour) A.<br />

m. mellifera <strong>and</strong> A. m. caucasica respectively. However, there were marked differences in<br />

responses between the subspecies after contact exposure. At low doses (between 1 <strong>and</strong> 7<br />

ng/bee) A. m. mellifera mortality rates apparently increased, between 7 to 15 ng/bee<br />

mortality rates decreased, <strong>and</strong> at concentrations above 15ng/bee mortality rates increased in<br />

a dose dependent manner (Error! Reference source not found.A). As a result, two 24 hour<br />

LD50 values, 6.7ng/bee <strong>and</strong> 23.8 ng/bee, were calculated for A. m. mellifera based on the<br />

two ascending parts of the dose response curve. A similar drop in mortality was seen with A.<br />

m. caucasica (Error! Reference source not found.B), but this was less marked, <strong>and</strong> a<br />

single LD50 value of 15.1 ng/bee was calculated. A similar increase in mortality was seen in<br />

A. m. mellifera over 48 hours at low doses; however this was not followed by a fall below that<br />

expected. Notwithst<strong>and</strong>ing this, 48 hour LD50 values were again calculated from the two<br />

ascending parts of the dose response curve with values of 6.7 <strong>and</strong> 24.3 ng/bee for A. m.<br />

mellifera; 48 hour contact LD50 for A. m. caucasica was 12.8 ng/bee.<br />

Interestingly, the deviation between replicates is small, <strong>and</strong> experiments were repeated at<br />

least three times. Suchail et al., (2000) suggested this was a result of biphasic mortality at<br />

low concentrations, particularly via contact exposure. Howeever the result is predicated<br />

primarily on the mortality observed at one dose level around 7 ng/bee. Unfortunately none<br />

of the other reported studies tested imidacloprid at doses this low; the minimum dose in the<br />

reported literature was 40 ng/bee (Nauen et al., 2001; Schmuck et al., 2003) <strong>and</strong> at Fera the<br />

lowest dose tested in Defra study PS2368 was 12.5 ng/bee. No other studies have reported<br />

to replicate this phenomenon.<br />

Studies by Nauen et al., (2001), Schmuck et al., (2003), <strong>and</strong> Suchail et al., (2001a) have<br />

looked at the acute toxicity of imidacloprid <strong>and</strong> the five main metabolites to A. mellifera. Two<br />

metabolites were found to have insecticidal properties; these are olefin <strong>and</strong> 5-OH<br />

imidacloprid with 48 hour oral LD50 values of >39 <strong>and</strong> 159 ng/bee respectively (Nauen et al.,<br />

2001; Schmuck et al., 2003) <strong>and</strong> 28 <strong>and</strong> 258 ng/bee (Suchail et al., 2001a). Nauen et al.,<br />

(2001) obtained an LD50 for di-hydroxy-imidacloprid of >49 ng/bee; its insecticidal<br />

significance was identified as low due to its weak receptor affinity <strong>and</strong> lack of receptor<br />

activation despite retaining the nitro guanidine pharmocophore, (Schmuck et al., 2003).<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 23 of 133<br />

Report to Syngenta Ltd


Incidentally, (Suchail et al., 2001a) reported oral LD50 values of >1000 ng/bee for di -<br />

hydroxy-imidacloprid for exposures between 48 <strong>and</strong> 96 hours <strong>and</strong> thus concluded it had no<br />

insecticidal qualities. <strong>The</strong> major plant metabolites of acetamiprid (N-demethyl acetamiprid, 6chloro-3-pyridylmethanol<br />

<strong>and</strong> 6-chloro-nictinic acid) were also tested for insecticidal<br />

properties (Iwasa et al., 2004), however no mortality was detected when applied topically at<br />

50 µg/bee.<br />

2.2.2 Other bee species<br />

Table 5 summarises the toxicity data for a range of bee species, including bumble bees,<br />

other Apis species <strong>and</strong> non-Apis species. Data across pesticides generally suggests that the<br />

toxicity to Apis mellifera reflects that in other bee species when it is expressed on a weight<br />

basis (Figure 2). However Table 6 <strong>and</strong> Table 7 suggest that although this is true for the<br />

chloronicotinyl insecticides there are far less robust data for the cyano substituted<br />

neonicotinoids acetamiprid <strong>and</strong> thiacloprid.<br />

ug/g bee<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0.01 1 100 10000<br />

0.1<br />

0.01<br />

Apis mellifera ug/ g bee<br />

B. Terrestris 210 mg<br />

B lucorum 210 mg<br />

B agrorum (pascuorum)<br />

120 mg<br />

M rotundata 86.6mg<br />

O lignaria 90mg<br />

Nomia mel<strong>and</strong>eri 30.8mg<br />

Figure 2 Comparison of the toxicity of a range of pesticides in Apis <strong>and</strong> non-Apis bee species<br />

expressed on a weight organism basis<br />

<strong>The</strong> toxicity of imidacloprid to B terrestris was reported by Marletto et al (2003); unfortunately<br />

the weights of the bees were not reported so the toxicity in µg/g bee can only be estimated<br />

(based on 210mg/bee). <strong>The</strong>y reported the acute contact LD50 was 0.04 µg/ bee (0.19 µg/ g<br />

bee) at 24 hours <strong>and</strong> 0.02 µg/bee (0.095 µg/ g bee) at 72 hours. Following oral exposure<br />

the 24 hour LD50 was not reported but the 72 hour LD50 was 0.02 µg/bee (0.095 µg/g bee).<br />

Mayer <strong>and</strong> Lunden (1997) assessed the toxicity of field weathered imidacloprid residues<br />

(after application of a 240FS formulation at 0.168 Kg ai/ha) to a range of bees species,.<br />

Exposure for 24 hours to cranberry or alfalfa leaves aged for 2 hours resulted in 56%<br />

mortality in exposed B occidentalis individuals; 28% mortality in exposed alkali bees (N.<br />

mel<strong>and</strong>eri) <strong>and</strong> 66% mortality in exposed leafcutter bees (M rotundata) compared with 14%<br />

morality in exposed A. mellifera.<br />

Bortolotti et al (2001) assessed the toxicity of the imidacloprid formulation Confidor (17.8%)<br />

to B terrestris; again the bodyweight is not reported so is estimated). <strong>The</strong>y reported the<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 24 of 133<br />

Report to Syngenta Ltd


contact LD50 as 445 ng/bee (2119 ng ai/ g bee) at 24 hours, 14.2 ng/bee (67.6 ng ai/ g bee)<br />

at 48 hours <strong>and</strong> 5.3 ng/bee (25.2 ng ai/ g bee ) at 72 hours. <strong>The</strong> oral LD50 was 7.1 ng/bee<br />

(33.9 ng ai/ g bee) at 24 hours, 5.3 ng/bee (25.2 ng ai/ g bee ) at 48 hours <strong>and</strong> 4.6 ng/bee<br />

(22.0 ng ai/ g bee ) at 72 hours.<br />

<strong>The</strong>re is no readily available LD50 data available for acetamiprid but Horgan (2007)<br />

compared the residual toxicity of a 20% formulation of acetamiprid at 100ppm to that of<br />

50ppm imidacloprid <strong>and</strong> showed that the residue of acetamiprid was safe to B terrestris after<br />

1 days whereas the imidacloprid formulation was still toxic after 3 days.<br />

<strong>The</strong> toxicity of imidacloprid to the stingless bee N perilampoides (average weight 8.2<br />

mg/bee) showed the contact LD50 after 24 hours was 0.0011 µg/bee (0.0008-0.0015) (0.13<br />

µg/g bee) that of thiamethoxam was 0.004 µg/bee (0.003-0.006) (0.49 µg/ g bee), whereas<br />

thiacloprid was 0.007 µg/bee (0.004-0.01) (0.85 µg/g bee) suggesting that the relative safety<br />

of thiacloprid to honeybees was not reflected by stingless bees (Valdovinos-Nunez et al<br />

2009).<br />

Kumar <strong>and</strong> Regupathy (2005) reported the toxicity of thiamethoxam <strong>and</strong> imidacloprid to A<br />

mellifera, A. indica (the Indian honeybee), A. florea (the little bee) <strong>and</strong> Trigona irridipenis (the<br />

dammer bee) <strong>and</strong> reported these were similar or less toxic than in A mellifera in the same<br />

laboratory (thiamethoxam 0.0666 µg ai/g bee <strong>and</strong> imidacloprid 0.0281 µg ai/g bee at 24<br />

hours).<br />

Scott-Dupree et al (2009) assesed the toxicity of imidacloprid <strong>and</strong> clothianidin to B.<br />

impatiens, M rotundata <strong>and</strong> Osmia lignaria using treated surfaces. Unfortunately this<br />

prevents assessment of the dose per bee as the LC50 was expressed as a treatment rate<br />

(% solution wt/vol) on the surface of the arena. Based on this they assessed the toxicity<br />

(LC50) of imidacloprid to B impatiens as 3.22 x 10 -3 %, to M rotundata as 0.17 x 10 -3 %, <strong>and</strong><br />

to O lignaria as 0.07 x 10 -3 %. <strong>The</strong> LC50 of clothianidin was B impatiens 0.39 x 10 -3 %, to M<br />

rotundata as 0.08 x 10 -3 %, <strong>and</strong> to O lignaria as 0.10 x 10 -3 %.<br />

<strong>The</strong> toxicity of fipronil to A. mellifera, the alfalfa leafcutter bee M. rotundata <strong>and</strong> the alkali<br />

bee Nomia mel<strong>and</strong>eri was reported by Mayer <strong>and</strong> Lunden (1999). <strong>The</strong> LD50 was highest in<br />

N mel<strong>and</strong>eri (1.13 µg/bee; 13.2 µg/g bee), intermediate in A mellifera (0.013 µg/bee; 0.103<br />

µg/g bee ) <strong>and</strong> lowest in M. rotundata (0.004 µg/bee; 0.132 µg/g bee).<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 25 of 133<br />

Report to Syngenta Ltd


Table 5:Summary of toxicity of neonicotinoids in other bee species<br />

Pesticide Species µg a.i./ bee µg ai/g Ref<br />

(95%CL) bee<br />

Acetamiprid B ignites 0.0023 (0.0021-<br />

Wu et al (2010)<br />

Mosplian (3% ai) 48 hr oral 0.0024)<br />

Acetamiprid B hypocrite 0.0028 (0.0018-<br />

Wu et al (2010)<br />

Mosplian (3% ai) 48 hr oral 0.0031)<br />

Acetamiprid B patagiatus 0.0021 (0.0020-<br />

Wu et al (2010)<br />

Mosplian (3% ai) 48 hr oral 0.0023)<br />

Imidacloprid B terrestris 0.02 0.095 Marletto et al<br />

(formulation) 72 hour contact<br />

(2003)<br />

Imidacloprid B terrestris 0.02 0.095 Marletto et al<br />

(formulation) 72 hour oral<br />

(2003)<br />

Imidacloprid B terrestris 0.445 2.119 Bortolotti et al<br />

Confidor (17.8% ai) 24 hour contact<br />

(2001)<br />

Imidacloprid B terrestris 0.0142 0.0676 Bortolotti et al<br />

Confidor (17.8% ai) 48 hour contact<br />

(2001)<br />

Imidacloprid B terrestris 0.0053 0.0252 Bortolotti et al<br />

Confidor (17.8% ai) 72 hour contact<br />

(2001)<br />

Imidacloprid B terrestris 0.0071 0.0339 Bortolotti et al<br />

Confidor (17.8% ai) 24 hour oral<br />

(2001)<br />

Imidacloprid B terrestris 0.0053 0.0252 Bortolotti et al<br />

Confidor (17.8% ai) 48 hour oral<br />

(2001)<br />

Imidacloprid B terrestris 0.0046 0.0220 Bortolotti et al<br />

Confidor (17.8% ai) 72 hour oral<br />

(2001)<br />

Imidacloprid A indica 0.0025 0.0362 Kumar <strong>and</strong><br />

24 hr contact<br />

Regupathy (2005)<br />

Imidacloprid A florae 0.0022 0.0767 Kumar <strong>and</strong><br />

24 hr contact<br />

Regupathy (2005)<br />

Imidacloprid T irridipenis 0.0020 0.5275 Kumar <strong>and</strong><br />

24 hr contact<br />

Regupathy (2005)<br />

Imidacloprid N perilampoides 0.0011 0.13 Valdovinos-Nunez<br />

24 hr contact<br />

et al 2009<br />

Imidacloprid B terrestris 0.04 0.19 Marletto et al<br />

(formulation) 24 hour contact<br />

(2003)<br />

Thiacloprid N perilampoides 0.007 0.85 Valdovinos-Nunez<br />

24 hr contact<br />

et al 2009<br />

Thiamethoxam A indica 0.0056 0.0819 Kumar <strong>and</strong><br />

24 hr contact<br />

Regupathy (2005)<br />

Thiamethoxam A florae 0.0056 0.1905 Kumar <strong>and</strong><br />

24 hr contact<br />

Regupathy (2005)<br />

Thiamethoxam T irridipenis 0.0051 1.3381 Kumar <strong>and</strong><br />

24 hr contact<br />

Regupathy (2005)<br />

Thiamethoxam N perilampoides 0.004 0.49 Valdovinos-Nunez<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 26 of 133<br />

Report to Syngenta Ltd


.<br />

24 hr contact et al 2009<br />

<strong>The</strong> lowest LD50 reported for each study are shown in Table 6 for contact toxicity <strong>and</strong> Table<br />

7 for oral toxicity. <strong>The</strong>se data suggest that the contact toxicity is generally within an order of<br />

magnitude of the A. mellifera for imidacloprid <strong>and</strong> thiamethoxam whereas N perilampoides is<br />

several orders of magnitude more sensitive following contact exposure to thiacloprid. Table 7<br />

shows the toxicity of oral exposure to acetamiprid but this should be interpreted with care as<br />

the exposure profile differed significantly with the Bombus species exposed ad libitum to<br />

treated sucrose for 48 hrs <strong>and</strong> Apis only for 2-4 hrs. .<br />

Table 6: Summary data using lowest contact LD50 for each reported study (µg/g bee)<br />

imidacloprid<br />

thiacloprid<br />

A<br />

mellifera<br />

(India)<br />

B A<br />

T<br />

N<br />

terrestris<br />

0.025indica<br />

A florea irridipenis perilampoides<br />

0.19 0.036 0.077 0.53 0.13 0.028 0.81<br />

A<br />

mellifera<br />

thiamethoxam 0.082 0.191 1.34 0.49 0.066 0.24<br />

Table 7: Summary data using lowest oral LD50 for each reported study (µg/g bee)<br />

4 hrs access<br />

to treated<br />

48hrs access to treated sucrose<br />

sucrose<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 27 of 133<br />

Report to Syngenta Ltd<br />

0.85<br />

B ignitus B hypocrite B patagiatus Bterrestris A mellifera<br />

acetamiprid 0.01 0.013 0.01<br />

Conclusions<br />

0.022-<br />

0.095 145<br />

In general, LD50 values are lower for oral exposure than for contact exposure, except for<br />

acetamiprid which is the reverse; this may be explained by low hydrophobicity <strong>and</strong> poor<br />

penetration through the cuticle of these compounds. <strong>The</strong> chloronicotinyl insecticides<br />

(thiamethoxam, clothianidin, imidacloprid) are more toxic than the cyano substituted<br />

(thiacloprid, acetamiprid)<br />

<strong>The</strong> oral toxicity of imidacloprid, which has been extensively reported within the literature; is<br />

highly variable with 48 hour oral LD50 values ranging from 3.7 to as high as 400 ng/bee.<br />

including bumble bees, other Apis species <strong>and</strong> non-Apis species.<br />

Data across pesticides generally suggests that the toxicity to Apis mellifera reflects that in<br />

other bee species when it is expressed on a weight basis <strong>and</strong> is supported by data for the<br />

chloronicotinyl insecticides but there are far less robust data for the cyano substituted<br />

neonicotinoids.<br />

388


Table 8: Showing published acute toxicity data for Apis mellifera (Compounds in italics are metabolites)<br />

Insecticide Concentration Range Bee Type Pre-treatment Reference<br />

LD50 – 24 hours Oral<br />

Imidacloprid 5.4 ng/bee 5.2-1.6 (95% CI) Worker <strong>Bees</strong> (A. Starvation 2 hr (Suchail et al.,<br />

m. mellifera)<br />

2000)<br />

Imidacloprid 6.6 ng/bee 5.1-8.1 (95% CI) Worker <strong>Bees</strong> (A. Starvation 2 hr (Suchail et al.,<br />

m. caucasica)<br />

2000)<br />

Imidacloprid 183.78 ng/bee 174.5 – 190.7 (95% Apis mellifera Not stated (Laurino et al.,<br />

(0.15 – 150 ppm)<br />

CI)<br />

ligustica<br />

2010)<br />

Clothianidin 2.844 ng/bee 1.733-4.045 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

Clothianidin 4.48 ng/bee 4.0 – 4.9 (95% CI) Apis mellifera Not stated (Laurino et al.,<br />

ligustica<br />

2010)<br />

Thiamethoxam 4.679 ng/bee 3.862-5.552 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

Thiamethoxam 3.54 ng/bee 2.8 – 4.4 (95% CI) Apis mellifera Not stated (Laurino et al.,<br />

ligustica<br />

2010)<br />

LD50 – 24 hours – Contact (applied directly to the bee)<br />

Acetamiprid 7.07 µg/bee 4.57-11.2 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Iwasa et al., 2004)<br />

IM-2-1<br />

(Acetamiprid<br />

metabolite)<br />

>50 µg/bee (Iwasa et al., 2004)<br />

IC-0 (Acetamiprid<br />

metabolite)<br />

>50 µg/bee (Iwasa et al., 2004)<br />

IM-O (Acetamiprid<br />

metabolite)<br />

>50 µg/bee<br />

Imidacloprid<br />

(dose range to<br />

give 8 – 100%<br />

mortality)<br />

17.9 ng/bee 9.2-31.5 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Iwasa et al., 2004)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 28 of 133<br />

Report to Syngenta Ltd


Insecticide Concentration Range Bee Type Pre-treatment Reference<br />

Imidacloprid 6.7 ng/bee 5.2-8.2 (95% CI) Worker <strong>Bees</strong> (A. CO2 anaesthesia (Suchail et al.,<br />

m. mellifera)<br />

2000)<br />

Imidacloprid 23.8 ng/bee 22.3-25.3 (95% CI) Worker <strong>Bees</strong> (A. CO2 anaesthesia (Suchail et al.,<br />

m. mellifera)<br />

2000)<br />

Imidacloprid 15.1 ng/bee 11.9-18.3 (95% CI) Worker <strong>Bees</strong> (A.<br />

m. caucasica)<br />

CO2 anaesthesia (Suchail et al.,<br />

2000)<br />

Imidacloprid 27 ng/bee Apis cerana indica CO2 anaesthesia (Jeyalakshmi et al.,<br />

17.8% SL (5 – 52<br />

ng/bee)<br />

2011)<br />

Nitenpyram 0.138 µg/bee 0.0717-0.259 (95%<br />

CI)<br />

Worker <strong>Bees</strong> CO2 anaesthesia (Iwasa et al., 2004)<br />

Thiacloprid 14.6 µg/bee 9.53-25.4 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Iwasa et al., 2004)<br />

Dinotefuran 75.0 ng/bee 62.8-89.6 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Iwasa et al., 2004)<br />

Clothianidin 21.8 ng/bee 10.2-46.5 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Iwasa et al., 2004)<br />

Clothianidin 50% 14 ng/bee Apis cerana indica CO2 anaesthesia (Jeyalakshmi et al.,<br />

WDG<br />

2011)<br />

Thiamethoxam 29.9 ng/bee 20.8-42.9 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Iwasa et al., 2004)<br />

Thiamethoxam 26 ng/bee Apis cerana indica CO2 anaesthesia (Jeyalakshmi et al.,<br />

2011)<br />

LD50 – 24 hours – Indirect Contact (contact with contaminated surface)<br />

Clothianidin 4.485 ng/µl 3.820-5.167 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

Imidacloprid 0.10 ppm 0.015-0.63 (Fiducial Worker bees Starvation 2 hours (Singh <strong>and</strong><br />

(dose range to<br />

give 10-90%<br />

mortality after 24<br />

hrs)<br />

Limits)<br />

Karnatak, 2005)<br />

Thiamethoxam 5.200 ng/µl 4.302-6.227 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

Thiamethoxam 15.16 ppm 2.84-97.00 (Fiducial Worker bees Starvation 2 hours (Singh <strong>and</strong><br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees<br />

Report to Syngenta Ltd<br />

Page 29 of 133


Insecticide Concentration Range Bee Type Pre-treatment Reference<br />

Limits) Karnatak, 2005)<br />

LC50 - 24 hours - Contact (applied directly to the bee)<br />

Imidacloprid<br />

(0.00008 – 1.0%<br />

sol n )<br />

LD50 – 48 hours – Oral<br />

Imidacloprid<br />

(0.1 to 81 ng/bee)<br />

2.2 (%w/v x10 -3 ) 1.5-2.6 (Fiducial<br />

limits x10 -3 )<br />

Forager <strong>Bees</strong> CO2 anaesthesia (Bailey et al., 2005)<br />

41 ng/bee Worker <strong>Bees</strong> Starvation up to 2<br />

hr<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 30 of 133<br />

Report to Syngenta Ltd<br />

(Nauen et al., 2001;<br />

Schmuck et al.,<br />

2003)<br />

Imidacloprid 4.8 ng/bee 4.5-5.1 (95% CI) Worker <strong>Bees</strong> (A. Starvation 2 hr (Suchail et al.,<br />

m. mellifera)<br />

2000)<br />

Imidacloprid 6.5 ng/bee 4.7-8.3 (95% CI) Worker <strong>Bees</strong> (A. Starvation 2 hr (Suchail et al.,<br />

m. caucasica)<br />

2000)<br />

Imidacloprid 70 ng/bee Worker <strong>Bees</strong> Not stated (Suchail et al.,<br />

(1 - 1000 ng/bee)<br />

2001b)<br />

Imidacloprid 57 ng/bee ± 28 (SD) Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

(1 – 1000 ng/bee)<br />

2001a)<br />

Imidacloprid<br />

(0.2 – 3.2 mg/L -1 30.6 ng/bee 26.7-36.3 (95% CI) Worker <strong>Bees</strong> (Decourtye et al.,<br />

)<br />

2003)<br />

Imidacloprid 3.7 ng/bee 2.6-5.3 (95% CI) Worker <strong>Bees</strong> (Schmuck et al.,<br />

2001)<br />

Imidacloprid >21.0 ng/bee Worker <strong>Bees</strong> (Schmuck et al.,<br />

2001)<br />

Imidacloprid 40.9 ng/bee Worker <strong>Bees</strong> (Schmuck et al.,<br />

2001)<br />

Imidacloprid (as 11.6 ng/bee 7.3-18.3 (95% CI) Worker <strong>Bees</strong> (Schmuck et al.,<br />

formulation<br />

WG70)<br />

2001)<br />

Imidacloprid (as 21.2 ng/bee 15.0-29.6 (95% CI) Worker <strong>Bees</strong> (Schmuck et al.,<br />

formulation<br />

2001)


Insecticide<br />

SC200)<br />

Concentration Range Bee Type Pre-treatment Reference<br />

Imidacloprid 104.12 ng/bee 99.5 – 109.0 (95% Apis mellifera Not stated (Laurino et al.,<br />

(0.15 – 150 ppm)<br />

CI)<br />

ligustica<br />

2010)<br />

Olefin 28 ng/bee ± 19 (SD) Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

2001a)<br />

Olefine >36 ng/bee Worker <strong>Bees</strong> Starvation up to 2 (Nauen et al., 2001;<br />

hr<br />

Schmuck et al.,<br />

2003)<br />

5-OH-Imidacloprid 159 ng/bee Worker <strong>Bees</strong> Starvation up to 2 (Nauen et al., 2001;<br />

hr<br />

Schmuck et al.,<br />

2003)<br />

5-OH-Imidacloprid 258 ng/bee ± 7 (SD) Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

2001a)<br />

5-OH-imidacloprid 153.5 125.9-196.9 (95% Worker <strong>Bees</strong> (Decourtye et al.,<br />

CI)<br />

2003)<br />

Di-OH-<br />

>49 ng/bee Worker <strong>Bees</strong> Starvation up to 2 (Nauen et al., 2001;<br />

Imidacloprid<br />

hr<br />

Schmuck et al.,<br />

2003)<br />

4.5 Di-OH- >1000 ng/bee Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

Imidacloprid<br />

2001a)<br />

Urea metabolite >99500 ng/bee Worker <strong>Bees</strong> Starvation up to 2 (Nauen et al., 2001;<br />

hr<br />

Schmuck et al.,<br />

2003)<br />

Urea metabolite >1000 ng/bee Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

2001a)<br />

6-Chloronicotinic >121500 ng/bee Worker <strong>Bees</strong> Starvation up to 2 (Nauen et al., 2001;<br />

acid<br />

hr<br />

Schmuck et al.,<br />

2003)<br />

6-Chloronicotinic >1000 ng/bee Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

acid<br />

2001a)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 31 of 133<br />

Report to Syngenta Ltd


Insecticide Concentration Range Bee Type Pre-treatment Reference<br />

Clothianidin 2.689 ng/bee 1.749-3.679 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

Clothianidin 4.32 ng/bee 3.86 – 4.65 (95% CI) Apis mellifera Not stated (Laurino et al.,<br />

ligustica<br />

2010)<br />

Thiamethoxam 4.411 ng/bee 3.612-5.252 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

Thiamethoxam 3.34 ng/bee 2.7 – 4.2 (95% CI) Apis mellifera Not stated (Laurino et al.,<br />

ligustica<br />

2010)<br />

LD50 48 hours – Contact (applied directly to the bee)<br />

Imidacloprid 61.0 ng/bee 26.0-90.0 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Nauen et al., 2001;<br />

(40-154 ng/bee)<br />

Schmuck et al.,<br />

2003<br />

Imidacloprid<br />

(40-154 ng/bee)<br />

50.0 ng/bee 9.1-71.0 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Nauen et al., 2001;<br />

Schmuck et al.,<br />

2003<br />

Imidacloprid 42.0 ng/bee 20.0–59.0 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Nauen et al., 2001;<br />

(40-154 ng/bee)<br />

Schmuck et al.,<br />

2003<br />

Imidacloprid 42.9 ng/bee 34.6-53.2 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Nauen et al., 2001;<br />

(40-154 ng/bee)<br />

Schmuck et al.,<br />

2003<br />

Imidacloprid 74.9 ng/bee 61.8-90.9 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Nauen et al., 2001;<br />

(40-154 ng/bee)<br />

Schmuck et al.,<br />

2003<br />

Imidacloprid 6.7 ng/bee 4.4-9.0 (95% CI) Worker <strong>Bees</strong> (A.<br />

m. mellifera)<br />

CO2 anaesthesia (Suchail et al., 2000<br />

Imidacloprid 24.3 ng/bee 22.0-26.6 (95% CI) Worker <strong>Bees</strong> (A.<br />

m. mellifera)<br />

CO2 anaesthesia (Suchail et al., 2000<br />

Imidacloprid 12.8 ng/bee 9.7-15.9 (95% CI) Worker <strong>Bees</strong> (A.<br />

m. caucasica)<br />

CO2 anaesthesia (Suchail et al., 2000<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 32 of 133<br />

Report to Syngenta Ltd


Insecticide Concentration Range Bee Type Pre-treatment Reference<br />

Imidacloprid 81.0 ng/bee 55.0-119.0 (95% CI) Worker <strong>Bees</strong> (Schmuck et al.,<br />

2001<br />

Imidacloprid 230.3 ng/bee Worker <strong>Bees</strong> (Schmuck et al.,<br />

Imidacloprid (as<br />

formulation<br />

WG70)<br />

Imidacloprid (as<br />

formulation<br />

(SC200)<br />

242.6 ng/bee 173.3-353.4 (95%<br />

CI)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 33 of 133<br />

Report to Syngenta Ltd<br />

2001<br />

Worker <strong>Bees</strong> (Schmuck et al.,<br />

2001<br />

59.7 ng/bee 39.1-92.7 (95% CI) Worker <strong>Bees</strong> (Schmuck et al.,<br />

2001<br />

LD50 – 48 hours Indirect Contact (contact with contaminated surface)<br />

Clothianidin 2.967 ng/µl 2.398-3.467 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

Thiamethoxam4 3.313 ng/µl 2.786-3.806 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

LD50 – 72 hours – Oral<br />

Imidacloprid 37 ng/bee ± 10 (SD) Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

(1 - 1000 ng/bee)<br />

2001a)<br />

Imidacloprid 70 ng/bee Worker <strong>Bees</strong> Not stated (Suchail et al.,<br />

(1 - 1000 ng/bee)<br />

2001b)<br />

Imidacloprid 72.94 ng/bee 49.5 – 95.1 (95% CI) Apis mellifera Not stated (Laurino et al.,<br />

(0.15 – 150 ppm)<br />

ligustica<br />

2010)<br />

5-OH-Imidacloprid 206 ng/bee ± 3 (SD) Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

2001a)<br />

Olefin 29 ng/bee ± 3 (SD) Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

2001a)<br />

4.5 Di-OH- >1000 ng/bee Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

Imidacloprid<br />

2001a)<br />

6-Chloronicotinic >1000 ng/bee Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

acid<br />

2001a)


Insecticide Concentration Range Bee Type Pre-treatment Reference<br />

Urea >1000 ng/bee Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

2001a)<br />

Clothianidin 4.21 ng/bee 3.8 – 4.5 (95% CI) Apis mellifera Not stated (Laurino et al.,<br />

ligustica<br />

2010)<br />

Clothianidin 2.608 ng/bee 1.938-3.293 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

Thiamethoxam 4.316 ng/bee 3.517-5.154 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

Thiamethoxam 2.88 ng/bee 2.6 – 3.1 (95% CI) Apis mellifera Not stated (Laurino et al.,<br />

ligustica<br />

2010)<br />

LD 50 – 72 hours - Contact (applied directly to the bee)<br />

Imidacloprid 104 ng/bee 83.0-130 (95% CI) Worker <strong>Bees</strong> CO2 anaesthesia (Nauen et al., 2001;<br />

Schmuck et al.,<br />

2003<br />

LD50 – 72 hours – Indirect Contact (contact with contaminated surface)<br />

Clothianidin 2.667 2.121-3.156 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

Thiamethoxam 2.462 ng/µl 2.156-2.903 (95% Forager Bee Not stated (Laurino et al.,<br />

CI)<br />

2011)<br />

LD50 – 96 hours – Oral<br />

Imidacloprid 37 ng/bee ± 10 (SD) Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

(1- 1000 ng/bee)<br />

2001a)<br />

Imidacloprid 50 ng/bee Worker <strong>Bees</strong> Not stated (Suchail et al.,<br />

(1 – 1000 ng/bee)<br />

2001b)<br />

5-OH-Imidacloprid 222 ng/bee ± 25 (SD) Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

2001a)<br />

Olefin 23 ng/bee ± 6 (SD) Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

2001a)<br />

4.5 Di-OH- >1000 ng/bee Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

Imidacloprid<br />

2001a)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees<br />

Report to Syngenta Ltd<br />

Page 34 of 133


Insecticide Concentration Range Bee Type Pre-treatment Reference<br />

6-Chloronicotinic >1000 ng/bee Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

acid<br />

2001a)<br />

Urea >1000 ng/bee Worker <strong>Bees</strong> Starvation 2 hours (Suchail et al.,<br />

2001a)<br />

LC50 – Oral (duration not stated)<br />

Thiamethoxam 0.047 ng/mL Worker bees Not stated (Hashimoto et al.,<br />

(newly emerged)<br />

2003)<br />

Thiamethoxam 0.074 ng/mL Worker bees ( 7 Not stated (Hashimoto et al.,<br />

days old)<br />

2003)<br />

Thiamethoxam 0.081 ng/mL Worker bees (14 Not stated (Hashimoto et al.,<br />

days old)<br />

2003)<br />

Thiamethoxam 0.101 ng/mL Worker bees (21 Not stated (Hashimoto et al.,<br />

days old)<br />

2003)<br />

LC50 – Contact (duration not stated)<br />

Thiamethoxam 3.21 mg/mL Worker bees Not stated (Hashimoto et al.,<br />

(newly emerged)<br />

2003)<br />

Thiamethoxam 3.50 mg/mL Worker bees ( 7 Not stated (Hashimoto et al.,<br />

days old)<br />

2003)<br />

Thiamethoxam 4.51 mg/mL Worker bees (14 Not stated (Hashimoto et al.,<br />

days old)<br />

2003)<br />

Thiamethoxam >5.0 mg/mL Worker bees (21 Not stated (Hashimoto et al.,<br />

days old)<br />

2003)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 35 of 133<br />

Report to Syngenta Ltd


2.3 Multiple exposure to pesticides (including substances used<br />

in bee medication) <strong>and</strong> potential additive <strong>and</strong> cumulative<br />

effects.<br />

See EFSA 2012 http://www.efsa.europa.eu/en/supporting/pub/340e.htm.<br />

<strong>The</strong> effect of exposure on the scale of synergy is important as many of the laboratory studies<br />

have been undertaken with high doses of synergists, e.g. 3-10 µg/bee <strong>and</strong> at more realistic<br />

exposure levels such high increases of toxicity have not been observed even under<br />

laboratory conditions (Defra report PS2368). Contact <strong>and</strong> oral dosing with combinations of a<br />

range of EBI fungicides at more realistic exposure levels <strong>and</strong> neonicotinoid insecticides<br />

showed only low levels of synergy at these lower fungicide exposures (Table 9 <strong>and</strong> Table<br />

10). This is confirmed by semi-field studies with field rates of thiacloprid <strong>and</strong> tebuconazole<br />

<strong>and</strong> of acetamiprid <strong>and</strong> triflumizole in which no increase in mortality was observed (Iwasa et<br />

al., 2004b; Schmuck, Stadler et al. 2003). Based on the exposure scenarios identified in<br />

http://www.efsa.europa.eu/en/supporting/pub/340e.htm.<br />

the 90 th percentile exposure for a forager bee from a spray application of 1 Kg/ha fungicide<br />

would be 1.53 µg/bee from spray application <strong>and</strong> 3.63 µg/bee/day from nectar therefore for<br />

many of the EBI fungicides the maximum EU application rate is 250 g ai/Ha resulting in a<br />

90 th percentile exposure of 0.38 µg/bee from spray <strong>and</strong> potentially a total including oral<br />

exposure of 1.3 µg/bee on the day of application.<br />

Defra project PS2368 assessed the impact of joint contact:contact <strong>and</strong> oral:oral exposures to<br />

a range of neonicotinoid insecticides (clothianidin, thiamethoxam, imidacloprid <strong>and</strong><br />

thiacloprid) <strong>and</strong> EBI fungicides (flusilazole, myclobutanil, propiconazole <strong>and</strong> tebuconazole) at<br />

realistic fungicide exposure rates (extrapolated from Koch <strong>and</strong> Weisser, 1997). This showed<br />

only lower order increases in the toxicity of the neonicotinoids (up to 3 fold) but differences<br />

between effects following contact <strong>and</strong> oral exposures (Table 9 <strong>and</strong> Table 10).<br />

Four other non-EBI fungicides have been assessed for their effects on the toxicity of<br />

thiacloprid (Schmuck, Stadler et al. 2003). Cyprodinil (an anilinopyrimidine fungicide) at 8<br />

µg/bee <strong>and</strong> tolyfluanid (a phenylsulfamide fungicide) at 11 µg/bee slightly increased the<br />

mortality assocated with a contact dose of 2 µg thiacloprid /bee from 3 to 20% <strong>and</strong> 3 to 13%<br />

respectively. Mancozeb (a dithiocarbamate fungicide) at 8 µg/bee <strong>and</strong> azoxystrobin (a<br />

methoxyacrylate stobilurin fungicide) at 3 µg/bee had no effect on the toxicity of a contact<br />

dose of 2 µg thiacloprid /bee.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 36 of 133<br />

Report to Syngenta Ltd


Table 9. Contact toxicity of combinations (from Defra project PS2368)<br />

LD50 (µg/bee)<br />

(95%<br />

+ Flusilazole (0.358 µg/bee) + Myclobutanil (0.161 µg/bee) + Propiconazole (0.224 µg/bee) + Tebuconazole (0.447 µg/bee)<br />

CL)<br />

Insecticide<br />

Clothianidin<br />

Imidacloprid<br />

Thiacloprid<br />

Thiamethoxam<br />

0.0350<br />

(0.0155-<br />

0.0607)<br />

0.0671<br />

(0.0438-<br />

0.1018)<br />

122.4<br />

(90.56-<br />

238.9)<br />

0.124<br />

(0.0768-<br />

0.3280)<br />

LD 50<br />

(µg/bee)<br />

0.0295<br />

0.0475<br />

439.3<br />

0.0538<br />

95%<br />

CL<br />

0.0230-<br />

0.0367<br />

0.0187-<br />

0.0912<br />

157.3-<br />

71052.1<br />

0.0254-<br />

0.1203<br />

synergism<br />

ratio<br />

Synergism ratio = . Insecticide LD50 .<br />

Insecticide + fungicide LD50<br />

LD 50<br />

(µg/bee)<br />

1.19 0.0451<br />

1.41 0.0409<br />

0.28 635.8<br />

2.30 0.0979<br />

95% CL<br />

0.0363-<br />

0.0559<br />

0.0205-<br />

0.0663<br />

184.1-<br />

35100000<br />

0.0804-<br />

0.1223<br />

synergism<br />

ratio<br />

LD 50<br />

(µg/bee)<br />

0.78 0.0312<br />

1.64 0.0585<br />

0.19 434.9<br />

1.27 0.0638<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 37 of 133<br />

Report to Syngenta Ltd<br />

95%<br />

CL<br />

0.0239-<br />

0.0393<br />

0.0379-<br />

0.0867<br />

156.8-<br />

65908.9<br />

0.0521-<br />

0.0788<br />

synergism<br />

ratio<br />

LD 50<br />

(µg/bee)<br />

1.12 0.00287<br />

1.15 0.0347<br />

0.28 266.8<br />

1.94 0.0479<br />

95%<br />

CL<br />

0.0213-<br />

0.0368<br />

0.0161-<br />

0.0568<br />

128.9-<br />

3738.9<br />

0.0302-<br />

0.0757<br />

synergism<br />

ratio<br />

1.22<br />

1.93<br />

0.46<br />

2.59#


Insecticide<br />

Clothianidin<br />

Imidacloprid<br />

Thiacloprid<br />

Thiamethoxam<br />

Table 10: Oral toxicity of combinations (from Defra project PS2368)<br />

LD 50<br />

(µg/bee)<br />

(range)<br />

0.00739<br />

(0.00607-<br />

0.00903)<br />

0.536<br />

(0.339-<br />

1.184)<br />

22.59<br />

(16.39-<br />

37.42)<br />

0.0112<br />

(0.00915-<br />

0.0135)<br />

LD 50<br />

(µg/bee)<br />

0.00441<br />

1.180<br />

54.65<br />

0.0103<br />

+ Flusilazole (0.358 µg/bee) + Myclobutanil (0.161 µg/bee) + Propiconazole (0.224 µg/bee) + Tebuconazole (0.447 µg/bee)<br />

95% CL<br />

0.00267-<br />

0.00762<br />

0.6094-<br />

5.878<br />

25.88-<br />

852.8<br />

0.00801-<br />

0.0136<br />

synergism<br />

ratio<br />

Synergism ratio = . Insecticide LD50 .<br />

Insecticide + fungicide LD50<br />

LD 50<br />

(µg/bee)<br />

1.68 0.00597<br />

0.45 1.075<br />

0.41 25.67<br />

1.09 0.00742<br />

95% CL<br />

0.00493-<br />

.000732<br />

0.5667-<br />

4.426<br />

synergism<br />

ratio<br />

LD 50<br />

(µg/bee)<br />

1.24 0.00572<br />

0.50 1.501<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 38 of 133<br />

Report to Syngenta Ltd<br />

19.01-<br />

40.70<br />

0.00448-<br />

0.01123<br />

0.88 47.01<br />

95%<br />

CL<br />

0.00467-<br />

0.00710<br />

0.6972-<br />

14.44<br />

27.45-<br />

166.1<br />

synergism<br />

ratio<br />

LD 50<br />

(µg/bee)<br />

1.29 0.00389<br />

0.36 0.893<br />

0.48 36.19<br />

1.51 0.00830 - 1.35 0.00852<br />

95% CL<br />

0.00305-<br />

0.00489<br />

0.438-<br />

14.50<br />

20.99-<br />

134.1<br />

0.00688-<br />

0.01037<br />

synergism<br />

ratio<br />

1.90#<br />

0.59<br />

0.62<br />

1.31


2.3.1 Conclusions<br />

<strong>Pesticides</strong> widely used both in the agricultural <strong>and</strong> urban environment (pest control <strong>and</strong><br />

home <strong>and</strong> garden uses) as well as by beekeepers to control pests, e.g. fluvalinate, amitraz,<br />

coumaphos to control varroa, are detectable in bees <strong>and</strong> hive matrices. Exposure of<br />

honeybees to any single pesticide application may occur over the short term or, unlike many<br />

organisms, over a longer period if residues are present in pollen <strong>and</strong>/or nectar stored within<br />

the colony or due to migration of lipophilic compounds into wax. <strong>The</strong>se more persistent<br />

residues are likely to be available to the colony over a period of time depending on the active<br />

ingredient <strong>and</strong> the frequency of use, e.g. multiple applications.<br />

<strong>Bees</strong> may be exposed to mixtures of products applied to plants on which they forage.<br />

Recent data indicates the extent of mixing of formulations that occur on arable, vegetable<br />

orchards <strong>and</strong> soft fruit crops in the UK <strong>and</strong> includes tank mixing of EBI fungicides with<br />

neonicotinoid insecticides. In addition to the application of products as tank mixes, the<br />

increasing use of seed treatments raises the possible scenario of nectar, pollen or guttation<br />

water containing active ingredients also being contaminated with sprays applied during the<br />

flowering period, e.g. oilseed rape.<br />

Although many reports of residues in pollen being returned to the hive by foragers are<br />

published the majority of these are based on individual pesticide residues rather than<br />

assessments of the total pesticide residue levels <strong>and</strong> the data are often not reported in<br />

sufficient detail to determine the residue levels of the individual components within multiple<br />

detections.. Data reported for residues of chemicals applied by beekeepers in honeybee<br />

colonies have primarily been directed at single varroacides with some limited data after<br />

antibiotic dosing. Those that are available show that very high levels of varroacides may be<br />

present within colonies <strong>and</strong> are regularly detected in live bees<br />

<strong>The</strong> risk from most mixtures can be assessed using the additive approaches of<br />

concentration addition (or dose addition) <strong>and</strong> independent action (IA). In identifying the<br />

relevance of synergy in determining the toxicity of mixtures it is important to underst<strong>and</strong> the<br />

route of metabolism of pesticides in honeybees <strong>and</strong> the effects of age, season etc on this.<br />

<strong>The</strong> role of oxidative metabolism in detoxification of the cyano-substituted neonicotinoids in<br />

bees is highlighted by the increase in toxicity of acetamiprid <strong>and</strong> thiacloprid in combination<br />

with the EBI fungicides. <strong>The</strong> majority of synergistic effects observed in honeybees have<br />

been ascribed to inhibition rather than induction of P450s involved in pesticide metabolism.<br />

<strong>The</strong> level of exposure to the synergist also affects the scale of the synergy. <strong>The</strong> effect of<br />

exposure on the scale of synergy is important as many of the laboratory studies have been<br />

undertaken with high doses of synergists, e.g. 3-10 µg/bee <strong>and</strong> at more realistic exposure<br />

levels such high increases of toxicity have not been observed even under laboratory<br />

conditions. Contact <strong>and</strong> oral dosing with combinations of a range of EBI fungicides at more<br />

realistic exposure levels with neonicotinoid insecticides showed only low levels of synergy.<br />

<strong>The</strong>re are no reports of interactions between varroacides <strong>and</strong> neonicotinoid pesticides but<br />

recent data suggest that antibiotics used in colonies may affect susceptibility to both<br />

varroacides <strong>and</strong> other pesticides<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 39 of 133<br />

Report to Syngenta Ltd


2.4 Interactions between neonicotinoids <strong>and</strong> disease<br />

See EFSA 2012 http://www.efsa.europa.eu/en/supporting/pub/340e.htm.<br />

Honeybees are known to suffer from a wide array of bacterial, fungal <strong>and</strong> viral pathogens as<br />

well as ecto- <strong>and</strong> endo-parasite. Multiple infections are common <strong>and</strong> the impact of some<br />

pathogens can be far higher in the presence of other associated pests <strong>and</strong> diseases.<br />

Honeybees have a well-developed immune system for coping with bacterial <strong>and</strong> fungal<br />

infections although their immune response to viral pathogens is less well understood <strong>and</strong><br />

there has been significant interest recently on the potential for pesticides to affect the<br />

susceptibility of bees to diseases. This has been highlighted by high pesticide residues<br />

reported in honeybee colonies in the USA <strong>and</strong> the importance of microbial communities<br />

within the hive which may be affected by pesticide residues as well as impacting on the bees<br />

directly.<br />

<strong>The</strong> dense crowding within social <strong>and</strong> eusocial bee colonies together with the relatively<br />

homeostatic nest environment with stored resources of pollen <strong>and</strong> nectar/honey results in<br />

conditions conducive to increased susceptibility to disease. This has resulted in the<br />

evolution of both individual <strong>and</strong> social immunity in the honeybee <strong>and</strong> bumble bee<br />

Factors other than pesticides can impact on the immune system in honeybees <strong>and</strong> increase<br />

susceptibility to disease, e.g. other diseases, the immunsuppressive effects of Varroa<br />

destructor, antibiotics, sulphonamides <strong>and</strong> metals <strong>and</strong> immunostimulators have been<br />

proposed. Confinement of colonies can result in immune suppression <strong>and</strong> oxidative stress in<br />

colonies <strong>and</strong> poor habitat quality may result in lowered immune response. One key factor is<br />

that although colonies show qualitatively similar immune responses the colony is a<br />

significant factor in the level of the response, i.e. there are large variations between colonies<br />

on the level of the response. <strong>The</strong>re have also been suggestions that stress, e.g. isolation,<br />

weakens individual immunocompetence. This may explain why some immune competence<br />

effects are evident in under laboratory conditions but not in colonies.<br />

<strong>The</strong>re have been conflicting reports over the interactions between imidacloprid <strong>and</strong> Nosema<br />

which are confounded by the effects of Nosema on the energetic of individuals <strong>and</strong> results<br />

in significantl;y increased food intake. A similar issue was identified in an increase in<br />

mortality was observed when bees (five days after emergence) were infected with 125,000<br />

spores of N ceranae <strong>and</strong> after a further 10 days were exposed to sublethal (LD50/100) doses<br />

of thiacloprid or fipronil for 10 days. <strong>The</strong> bees clearly showed energetic stress after Nosema<br />

infection by their increased consumption of sucrose with infected bees consuming<br />

approximately twice the amount of sucrose compared with uninfected bees. Although there<br />

was no apparent difference in overall daily intake when exposed to the insecticides, there<br />

were large difference in intake on day 1 of the pesticide exposure period<br />

<strong>The</strong>re was one report (Aufauvre et al 2012) identified which suggests that N ceranae may<br />

increase the susceptibility of bees to fipronil but there were inconsistencies in the reported<br />

results. <strong>The</strong> data do show the variability of mortality caused by N ceranae: N ceranae<br />

mortality ranged between 22 <strong>and</strong> 39% when dosed on day 0 <strong>and</strong> between 22 <strong>and</strong> 37% when<br />

dosed on day 7 <strong>and</strong> fipronil resulted in 29-31% mortality whether dosed from day 0 or day 7.<br />

It is also vital to underst<strong>and</strong> the disease status of individuals used in pesticide assessments<br />

since both the honeybee (Apis mellifera) <strong>and</strong> the bumble-bee (Bombus terrestris) perform<br />

poorly in proboscis extension reflex (PER) memory tests when their immune systems were<br />

challenged by lipopolysaccharide.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 40 of 133<br />

Report to Syngenta Ltd


Honeybees are the target of a large number of viruses with a total of 18 identified to date.<br />

Often virus vectoring by Varroa, which is a significant stressor in honeybee colonies by<br />

feeding on the haemolymph causes a variety of physical <strong>and</strong> physiological effects on the<br />

colony, <strong>and</strong> results in infections from viruses which are otherwise present as covert<br />

infections resulting in severe disease <strong>and</strong> mortality within the colony. In addition viruses can<br />

be transmitted within the colony by trophallaxis, contact, faeces <strong>and</strong> salivary gl<strong>and</strong><br />

secretions. However to date there are no reports of interactions between neonicotinoids <strong>and</strong><br />

viruses<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 41 of 133<br />

Report to Syngenta Ltd


2.5 Exposure of bees to pesticides<br />

See EFSA 2012 http://www.efsa.europa.eu/en/supporting/pub/340e.htm.<br />

Conclusions<br />

<strong>Bees</strong> are exposed to pesticides via a number of routes <strong>and</strong> the relative importance of each<br />

depends on the life stage of the insect <strong>and</strong> the mode of application of the pesticide. Adults<br />

may be exposed directly to pesticides through direct overspray or flying through spray drift,<br />

by consumption of pollen <strong>and</strong> nectar (which may contain directly over-sprayed or systemic<br />

residues), by contact with treated surfaces (such as resting on recently treated leaves or<br />

flowers), by contact with dusts generated during drilling of treated seeds, or by exposure to<br />

guttation fluid potentially as a source of water or as dried residues on the surface of leaves.<br />

<strong>The</strong> exposure of larvae is primarily via processed pollen <strong>and</strong> nectar in brood food. Data<br />

available in the literature includes residues in pollen, wax <strong>and</strong> nectar within colonies, pollen<br />

<strong>and</strong> nectar residues from plants, in pollen loads on bees returning to the hives <strong>and</strong> in adult<br />

workers. Such data also includes the residues of veterinary medicines detected <strong>and</strong> the<br />

distribution of chemicals around the hive.<br />

<strong>The</strong> routes of exposure of bees to pesticides has been assessed <strong>and</strong> recently reviewed in an<br />

EFSA Scientific Opinion particularly in relation to quantifying uptake <strong>and</strong> extended to include<br />

other non-Apis species where data were available. <strong>The</strong> exposure of bumble bees to<br />

pesticides has also been reviewed <strong>and</strong> showed there are key times in the year when<br />

exposure of queens may be particularly important in determining the fate of a colony.<br />

A review of residues in bees after pesticide applications in the EFSA review (2012) provides<br />

evidence of the exposure of bees to applications aggregated through all routes of exposure,<br />

i.e. through direct overspray, foraging on treated crops <strong>and</strong> consumption of treated food <strong>and</strong><br />

water as samples were collected over time after exposure. This showed peak residues in the<br />

first sample after application with declines for spray applications over the following week. No<br />

data from systemic seed or soil application field studies were available but residues of<br />

imidacloprid <strong>and</strong> its metabolite 6-chloronitoctinic acid <strong>and</strong> fipronil <strong>and</strong> its metabolites were<br />

detected at low levels in monitoring studies<br />

Studies on residues deposited as dust containing neonicotinoids are summarised obviously<br />

this does not take into account recent EU requirements to limit dust emissions through the<br />

use of professionally treated seeds <strong>and</strong> deflectors. Drift during agricultural treatment<br />

determines the deposition of pesticides within a small distance from the field edge. What is<br />

less obvious is how to calculate the drift onto flowering weeds in the field margin as dust drift<br />

is unlikely to behave in the same way as spray drift due to the wide variations in particle size.<br />

Unfortunately the deposition data generated to date for grasses <strong>and</strong> flowering weeds in<br />

flower margins have limitations in terms of the reporting of sowing rates <strong>and</strong> seed treatment<br />

rates.<br />

Contact of bees with treated surfaces may occur through resting on treated leaves or during<br />

foraging on treated flowers. <strong>The</strong> major issue is that bees do not come into contact with the<br />

treated plant over the entire surface of their body but primarily through their feet; however<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 42 of 133<br />

Report to Syngenta Ltd


during resting <strong>and</strong> cleaning they may transfer residues from their feet to other parts of their<br />

bodies.<br />

<strong>The</strong> exposure of bees to pesticides in pollen depends on both the residues present <strong>and</strong> the<br />

amounts of pollen collected by the bees. <strong>The</strong> amount of pollen collected by a colony per day<br />

is highly variable <strong>and</strong> depends on pollen availability, crop species <strong>and</strong> the needs of the<br />

colony. On oilseed rape the amount of pollen collected varied with the stage of flowering with<br />

most collected in the latter stage. Bee bread is pollen processed from the pollen loads by<br />

bees for storage by combining with nectar or honey <strong>and</strong> addition of antimicrobial agents.<br />

This results in higher residues in bee bread than in pollen which may relate to differences in<br />

availability for residue analysis following processing of the pollen by bees.<br />

Flower morphology is an important factor in the pesticide content of nectar: flowers in which<br />

the nectar is deeper, such as clover, were less contaminated than shallower flowers such as<br />

cabbage <strong>and</strong> nectar yield/flower was less important in determining pesticide content. To<br />

date, there are no reports of pesticide residues in aphid honeydew after spray application but<br />

the intake by bees may be expected to be similar to that of nectar sources.<br />

Residues in honey formed from contaminated nectar <strong>and</strong> stored within the hive will depend<br />

on the concentration of nectar through evaporation of water to produce honey <strong>and</strong><br />

degradation of residues through biological <strong>and</strong> chemical factors in honey. Both factors are<br />

slow <strong>and</strong> counter each other to some extent <strong>and</strong> there are differences between honey<br />

contained in open <strong>and</strong> sealed cells.<br />

<strong>The</strong> residues of neonicotinoids pesticides detected in stored nectar <strong>and</strong> honey in field<br />

studies <strong>and</strong> available monitoring data for samples taken directly from colonies are<br />

summarised. Monitoring data for processed honey has been excluded as honey is combined<br />

from a large number of colonies <strong>and</strong> therefore residues may be diluted. For pesticides (not<br />

acaracides) the residues detected in the monitoring studies are lower than those reported in<br />

field studies.<br />

Water is collected by honeybees to dilute thickened honey, to produce brood food from<br />

stored pollen, to maintain humidity within the hive <strong>and</strong> to maintain temperature within the<br />

brood area. Water is not stored in combs by temperate bee colonies. <strong>The</strong> amount of water<br />

required depends on the outside air temperature <strong>and</strong> humidity, the strength of the colony<br />

<strong>and</strong> the amount of brood present. <strong>The</strong> production of water by evaporation of nectar to form<br />

honey may address at least some of this need. Water consumption by honeybee colonies<br />

has been assessed using confined of colonies provided with a source of water within the<br />

hive. To date there have been no published studies that demonstrate significant exposure of<br />

bees to guttating crops as a source of water in the field. Guttation fluid is unlikely to be<br />

identified by honeybees as a source of sugar due to the low levels present. <strong>Bees</strong> are less<br />

subject to dessication than most terrestrial insects due to their nectar diet <strong>and</strong> high metabolic<br />

water production<br />

<strong>Bees</strong>wax is produced by worker bees within the colony to house stores of nectar <strong>and</strong> pollen<br />

<strong>and</strong> for brood production. Production begins when the worker is slightly less than one week<br />

old, peaking at around two weeks <strong>and</strong> then reducing. It takes between 24 <strong>and</strong> 48 hours for<br />

any particular honeybee worker to produce a moderate-sized wax scale. If unchanged by a<br />

beekeeper wax within the colony may accumulate lipophilic residues over time both from<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 43 of 133<br />

Report to Syngenta Ltd


contaminated pollen <strong>and</strong> nectar brought into the hive <strong>and</strong> from chemicals used within the<br />

hive, e.g. varroacides. <strong>The</strong>re are no reports of neonicotinoids in beeswax from colonies<br />

Propolis is collected by bees as resin from trees, e.g. buds, primarily poplars <strong>and</strong> pine trees<br />

<strong>and</strong> is used within the hives to block small gaps <strong>and</strong> as a defense at the hive entrance<br />

against ants etc. <strong>and</strong> also as an anti-bacterial antifungal agent within the hive. <strong>The</strong> main<br />

propolis plants in Europe are poplar, birch, oak, alder, willow <strong>and</strong> hazel. Foragers collect<br />

the resin in their pollen baskets to return it to the hive <strong>and</strong> can carry approximately 10 mg.<br />

<strong>The</strong> chemical composition of propolis varies between sources but is a mixture of resins,<br />

terpenes <strong>and</strong> volatiles. Due to the range of sources of propolis <strong>and</strong> storage within the hive it<br />

can contain a range of contaminants but only a small number of reports exist of trace<br />

residues of pesticides present in propolis collected from colonies <strong>and</strong> propolis tinctures<br />

prepared from this <strong>and</strong> no reports of neonicotinoid pesticides<br />

<strong>The</strong>re are three possible sources of inhalation exposure of bees to pesticides. During<br />

applications of pesticides (is a similar manner to flying through spray), through vapour<br />

generated from residues on the crop after application <strong>and</strong> from stored pollen <strong>and</strong> nectar<br />

within the hive (<strong>and</strong> potentially water evaporated within the hive). <strong>The</strong>re are no reports of<br />

exposure associated with inhalation of neonicotinoid pesticide residues.<br />

Nectar collected by foragers from plants is transferred to in-hive bees at the colony entrance<br />

which then to further bees for transport to storage or brood combs. During spring <strong>and</strong><br />

summer large quantities of nectar are stored for use in periods of shortage, e.g. during<br />

breaks in nectar flow, periods of poor weather, or for over-wintering. Nectar is placed both in<br />

storage combs <strong>and</strong> also in brood combs close to larvae so it is readily available for brood<br />

rearing. <strong>The</strong> majority of published studies relate to in-hive treatments with varroacides <strong>and</strong><br />

antibiotics <strong>and</strong> solely measured residues in honey intended for human consumption.<br />

However, there are a small number of studies which specifically address the distribution of<br />

incoming contaminated nectar within hives, including that releasing just six foragers fed with<br />

radiolabelled sμgar into a colony resulted in about 20% of the workers in the brood area<br />

receiving some labelled food within 3.5 hours <strong>and</strong> this included nurse bees which<br />

demonstrated the potential exposure of brood. <strong>The</strong> nectar delivered to brood comb is used<br />

rapidly by nurse bees to feed larvae.<br />

For spray applications the residue per unit dose (RUD) can be calculated <strong>and</strong> used to<br />

determine the relative amounts of a pesticide available through each routes of exposure.<br />

<strong>The</strong> data for all routes of exposure is currently limited <strong>and</strong> would benefit feom a larger<br />

dataset.<br />

For seed treatments <strong>and</strong> soil applications the data available for calculation of an RUD<br />

approach is far more limited <strong>and</strong> there are a number of issues which require additional<br />

research, e.g. crop dependence, concentration dependence <strong>and</strong> active ingredient<br />

dependency of the RUD.<br />

Overspray can be related to the surface area of the bee which suggests the RUD for<br />

honeybees should be increased but although the surface area of bumble bees is likely to<br />

increase significantly due to their greater size they are also far more variable in size making<br />

any predictions unreliable.<br />

For bumble bees intake data are far more limited than for honeybees but some data are<br />

available for adults from queenless microcolonies under laboratory conditions. For larvae<br />

intake of sucrose is unclear but an approximation is available. However, the intake of<br />

foragers is not reported <strong>and</strong> therefore the data only relate to intake for metabolic<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 44 of 133<br />

Report to Syngenta Ltd


equirements. <strong>The</strong>re data can be used to identify possible RUDs but limited confidence can<br />

be held in these.<br />

<strong>The</strong>re was insufficient data available to assess the exposure of solitary bee species.<br />

2.6 Sublethal <strong>and</strong> chronic effects of neonicotinoids<br />

A large number of studies have been undertaken ion the sublethal <strong>and</strong> chronic effects of<br />

neonicotinoid pesticides on bees. <strong>The</strong>se are summarised in Tables 37-47 <strong>and</strong> show the wide<br />

range of dosing approaches <strong>and</strong> endpoints reported in both Apis <strong>and</strong> non-Apis (primarily<br />

Bombus) species. Data for fipronil are included in the tables for completeness but as there<br />

are no data available for residues in nectar the data are not discussed further.<br />

2.6.1 Honeybees<br />

<strong>The</strong> reported effects of neonicotinoids on honeybees under laboratory conditions is shown in<br />

Table 11 to Table 14. By far the majority of the reported literature relates to imidacloprid..<br />

Table 15 to Table 18 summarise the semi-field <strong>and</strong> field studies reported with neonicotinoid<br />

insecticides <strong>and</strong> fipronil again the majority of the studies relate to imidacloprid given the<br />

concerns about the limited dataset for the RUD the rates used have been compared in<br />

Figure 3 <strong>and</strong> Figure 4. <strong>The</strong>se show that a large number of dosing studies have been<br />

conducted at dose rates <strong>and</strong> concentrations in excess of the reported maximum<br />

concentrations for imidacloprid <strong>and</strong> thiamethoxam in nectar following use as seed<br />

treatments. Where effects were observed at or below rates close to this value (studies 4,<br />

11,19 <strong>and</strong> 31 for imidacloprid) three were related to biomarkers such as acinus diameter in<br />

the hypopharangela gl<strong>and</strong>, the proboscis extension reflex to sucrose, <strong>and</strong> one (Belien et al<br />

2010 a short summary paper where detailed data were not available) was associated with an<br />

adverse colony level effect at 1 µg/Kg. <strong>The</strong>re were far fewer studies with thiamethoxam <strong>and</strong><br />

none reported effects at or below the maximum field nectar residue reported (5.2 µg/Kg)<br />

following seed treatment.<br />

2.6.2 Bumblebees<br />

Table 19 to Table 21 summarise studies undertaken with non-Apis species. <strong>The</strong> vast<br />

majority have been undertaken with bumble bees <strong>and</strong> Figure 5 shows that in many<br />

imidacloprid was used at concentrations in excess of the maximum rate reported in nectar<br />

although the study by Whitehorn et al (2012) using colonies dosed in the laboratory <strong>and</strong><br />

Laycock et al (2012) using worker only microcolonies does report effects following dosing at<br />

field realistic rates. Figure 6 highlights that only a small number of studies have been<br />

undertaken in bumble bees with clothianidin <strong>and</strong> thiamethoxam <strong>and</strong> they do not show effects<br />

at field realistic rates.<br />

2.6.3 Conclusion<br />

A large number of studies have been undertaken on the sublethal <strong>and</strong> chronic effects of<br />

neonicotinoid pesticides on bees using a number of different exposure scenarios <strong>and</strong><br />

endpoints <strong>and</strong> by far the majority of the reported literature relates to imidacloprid that a large<br />

number of dosing studies have been conducted at dose rates <strong>and</strong> concentrations in excess<br />

of the reported maximum concentrations for imidacloprid <strong>and</strong> thiamethoxam in nectar<br />

following use as seed treatments. Where effects were observed at or below rates of<br />

imidaclorpid close to the maximum reported in nectar only one appears to be a nonbiomarker<br />

effect at the colony level. <strong>The</strong>re were far fewer studies with thiamethoxam <strong>and</strong><br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 45 of 133<br />

Report to Syngenta Ltd


none reported effects at or below the maximum field nectar residue reported following seed<br />

treatment.<br />

<strong>The</strong> vast majority of studies with non-Apis species have been undertaken with bumble bees<br />

<strong>and</strong> again in the majority imidacloprid was used at concentrations in excess of the maximum<br />

rate reported in nectar although 2 studies report effects following continuous dosing at field<br />

realistic rates. Only a small number of studies have been undertaken in bumble bees with<br />

clothianidin <strong>and</strong> thiamethoxam <strong>and</strong> they have not been reported to show effects at field<br />

realistic rates.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 46 of 133<br />

Report to Syngenta Ltd


Figure 3 Comparison of reported effect <strong>and</strong> no effect levels for imidacloprid in laboratory,<br />

semi-field <strong>and</strong> field honeybee dosing studies with a) maximum reported concentrations in<br />

nectar following use as a seed treatment (1.9 µg/Kg) or b) with calculated exposure of foragers<br />

based on this value (0.14 ng/bee) (intake rates per day have been divided by the expected 10<br />

foraging trips per day (Rortais et al 2005) to allow comparison with exposure to a single dose<br />

(foragers do not consume pollen). (Study numbers refer to Table 12 <strong>and</strong> Table 16)<br />

a)<br />

b)<br />

ng imidacloprid/bee<br />

ug imidacloprid/Kg<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

study<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

study<br />

no effect<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 47 of 133<br />

Report to Syngenta Ltd<br />

effect<br />

field nectar max<br />

no effect<br />

effect<br />

field nectar max


Figure 4. Comparison of reported effect <strong>and</strong> no effect levels for thiamethoxam in laboratory,<br />

semi-field <strong>and</strong> field honeybee dosing studies with a) maximum reported concentrations in<br />

nectar following use as a seed treatment (5.2 µg/Kg) or b) with calculated exposure of foragers<br />

based on this value (0.4 ng/bee)(intake rates per day have been divided by the expected 10<br />

foraging trips per day (Rortais et al 2005)) (foragers do not consume pollen) to allow<br />

comparison with exposure to a single dose. (study numbers refer to Table 13 <strong>and</strong> Table 17)<br />

a)<br />

b)<br />

ug thiamethoxam/Kg<br />

ng thiamethoxam/bee<br />

10000<br />

1000<br />

3.5<br />

100<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10<br />

1<br />

0 1 2 3 4 5 6 7<br />

study<br />

0 1 2 3 4 5 6 7<br />

study<br />

no effect<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 48 of 133<br />

Report to Syngenta Ltd<br />

effect<br />

field nectar max<br />

no effect<br />

effect<br />

field nectar max


Figure 5. Comparison of reported effect <strong>and</strong> no effect levels for imidacloprid in laboratory,<br />

semi-field <strong>and</strong> field bumble bee dosing studies with maximum reported concentrations in<br />

nectar(1.9 µg/Kg) <strong>and</strong> pollen (36 µg/Kg) following use as a seed treatment to allow comparison<br />

with exposure to a single dose (study numbers are shown in Table 20). Limited amounts of<br />

pollen are used by workers to construct nests <strong>and</strong> feed larvae<br />

imidacloprid ug/Kg<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

0 2 4 6 8 10<br />

study<br />

no effect<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 49 of 133<br />

Report to Syngenta Ltd<br />

effect<br />

field nectar max<br />

field pollen max<br />

Figure 6 Comparison of reported effect <strong>and</strong> no effect levels for thiamethoxam/clothianidin in<br />

laboratory, semi-field <strong>and</strong> field bumble bee dosing studies with maximum reported<br />

concentrations in nectar(5.2 µg/Kg) <strong>and</strong> pollen (51 µg/Kg) following use as a seed treatment to<br />

allow comparison with exposure to a single dose study numbers are shown inTable 21).<br />

Limited amounts of pollen are used by workers to construct nests <strong>and</strong> feed larvae.<br />

.<br />

thiamethoxam/clothianidn ug/Kg<br />

1000<br />

100<br />

10<br />

1<br />

0 1 2 3 4<br />

study<br />

no effect<br />

effect<br />

field nectar max<br />

field pollen max


Table 11 Overview of laboratory studies of the effects of sublethal <strong>and</strong> chronic exposure to acetamiprid <strong>and</strong> thiacloprid on Apis bees<br />

Expected maximum exposure of foragers (EFSA 99 th percentile based on 20% sugar in nectar expressed as µg/bee/day) if the application is at<br />

100 g ai/ha is also provided for comparison<br />

Compound tested<br />

Species<br />

Study type Test dose Test duration Endpoints Results / Notes Reference<br />

Acetamiprid<br />

‘<strong>Bees</strong>’<br />

Acetamiprid<br />

(99%)<br />

Apis mellifera<br />

Acetamiprid<br />

(99%)<br />

Honeybees<br />

- - - - Effects on communication<br />

<strong>and</strong> finding food reported<br />

Lab study /<br />

oral + contact<br />

/ adults<br />

Lab study /<br />

oral + contact<br />

exposures /<br />

adults<br />

1, 0.1<br />

µg/bee/d<br />

(oral,<br />

contact)<br />

0.1, 0.5,<br />

1µg/bee<br />

Contact: 1 µL<br />

(10%<br />

solvent)<br />

Oral:<br />

individually<br />

dosed in 10<br />

µL 40% (w/v)<br />

sucrose<br />

11d (from<br />

emergence)<br />

Locomotor activity<br />

1h after exposure<br />

Sucrose<br />

sensitivity: 1 h<br />

before <strong>and</strong> after<br />

treatment<br />

Olfactory learning:<br />

treatment 3 h<br />

before<br />

conditioning <strong>and</strong><br />

recording 1 h, 24<br />

h, 48 h after<br />

Behavioural<br />

functions<br />

(i) Locomotor<br />

activity<br />

(ii) Sucrose<br />

sensitivity<br />

(iii) Olfactory<br />

learning<br />

Oral dosing at 0.1 µg/bee<br />

significantly increased<br />

responsiveness to water.<br />

No other significant<br />

effects were seen <strong>and</strong><br />

acetamiprid induced no<br />

effect on learning <strong>and</strong><br />

memory<br />

(ii) Significant increase in<br />

distance moved for<br />

contact applications at 0.1<br />

<strong>and</strong> 0.5 µg/bee only.<br />

(ii) Significant decrease in<br />

sucrose responsiveness<br />

at 0.1 <strong>and</strong> 0.5 µg/bee<br />

following oral exposure<br />

only. Significant dose<br />

related increased PER to<br />

water at all contact doses.<br />

(iii) PER significantly<br />

reduced following oral<br />

exposure at 0.1 µg/bee<br />

after 48h only. No effect<br />

of contact exposure.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 50 of 133<br />

Report to Syngenta Ltd<br />

Information from<br />

abstract, paper in<br />

Italian<br />

Doses selected to<br />

fall between 1/5<br />

<strong>and</strong> 1/500 of LD50<br />

Maccagnani et<br />

al (2008)<br />

Aliouane et al<br />

(2009).<br />

El Hassani<br />

(2008)<br />

Thiacloprid Lab/oral/15d 5.1 mg/L (in 10d Mortality rate Mortality at 10d post Vidau et al


Compound tested<br />

Species<br />

Apis mellifera<br />

[tested both with<br />

<strong>and</strong> without<br />

Nosema ceranae<br />

infection]<br />

Study type Test dose Test duration Endpoints Results / Notes Reference<br />

postemergence<br />

(10d post<br />

infection)<br />

[infected with<br />

Nosema<br />

ceranae -<br />

125,000<br />

spores diluted<br />

in 3 mL of<br />

water - at 5d<br />

post<br />

emergence]<br />

50%<br />

sucrose, 1%<br />

protein, 0.1%<br />

DMSO)<br />

(1/100 LD50)<br />

exposure/observa<br />

tion period<br />

infection (thiacloprid +<br />

Nosema) was 71% while<br />

for the infected only group<br />

(no pesticide) the<br />

mortality was 47%.<br />

Thiacloprid only bees (no<br />

infection) did not differ<br />

from untreated controls.<br />

Table 12 Overview of laboratory studies of the effects of sublethal <strong>and</strong> chronic exposure to imidacloprid on Apis bees<br />

Compound tested<br />

Species<br />

Imidacloprid<br />

‘<strong>Bees</strong>’<br />

Imidacloprid<br />

(98%)<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

‘Chronic feeding<br />

study’<br />

Lab (flight<br />

cage)/oral /<br />

workers<br />

‘Sublethal’ - Sensitivity to<br />

imidacloprid<br />

when also<br />

stressed by<br />

Varroa<br />

destructor,<br />

Nosema apis,<br />

drugs or lack of<br />

48µg/kg<br />

(syrup)<br />

(i) 4d<br />

(treated)<br />

(ii) 4d<br />

(treated)<br />

Endpoints Results Notes (study<br />

reference in figure<br />

pollen supply.<br />

(i) Syrup<br />

consumption<br />

(ii) Foraging<br />

activity<br />

No indications of<br />

significant differences in<br />

sensitivity to imidacloprid<br />

between bees under other<br />

stressors <strong>and</strong> control<br />

bees<br />

(i) Significant reduction<br />

during treatment phase<br />

(ii) Significant reduction in<br />

during treatment (mean<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 51 of 133<br />

Report to Syngenta Ltd<br />

20)<br />

Information from<br />

abstract, only<br />

abstract available<br />

(1)<br />

(2011)<br />

Reference<br />

Wehling et al<br />

(2009)<br />

(2) Ramirez-<br />

Romero et al<br />

(2005)


Compound tested<br />

Species<br />

Imidacloprid<br />

Apis mellifera<br />

Imidacloprid<br />

metabolites (olefin,<br />

5-hydroxyimidacloprid,4,5dihydroxyimidacloprid,ureaimidacloprid,<br />

denitro-imidacloprid,<br />

<strong>and</strong> 6-chloronicotinic<br />

acid)<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

Lab study / contact<br />

exposure / adults<br />

Lab study / contact<br />

exposure / adults<br />

0.1, 1, 10<br />

ng/bee<br />

(i) 1 ng/bee (+<br />

further tests at<br />

0.1ng/bee for<br />

olefin <strong>and</strong> 5hydroxyimidacloprid)<br />

(iii) 2d<br />

(treated)<br />

15 min, 1 h,<br />

4 h after<br />

application<br />

(i) 15 min,<br />

after<br />

application<br />

Endpoints Results Notes (study<br />

reference in figure<br />

(iii) Olfactory<br />

learning<br />

Habituation<br />

(PER)<br />

Proboscis<br />

extension reflex<br />

(PER)<br />

4.8 visits) <strong>and</strong> post<br />

treatment (mean 20.4<br />

visits) phases c.f. before<br />

treatment (mean 23.7<br />

visits).<br />

(iii) Non-significant<br />

reduction in visits to<br />

scented sites during<br />

treated period c.f. before<br />

<strong>and</strong> after treatment.<br />

In 7d old bees:<br />

imidacloprid at 10ng/bee<br />

significantly increased the<br />

number of trials required<br />

In 8-day-old bees<br />

imidacloprid decreased<br />

the number of trials<br />

required at 15min <strong>and</strong> 1h<br />

but increased at 4h<br />

(i) In normal conditions<br />

PER requires more days<br />

in older (8 - 10 days) than<br />

younger (4 - 7 days) bees<br />

In 7-day-old bees: only<br />

olefin increased the<br />

number of trials required<br />

(also at 0.1ng/bee).<br />

In 8-day-old bees only 5hydroxy-imidacloprid<br />

significantly decreased<br />

the number of trials<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 52 of 133<br />

Report to Syngenta Ltd<br />

20)<br />

Reference<br />

(3) Guez et al<br />

(2001)<br />

(4) Guez et al.<br />

(2003)


Compound tested<br />

Species<br />

Imidacloprid<br />

Apis mellifera<br />

Imidacloprid<br />

(Technical >97%)<br />

+ metabolites<br />

Study type Test dose Test<br />

duration<br />

Lab study / contact<br />

exposure / adults<br />

Lab study / oral<br />

acute & chronic<br />

exposures / adults<br />

(ii) 1, 10<br />

ng/bee 5hydroxyimidacloprid<br />

1µl at 1.25,<br />

2.5, 5, 10, 20<br />

ng/bee<br />

0.1, 1, 10 µg/L<br />

for 10 days<br />

<strong>and</strong><br />

(ii) 1h after<br />

application<br />

0, 15, 30<br />

<strong>and</strong> 60 mins<br />

after<br />

treatment<br />

10 days<br />

8 days<br />

Endpoints Results Notes (study<br />

reference in figure<br />

(i) Gustatory<br />

function<br />

(ii) Motor activity<br />

(iii) Nonassociative<br />

learning abilities<br />

(PER)<br />

Mortality; hyperresponsiveness,<br />

hyperactivity,<br />

required (not significant at<br />

0.1ng/bee) while olefin<br />

significantly increased the<br />

number of trials required<br />

as in 7 d old bees(also at<br />

0.1ng/bee).<br />

(ii) Significant increase in<br />

number of trials required<br />

at both doses (suggests<br />

that effect not due tohydroxy-imidacloprid<br />

but<br />

its metabolites – most<br />

likely olefin).<br />

(i) 5 ng/bee <strong>and</strong> above<br />

had a significant effect on<br />

the gustatory function<br />

(ii) 2.5ng/bee <strong>and</strong> above<br />

significantly impaired<br />

motor activity in open field<br />

(these effects are<br />

amplified over time).<br />

Motor activity was<br />

significantly enhanced at<br />

1.25ng/bee<br />

(iii) PER habituation was<br />

significantly facilitated at<br />

doses below 2.5 ng/bee<br />

50 % mortality after 8<br />

days<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 53 of 133<br />

Report to Syngenta Ltd<br />

20)<br />

Reference<br />

(5) Lambin et al<br />

(2001)<br />

(6) Suchail et al<br />

(2001)


Compound tested<br />

Species<br />

5hydroxymidacloprid;4,5dihydroxyimidaclopri<br />

d;<br />

Desnitroimidacloprid<br />

, 6-chloronicotinic<br />

acid;<br />

Olefin;<br />

Urea derivative<br />

Apis mellifera<br />

Imidacloprid<br />

(99.4%)<br />

Apis mellifera<br />

ligustica<br />

(5-OH-imidacloprid<br />

(99.4%) also tested)<br />

Study type Test dose Test<br />

duration<br />

Lab study / oral<br />

exposure / adults<br />

cumulative<br />

dose 0.01; 0.1;<br />

1 ng/bee after<br />

8 days (in 50%<br />

w/v sucrose<br />

solution)<br />

1.5, 3, 6, 12,<br />

24, 48µg/kg in<br />

50% sucrose<br />

solution<br />

(extra dose of<br />

96µg/kg used<br />

in experiment<br />

on summer<br />

bees)<br />

Concentration<br />

s based on<br />

intake of 33<br />

Exposed<br />

11d from<br />

day 2 to 14-<br />

15.<br />

Endpoints Results Notes (study<br />

reference in figure<br />

trembling Imidacloprid LD50 = 57<br />

ng/bee after 48 h, 37<br />

ng/bee after 72 & 96 h<br />

Mortality, PER,<br />

foraging<br />

LD50 5hydroxymidacloprid<br />

><br />

LD50 imidacloprid (258,<br />

206, 222ng/bee)<br />

LD50 Olefine < LD50<br />

imidacloprid (28, 29,<br />

23ng/bee)<br />

Toxicity of other<br />

metabolites >1000ng/bee<br />

48, 72, 96h<br />

All compounds toxic in<br />

chronic 10d test with<br />

mortality after 72h.<br />

Significant increase in<br />

mortality after 11d at<br />

48µg/kg in winter bees<br />

<strong>and</strong> 96µg/kg<br />

No significant effect on<br />

reflex response in winter<br />

bees. Significant<br />

reduction in response at<br />

48<strong>and</strong> 96µg/kg<br />

Learning performance of<br />

winter bees significantly<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 54 of 133<br />

Report to Syngenta Ltd<br />

20)<br />

Reference<br />

(7) Decourtye et<br />

al (2003)


Compound tested<br />

Species<br />

Imidacloprid<br />

(98%)<br />

Apis mellifera L.<br />

Imidacloprid<br />

Apis mellifera<br />

carnica<br />

Imidacloprid<br />

(Confidor)<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

Lab study / oral<br />

exposure / adults<br />

Lab study / oral<br />

exposure / adults<br />

Lab study / oral<br />

exposure / adults<br />

µL/bee/d<br />

2 - 32 ng/bee<br />

12 <strong>and</strong> 0.12<br />

ng/bee<br />

(25mg/L <strong>and</strong><br />

250µg/L in<br />

30% sucrose<br />

solution with<br />

0.5µL fed to<br />

each 15-6d old<br />

bee with<br />

micropipette)<br />

1 ppb<br />

(1/10 LD)<br />

100, 500 ppb<br />

at single dose<br />

(20µL) <strong>and</strong> ad<br />

libitum (in 50%<br />

sucrose)<br />

Short (30 s<br />

to 3 min) -<br />

mid (15 to<br />

60 min) <strong>and</strong><br />

long term<br />

(24 h)<br />

Sampled<br />

treated 7d<br />

old bees 1d<br />

<strong>and</strong>7d after<br />

treatment<br />

Recorded at<br />

0 - 30 mins;<br />

30 - 60<br />

mins;<br />

1 - 2 h; 6.5 -<br />

7 h; 23 -<br />

23.5h<br />

Endpoints Results Notes (study<br />

reference in figure<br />

Olfactory<br />

learning (PER)<br />

Size <strong>and</strong><br />

morphology of<br />

HPG on 8- <strong>and</strong><br />

14-days-old<br />

affected at 48µg/kg. In<br />

summer bees significant<br />

impairment occurred at<br />

12µg/kg <strong>and</strong> all higher<br />

doses<br />

Significant increase of<br />

cytochrome oxydase (CO)<br />

in mushroom bodies.<br />

No significant on PER to<br />

sucrose solution alone.<br />

Impairment of medium<br />

term olfactory learning at<br />

highest dose No effect on<br />

short (0 s - 3 min) <strong>and</strong><br />

long (24 h) term of OL<br />

No effects<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 55 of 133<br />

Report to Syngenta Ltd<br />

bees<br />

Activity Mobility significantly<br />

reduced with effects<br />

starting at 30 - 60 min<br />

after ingestion <strong>and</strong><br />

disappearing after a few<br />

hours<br />

Suggested effects could<br />

result in reduced capacity<br />

to communicate.<br />

20)<br />

Reference<br />

(8) Decourtye et<br />

al (2004a)<br />

(9) Heylen et al<br />

(2011)<br />

(10)<br />

Medrzycki et al<br />

(2003)<br />

Imidacloprid Lab study / oral 500ng/kg (in Exposure24 Hypopharyngeal Significant HPG acinus (11) Smodis Skerl


Compound tested<br />

Species<br />

(Gaucho)<br />

Apis mellifera<br />

carnica<br />

Imidacloprid<br />

metabolites (urea<br />

NTN <strong>and</strong> 6-CAN)<br />

Apis mellifera<br />

Imidacloprid<br />

(98%)<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

exposure / adults 35% sugar<br />

water)<br />

Lab study / oral<br />

exposure / Adults<br />

of two age cohorts<br />

(emerging versus<br />

foragers)<br />

Lab/contact<br />

exposure/worker<br />

bees<br />

0.1, 1 <strong>and</strong> 10<br />

µg/L (in 50%<br />

sucrose)<br />

(i) Topical<br />

application<br />

(1µl) 1.25,<br />

2.50, 5ng/bee<br />

(ii) Topical<br />

application<br />

(1µl) 1.25,<br />

2.50, 5ng/bee<br />

(iii) Topical<br />

application<br />

(1µl)<br />

1.25ng/bee<br />

Endpoints Results Notes (study<br />

reference in figure<br />

, 48 or 72 h gl<strong>and</strong>s (HPG)<br />

acinus diameter<br />

in 1-6, 7-12, 13-<br />

18, 19-32d old<br />

24 h, 48 h,<br />

10 days<br />

(i) 15, 30,<br />

60mins<br />

(ii) 15, 30,<br />

60mins<br />

(iii) 15, 30,<br />

60mins<br />

(iv) 30mins<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 56 of 133<br />

Report to Syngenta Ltd<br />

bees<br />

Mortality, knock<br />

down,<br />

staggering,<br />

responsiveness<br />

(i) Gustatory<br />

threshold<br />

(ii) Locomotion<br />

(iii) Habituation<br />

(proboscis<br />

extension reflex<br />

- PER)<br />

(iv) CO<br />

diameter variations at all<br />

treatment periods.<br />

No significant effects<br />

found.<br />

(i) No effects at 1.25 or<br />

2.50 ng/bee<br />

Loss of sensitivity after<br />

60mins at 5ng/bee<br />

(ii) Increase in<br />

displacements at<br />

1.25ng/bee<br />

Significant increase in<br />

locomotion at 2.50ng/bee<br />

after 15min<br />

Significant decrease in<br />

displacements at 5ng/bee<br />

after 30mins (loss of<br />

motor coordination with<br />

no behavioural recovery<br />

after 2h).<br />

(iii) Fewer trials to display<br />

PER at 1.25ng/bee. No<br />

effect of time.<br />

20)<br />

Reference<br />

<strong>and</strong> Gregorc<br />

(2010)<br />

(12) Schmuck<br />

(2004)<br />

(13) Armengaud et<br />

al (2002)


Compound tested<br />

Species<br />

Imidacloprid<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

(iv Intracranial<br />

injection of<br />

0.5µl (10-8,<br />

10-6 or 10-4M<br />

imidacloprid)<br />

at the brain<br />

surface<br />

Lab/oral/adult 0.7, 7, 70µg/kg<br />

Exposure<br />

method not<br />

defined.<br />

10d (i) individual<br />

energetic<br />

dem<strong>and</strong>s<br />

Endpoints Results Notes (study<br />

reference in figure<br />

histochemistry (iv) Glomeruli. Significant<br />

increase in staining (+8%<br />

to +17%) of two regions of<br />

glomeruli in line with<br />

dose.<br />

α lobe. Reduction of CO<br />

labelling at 10-8M,<br />

increased labelling at<br />

other doses with<br />

significant increase at 10-<br />

4M (maximum increase of<br />

23% for dorsal layer B1)<br />

Calyces. Significant<br />

reduction in labelling at<br />

10-8M at lip <strong>and</strong> basal<br />

ring. Significant reduction<br />

at 10-6M in basal ring<br />

only. Significant increase<br />

for both at 10-4M.<br />

Central body. Significant<br />

increase in staining in<br />

both upper <strong>and</strong> lower<br />

divisions at 10-4M.<br />

Opposite effects at lower<br />

doses.<br />

(i) Imidacloprid alone - no<br />

effect<br />

Imidacloprid + Nosema –<br />

significant increase in<br />

energy stress (sucrose<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 57 of 133<br />

Report to Syngenta Ltd<br />

20)<br />

Reference<br />

(14) Alaux et al<br />

(2010)


Compound tested<br />

Species<br />

Imidacloprid<br />

Apis mellifera<br />

carpatica<br />

Imidacloprid<br />

Apis mellifera<br />

ligustica L.)<br />

Imidacloprid<br />

Honeybees<br />

Study type Test dose Test<br />

duration<br />

(control,<br />

imidacloprid<br />

only, Nosema<br />

only, Nosema<br />

+ imidacloprid)<br />

Lab/oral/adult 0.05% to<br />

0.00005%<br />

Lab/oral/adults LD50/100-<br />

LD50/10<br />

Lab/oral/workers 4 <strong>and</strong> 8 µg/L in<br />

syrup (500g/L<br />

Endpoints Results Notes (study<br />

reference in figure<br />

(ii) individual<br />

immunity<br />

(iii) social<br />

immunity<br />

2 to 300min Behaviour<br />

(mortality)<br />

60d<br />

(chronic)<br />

Olfactory<br />

sensitivity -<br />

Proboscis<br />

extension reflex<br />

(PER)<br />

consumption) over<br />

control, imidacloprid <strong>and</strong><br />

Nosema only groups<br />

(ii) No effect on<br />

haemocyte number or<br />

phenoloxidase.<br />

(iii) Activity of glucose<br />

oxidase was significantly<br />

decreased by the<br />

combination of both<br />

factors compared with<br />

control, Nosema or<br />

imidacloprid groups,<br />

suggesting a synergistic<br />

interaction <strong>and</strong> reduced<br />

ability to sterilize colony<br />

<strong>and</strong> brood food.<br />

Negative effects reported<br />

included apathy, laboured<br />

breathing, un-coordination<br />

<strong>and</strong> convulsion reported<br />

but no details of doses<br />

etc. except for mortality.<br />

No effect on olfactory<br />

sensitivity assays but<br />

increased the waterinduced<br />

PER<br />

Survival time Significant reduction in<br />

survival time. Survival<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 58 of 133<br />

Report to Syngenta Ltd<br />

20)<br />

Reference<br />

(15) Moise et al<br />

(2003)<br />

Deltamethrin also<br />

tested<br />

(16)<br />

Information taken<br />

from abstract,<br />

paper in Chinese<br />

Mean consumption<br />

of syrup per bee<br />

Song et al<br />

(2011)<br />

Dechaume<br />

Moncharmont


Compound tested<br />

Species<br />

Imidacloprid<br />

Apis mellifera<br />

Imidacloprid<br />

(analytical st<strong>and</strong>ard)<br />

Apis mellifera<br />

ligustica<br />

Imidacloprid<br />

(analytical st<strong>and</strong>ard)<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

sucrose)<br />

Lab/oral/workers (i) 4, 8, 40ppb<br />

in diet<br />

[<br />

(ii) 50 ppb<br />

imidacloprid in<br />

50%<br />

saccharose<br />

solution<br />

Lab/oral/workers 0.21ng/bee<br />

(24ppb) or<br />

2.16ng/bee<br />

(241ppb) in<br />

56% sucrose<br />

Lab/oral/workers<br />

(hives placed in<br />

(each bee fed<br />

7µL<br />

imidacloprid in<br />

2.0mol/L<br />

sucrose<br />

solution using<br />

micropipette)<br />

0.21ng/bee<br />

(24ppb)<br />

in 56%<br />

(i) 11d<br />

(ii) 13d<br />

exposure<br />

Endpoints Results Notes (study<br />

reference in figure<br />

(i) Olfactory<br />

conditioning<br />

(PER)<br />

(ii) Flight activity<br />

(flight cage)<br />

1h Sucrose<br />

response (PER)<br />

24h (i) Visits to<br />

feeder<br />

time was 28.3±5.6d<br />

(mean ± st<strong>and</strong>ard error) at<br />

4 µg/L <strong>and</strong> 31.3±4.1d at 8<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 59 of 133<br />

Report to Syngenta Ltd<br />

µg/L<br />

(i) Significantly higher<br />

mortality at 8 <strong>and</strong> 40ppb.<br />

Significantly lower<br />

performance in<br />

conditioning test at all<br />

doses.<br />

(ii) Decreased flight<br />

activity <strong>and</strong> olfactory<br />

discrimination.<br />

Nectar foragers:<br />

significant increase in<br />

sucrose response<br />

threshold (SRT) at both<br />

dose levels<br />

Pollen foragers:<br />

significant effect on SRT<br />

at highest dose only.<br />

Significant reduction in<br />

total PER/bee at both<br />

doses in nectar foragers<br />

<strong>and</strong> highest dose in pollen<br />

foragers.<br />

(i) No significant treatment<br />

related effect.<br />

20)<br />

was 20±0.95 µl/d<br />

(17)<br />

Reference<br />

et al (2003)<br />

(18) Decourtye et<br />

al (2001)<br />

(19) Eiri <strong>and</strong> Nieh<br />

(2012)<br />

(20) Eiri <strong>and</strong> Nieh<br />

(2012)


Compound tested<br />

Species<br />

ligustica temperature<br />

controlled room<br />

with sucrose<br />

feeder (50% w/w)<br />

1.5m from hive<br />

entrance)<br />

Imidacloprid<br />

Apis mellifera L.<br />

Imidacloprid<br />

Apis mellifera L.<br />

Imidacloprid<br />

(99.8%)<br />

Apis mellifera<br />

ligustica<br />

Imidacloprid<br />

Apis mellifera L.<br />

Study type Test dose Test<br />

duration<br />

Lab/oral/workers<br />

Lab/oral/workers<br />

12d old at testing<br />

sucrose<br />

(each bee fed<br />

7µL<br />

imidacloprid in<br />

2.0mol/L<br />

sucrose<br />

solution using<br />

micropipette)<br />

48ng/g in<br />

treated pollen<br />

(water, honey<br />

<strong>and</strong> pollen<br />

1:2:7 by<br />

weight)<br />

48ng/g in<br />

treated pollen<br />

(water, honey<br />

<strong>and</strong> pollen<br />

1:2:7 by<br />

weight)<br />

Lab/oral/workers 4 or 8µg/L in<br />

sucrose<br />

solution<br />

Lab/oral/workers<br />

(Video-tracking<br />

study)<br />

0.05, 0.5, 5.0,<br />

50 or 500ppb<br />

in sucrose<br />

7d<br />

exposure<br />

7d<br />

exposure,<br />

1d<br />

starvation,<br />

1d test<br />

Endpoints Results Notes (study<br />

reference in figure<br />

(ii) Average<br />

number of<br />

dance circuits<br />

per nest visit<br />

(iii) Unloading<br />

wait time<br />

(i) Mortality<br />

during chronic<br />

exposure<br />

(ii) Feeding<br />

behaviour<br />

(i) Visual<br />

learning<br />

capacity (Tmaze)<br />

(ii) Conditioned<br />

PER<br />

60d Sucrose<br />

consumption<br />

26h (i) Activity<br />

(ii) Significant reduction in<br />

waggle dances in<br />

imidacloprid treated group<br />

(iii) No treatment related<br />

effect on wait time<br />

(i) No significant treatment<br />

related effect<br />

(ii) Significantly reduced<br />

pollen consumption over<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 60 of 133<br />

Report to Syngenta Ltd<br />

7d<br />

(i) Significantly fewer<br />

successful bees un<br />

treated group.<br />

(ii) No significant effects<br />

on PER<br />

No significant effect of<br />

treatment (although<br />

significantly reduced<br />

survival time at both<br />

concentrations compared<br />

to control).<br />

(i) Significant reduction in<br />

distance travelled at 50<br />

<strong>and</strong> 500ppb. No<br />

significant effect at lower<br />

20)<br />

Reference<br />

(21) Han et al<br />

(2010)<br />

(22) Han et al<br />

(2010)<br />

(23)<br />

Moncharmont<br />

et al (2003)<br />

(24) Teeters et al<br />

(2012)


Compound tested<br />

Species<br />

Study type Test dose Test<br />

duration<br />

Endpoints Results Notes (study<br />

reference in figure<br />

20)<br />

(ii) Time spent in<br />

food zone<br />

(iii) Time<br />

interacting<br />

doses.<br />

(ii) Increased with dose<br />

from a mean of 78.98min<br />

at 0.05ppb to 587.62 at<br />

500ppb although<br />

significantly different from<br />

controls (114.68min) only<br />

at 50 <strong>and</strong> 500ppb.<br />

(iii) Non significant dose<br />

related decrease in<br />

interaction time from<br />

106.29min at 0.05ppb to<br />

69.91min at 500ppb<br />

(control 147.44min).<br />

Table 13 Overview of laboratory studies of the effects of sublethal <strong>and</strong> chronic exposure to thiamethoxam on Apis bees<br />

Compound tested<br />

Species<br />

Thiamethoxam<br />

(97%)<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

Lab study / oral +<br />

contact exposures<br />

/ adults<br />

1, 0.1 ng/bee/d<br />

(oral, contact)<br />

11d (from<br />

emergence)<br />

Endpoints Results Notes (study<br />

reference in figure<br />

Behavioural<br />

functions<br />

Contact exposure induced<br />

either a significant<br />

decrease of olfactory<br />

memory 24 h after<br />

learning at 0.1 ng/bee or a<br />

significant impairment of<br />

learning performance with<br />

no effect on memory at 1<br />

ng/bee. Responsiveness<br />

to antennal sucrose<br />

stimulation was<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 61 of 133<br />

Report to Syngenta Ltd<br />

21)<br />

Doses selected to<br />

fall between 1/5<br />

<strong>and</strong> 1/500 of LD50<br />

(1)<br />

Reference<br />

Reference<br />

Aliouane et al<br />

(2009).


Compound tested<br />

Species<br />

Thiamethoxam<br />

(97%)<br />

Honeybees<br />

Thiamethoxam<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

Lab study / oral +<br />

contact exposures<br />

/ adults<br />

Lab study / oral<br />

exposure / adults<br />

0.1, 0.5,<br />

1ng/bee<br />

Contact: 1 µL<br />

Oral:<br />

individually<br />

dosed in 10 µL<br />

40% (w/v)<br />

sucrose<br />

6 µg/mL,<br />

3 µg/mL,<br />

1.5 µg/mL,<br />

0.5 µg/mL,<br />

0.05 µg/mL,<br />

0.005 µg/mL<br />

Locomotor<br />

activity 1h<br />

after<br />

exposure<br />

Sucrose<br />

sensitivity: 1<br />

h before<br />

<strong>and</strong> after<br />

treatment<br />

Olfactory<br />

learning:<br />

treatment 3<br />

h before<br />

conditioning<br />

<strong>and</strong><br />

recording 1<br />

h, 24 h, 48<br />

h after<br />

0-, 7-, 14-<br />

<strong>and</strong> 21-dayold<br />

bees in<br />

boxes tests<br />

with feeder<br />

for 24 h<br />

Endpoints Results Notes (study<br />

reference in figure<br />

(i) Locomotor<br />

activity<br />

(ii) Sucrose<br />

sensitivity<br />

(iii) Olfactory<br />

learning<br />

(i) Mortality,<br />

significantly decreased for<br />

high sucrose<br />

concentrations (1 ng/bee).<br />

(i) No effects on<br />

locomotor activity<br />

(ii) No effects on<br />

sensitivity<br />

(iii) No effects on ulfacory<br />

learning<br />

(i) Age <strong>and</strong> dose related<br />

effect on mortality with<br />

higher mortality rates in<br />

younger bees<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 62 of 133<br />

Report to Syngenta Ltd<br />

21)<br />

Reference<br />

(2) El Hassani<br />

(2008)<br />

(3) Falco et al<br />

(2010)<br />

(ii) Acceptance / (ii) Rejection at high dose<br />

rejection of food, <strong>and</strong> acceptance at low<br />

(mixed with<br />

honey 1:1)<br />

dose<br />

Thiamethoxam Lab/oral/workers 3 ng bee - Associative Only 38% of the treated (4) Decourtye <strong>and</strong>


Compound tested<br />

Species<br />

Study type Test dose Test<br />

duration<br />

Honeybees learning<br />

between a<br />

visual mark <strong>and</strong><br />

a reward (sugar<br />

solution) in a<br />

complex maze.<br />

Endpoints Results Notes (study<br />

reference in figure<br />

bees negotiated the maze<br />

with no mistakes<br />

compared to 61% in the<br />

control group.<br />

Table 14 Overview of laboratory studies of the effects of sublethal <strong>and</strong> chronic exposure to fipronil on Apis bees<br />

Compound tested<br />

Species<br />

Fipronil<br />

Apis mellifera<br />

Fipronil<br />

Honeybees<br />

Study type Test dose Test<br />

duration<br />

Lab study / contact<br />

exposure / adults<br />

Lab study /<br />

exposure through<br />

injection on thorax<br />

/ adults<br />

0.5ng/bee<br />

(c. 1/10 LD50)<br />

0.1 or<br />

0.5ng/bee at<br />

+20 <strong>and</strong><br />

+60min<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 63 of 133<br />

Report to Syngenta Ltd<br />

21)<br />

Reference<br />

Devillers<br />

(2010)<br />

Endpoints Results Notes Reference<br />

3-24h Learning (PER) Decreased acquisition<br />

success.<br />

1h, 24h,<br />

48h<br />

Olfactory<br />

learning (PER)<br />

Subsequent memory<br />

performances lowered.<br />

No effect on distribution of<br />

responses to the tactile<br />

stimuli between sides.<br />

Olfactory learning<br />

significantly impaired at<br />

0.1ng/bee (1h <strong>and</strong> 24h<br />

only), but not impaired at<br />

0.5ng/bee.<br />

Bendahou et<br />

al (2009)<br />

El Hassani et<br />

al. (2009)


Compound tested<br />

Species<br />

Fipronil<br />

(98.5%)<br />

Apis mellifera<br />

Fipronil<br />

Apis mellifera<br />

Fipronil<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

Lab study / oral +<br />

contact exposures<br />

/ adults<br />

Lab study / oral +<br />

contact exposures<br />

/ adults<br />

Lab study / oral +<br />

contact exposures<br />

/ adults<br />

0.1, 0.01<br />

ng/bee/d<br />

(oral, contact)<br />

0.1, 0.5,<br />

1ng/bee<br />

(+0.01ng/bee<br />

oral for PER)<br />

Contact: 1 µL<br />

Oral:<br />

individually<br />

dosed in 10 µL<br />

40% (w/v)<br />

sucrose<br />

Acute:1, 0.5,<br />

0.1 ng/bee<br />

Chronic: 0.1,<br />

11d (from<br />

emergence)<br />

1 h before<br />

<strong>and</strong> 1 h<br />

after<br />

treatment<br />

Foraging<br />

bees (acute<br />

toxicity) <strong>and</strong><br />

emerging<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 64 of 133<br />

Report to Syngenta Ltd<br />

Endpoints Results Notes Reference<br />

Behavioural<br />

functions<br />

(i) Locomotor<br />

activity<br />

(ii) Sucrose<br />

sensitivity<br />

(iii) Olfactory<br />

learning<br />

Memory,<br />

learning, odour<br />

sensitivity<br />

Mortality at 0.1ng/bee<br />

after 1 week<br />

Contact treatment at<br />

0.01ng/bee, caused bees<br />

to spend significantly<br />

more time immobile in an<br />

open-field apparatus <strong>and</strong><br />

to ingest significantly<br />

more water.<br />

Oral <strong>and</strong> contact<br />

exposure at 0.01ng/bee<br />

did not affect learning<br />

performance.<br />

(i) Oral or contact: no<br />

effect on locomotor<br />

activity<br />

(ii) Contact: 1 ng/bee<br />

significantly decreased<br />

sucrose sensitivity 1 h<br />

after treatment<br />

(iii) Contact exposure at<br />

0.5 ng/bee significantly<br />

impaired olfactory<br />

learning<br />

Contact: acute: 1ng/bee<br />

decreases sensitivity to<br />

sugar solution (low<br />

concentrated)<br />

Doses selected to<br />

fall between 1/5<br />

<strong>and</strong> 1/500 of LD50<br />

Aliouane et al<br />

(2009).<br />

El Hassani et<br />

al (2005)<br />

Gauthier et al<br />

(2009)


Compound tested<br />

Species<br />

Fipronil<br />

(98.5%)<br />

Apis mellifera<br />

ligustica<br />

Fipronil<br />

(Reagent grade)<br />

Africanized Apis.<br />

mellifera<br />

Study type Test dose Test<br />

duration<br />

Lab study / oral<br />

exposure / adults<br />

Lab study / oral<br />

exposure / larvae<br />

0.01 ng/bee bees<br />

(chronic) for<br />

11 days<br />

0.075, 0.15,<br />

0.3ng/bee/d<br />

(2.2, 4.5, 9<br />

µg/L in<br />

sucrose<br />

solution<br />

allowing<br />

33µL/bee/d)<br />

Highest dose<br />

1/20 LD50<br />

0.1, 1 µg/g (in<br />

food, 10g royal<br />

jelly,7.4ml<br />

distilled water,<br />

1.4g Dglucose,<br />

1.4g<br />

D-fructose <strong>and</strong><br />

0.2g yeast<br />

2 to 14-15day-old<br />

bees<br />

treated daily<br />

during 11d<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 65 of 133<br />

Report to Syngenta Ltd<br />

Endpoints Results Notes Reference<br />

Proboscis<br />

Extension<br />

Response PER<br />

on 14-15d bees<br />

3d Larvae mortality,<br />

morphological<br />

alterations of<br />

midgut<br />

0.5ng/bee affect learning<br />

<strong>and</strong> memory (PER)<br />

Chronic exposure at<br />

0.1ng/bee leads to 100%<br />

mortality, at 0.01ng/bee<br />

(contact) reduction in<br />

locomotion <strong>and</strong> increase<br />

in water consumption;<br />

0.01ng/bee (contact or<br />

oral) decreases odour<br />

discrimination<br />

Dose related mortality<br />

40.6, 87.3 <strong>and</strong> 91.1%<br />

(control 6.6%).<br />

Significantly lower<br />

conditioned PER<br />

response at middle dose<br />

for test 4 (highest dose<br />

not tested).<br />

No significant effect on<br />

survival<br />

Morphological alterations<br />

in mid-gut.<br />

Decourtye et<br />

al (2005)<br />

Cruz et al<br />

(2010)


Compound tested<br />

Species<br />

Fipronil<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

Lab/oral/15d postemergence<br />

(10d<br />

post infection)<br />

[infected with<br />

Nosema ceranae -<br />

125,000 spores<br />

diluted in 3 mL of<br />

water - at 5d post<br />

emergence]<br />

extract)<br />

1 µg/L (in 50%<br />

sucrose, 1%<br />

protein, 0.1%<br />

DMSO)<br />

(1/100 LD50)<br />

10d<br />

exposure/o<br />

bservation<br />

period<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 66 of 133<br />

Report to Syngenta Ltd<br />

Endpoints Results Notes Reference<br />

Mortality rate Mortality at 10d post<br />

infection (fipronil +<br />

Nosema) was 82% while<br />

for the infected only group<br />

(no pesticide) the<br />

mortality was 47%.<br />

Fipronil only bees (no<br />

infection) did not differ<br />

from untreated controls.<br />

Vidau et al<br />

(2011)


Table 15: Overview of semi-field <strong>and</strong> field studies of the effects of sublethal <strong>and</strong> chronic exposure to acetamiprid <strong>and</strong> thiacloprid pesticides on<br />

Apis bees<br />

Compound tested<br />

Species<br />

Acetamiprid<br />

[Epik],<br />

Imidacloprid<br />

[Confidor],<br />

Thiacloprid<br />

[Calypso],<br />

Thiamethoxam<br />

[Actara]<br />

Apis mellifera<br />

ligustica<br />

Thiacloprid<br />

(480g/L SC)<br />

Apis mellifera L.<br />

Study type Test dose Test<br />

duration<br />

Semifield /field<br />

(spray)/workers<br />

(Five tunnels of<br />

19.8m2, one<br />

included for the<br />

control, sown with<br />

a Phacelia<br />

tanacetifolia. Each<br />

tunnel divided into<br />

six plots of 3.3m2.<br />

One hive of about<br />

7000±500 bees<br />

was positioned<br />

inside some days<br />

before the spray.)<br />

Semi-field (Tunnel)<br />

/ field / workers<br />

<strong>The</strong><br />

investigations<br />

were<br />

conducted<br />

applying one<br />

spray per<br />

treatment<br />

during bloom<br />

on three of the<br />

six plots in a<br />

r<strong>and</strong>omized<br />

design.<br />

144g/ha<br />

(oilseed rape)<br />

96g/ha<br />

(Phacelia<br />

tanacetifolia)<br />

(spray)<br />

- Repellency to<br />

foraging<br />

honeybees<br />

Monitored<br />

for 7-9d<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 67 of 133<br />

Report to Syngenta Ltd<br />

Endpoints Results Notes Reference<br />

Mortality <strong>and</strong><br />

health condition<br />

of broods.<br />

(i) Foraging<br />

activity<br />

(ii) Returning<br />

bees<br />

(iii) Hive vitality<br />

<strong>The</strong> investigation showed<br />

a ‘relevant difference’ of<br />

the selectivity level of the<br />

neonicotinoids.<br />

Acetamiprid (Epik) was<br />

the least toxic to<br />

honeybees.<br />

(i) Transitory reduction in<br />

foraging activity. Normal<br />

activity by 48h.<br />

(ii) Returning be numbers<br />

reduced for 24-48h after<br />

application.<br />

(iii) No systematic<br />

differences found.<br />

Information from<br />

English abstract,<br />

paper in Italian<br />

Fanti et al<br />

(2006)<br />

Schmuck et al<br />

(2003)


Table 16 Overview of semi-field, dosed in field <strong>and</strong> field studies of the effects of sublethal <strong>and</strong> chronic exposure to imidacloprid pesticides on<br />

Apis bees<br />

Compound tested<br />

Species<br />

Imidacloprid<br />

Honeybee<br />

Imidacloprid<br />

(Gaucho)<br />

Honeybees<br />

Study type Test dose Test<br />

duration<br />

Dosed in field 20–100 μg/kg - Foraging <strong>and</strong><br />

waggle dance<br />

Dosed in field /<br />

oral / workers<br />

10, 20, 50,<br />

100ppb (w/v)<br />

in saccharose<br />

solution<br />

(feeders 500m<br />

from hives)<br />

Not<br />

recorded<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

Communication<br />

behaviour of<br />

individually<br />

marked bees<br />

Foraging <strong>and</strong> dances<br />

affected at 20 μg/kg<br />

Deviation from correct<br />

angle information not<br />

affected.<br />

Communicated distance<br />

information substantially<br />

reduced at 50ppb <strong>and</strong><br />

higher.<br />

Number (%) of bees<br />

performinging trembling<br />

dances greatly increased<br />

at 20ppb <strong>and</strong> higher<br />

Number (%) of bees<br />

performing waggle<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 68 of 133<br />

Report to Syngenta Ltd<br />

21)<br />

Data from EFSA<br />

report <strong>and</strong> reported<br />

in Cure et al (2001)<br />

as Kirchner WH<br />

(1988) <strong>The</strong> effects<br />

of sublethal doses<br />

of imidacloprid on<br />

the foraging<br />

behaviour <strong>and</strong><br />

orientation ability of<br />

honeybees.<br />

Unpublished report,<br />

Konstanz, 13pp.)<br />

(25)<br />

Data from Kirchner<br />

WH (1988) <strong>The</strong><br />

effects of sublethal<br />

doses of<br />

imidacloprid on the<br />

foraging behaviour<br />

<strong>and</strong> orientation<br />

ability of<br />

honeybees.<br />

Unpublished report,<br />

Konstanz, 13pp.<br />

(26)<br />

Reference<br />

Kirchner<br />

(1999)<br />

Cure et al<br />

(2001)


Compound tested<br />

Species<br />

Imidacloprid<br />

(powder form)<br />

Apis mellifera<br />

carnica<br />

Study type Test dose Test<br />

duration<br />

Dosed in field /<br />

oral exposure<br />

(bees treated in<br />

lab) / adults<br />

0.15, 1.5, 3,<br />

6ng/bee<br />

(dosed in 10µL<br />

of 2M sucrose<br />

solution)<br />

Immediately<br />

after<br />

treatment<br />

for 3h <strong>and</strong><br />

24 <strong>and</strong> 48h<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

Foraging<br />

behaviour:<br />

number of trips<br />

from hive to<br />

feeder, duration<br />

of trips, time<br />

interval between<br />

trips<br />

dances substantially<br />

reduced at 20ppb <strong>and</strong><br />

higher<br />

At 3ng/bee 95% of bees<br />

return to the hive versus<br />

25% at 6ng (among these<br />

5% at 3ng/bee <strong>and</strong> 75%<br />

at 6ng/bee trembling,<br />

reduced mobility,<br />

cleaning).<br />

Visit frequency to feeder<br />

significantly reduced<br />

immediately after<br />

treatment at 1.5 <strong>and</strong><br />

3ng/bee with no visits at<br />

6ng/bee. No significant<br />

effect at 24, 48h.<br />

At 1.5 <strong>and</strong> 3ng/bee<br />

foraging trip duration,<br />

flight time to feeder,<br />

duration of feeder stay<br />

<strong>and</strong> flight time to hive,<br />

interval between foraging<br />

trips all significantly<br />

increased immediately<br />

after treatment but mostly<br />

recovered by 24h. Time in<br />

hive after treatment<br />

significantly extended in<br />

3ng/bee group.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 69 of 133<br />

Report to Syngenta Ltd<br />

21)<br />

Reference<br />

(27) Schneider et al<br />

(2012)


Compound tested<br />

Species<br />

Imidacloprid<br />

(95% TG)<br />

Apis mellifera L.<br />

Study type Test dose Test<br />

duration<br />

Dosed in field /<br />

oral exposure (lab<br />

treatment) / adults<br />

40, 50, 100,<br />

200, 400, 600,<br />

800, 1200,<br />

1600, 3000,<br />

4000,<br />

6000µg/L (in<br />

50% sucrose<br />

solution)<br />

Continuous<br />

recording of<br />

feeding<br />

intervals for<br />

1h before<br />

treatment<br />

<strong>and</strong> for 1.5h<br />

after<br />

treatment<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

Time interval<br />

between<br />

foraging visits.<br />

Returning bees.<br />

In controls, time interval is<br />

< 300 s; in treated bees<br />

time interval is > 300 s at<br />

all concentrations above<br />

50µg/L (after 20 min at<br />

50µg/L <strong>and</strong> after 10 min<br />

at 100µg/L). 100%<br />

abnormal behaviour at<br />

1200µg/L <strong>and</strong> above<br />

Some bees did not return<br />

to the feeding site after<br />

treatment for at least 1.5<br />

h. At 600, 800, 1,200, <strong>and</strong><br />

3,000, 4,000 <strong>and</strong><br />

6,000µg/L, the<br />

percentages of missing<br />

bees were 34.4, 50, 68,<br />

93.3, <strong>and</strong> 96.9, 100 <strong>and</strong><br />

100% respectively. This<br />

recovered on the following<br />

day at 1600 µg/L <strong>and</strong><br />

below but were 77.4,<br />

63.6, <strong>and</strong> 48.4% missing<br />

at 3,000, 4,000 <strong>and</strong> 6,000<br />

µg/L.<br />

Calculation of<br />

consumption showed<br />

possible behavioural<br />

disruption at 1.82 - 4.33<br />

ng/bee<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 70 of 133<br />

Report to Syngenta Ltd<br />

21)<br />

Reference<br />

(28) Yang et al<br />

(2008)


Compound tested<br />

Species<br />

Imidacloprid<br />

(Confidor)<br />

Apis mellifera<br />

Imidacloprid<br />

(Confidor 200 SL)<br />

Apis mellifera<br />

carnica<br />

Study type Test dose Test<br />

duration<br />

Dosed in field /<br />

oral exposure /<br />

adults<br />

Dosed in field /<br />

oral exposure with<br />

syrup in hive /<br />

adults + brood<br />

100 ppb, 500<br />

ppb, 1000 ppb<br />

(in 50%<br />

sucrose<br />

solution)<br />

3.55 ng a.i./L<br />

Observation<br />

s 0-2h, 4-5,<br />

<strong>and</strong> 24h (for<br />

1h) after<br />

release<br />

Every 2-7d,<br />

after<br />

several<br />

weeks after<br />

treatment<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

Feeding,<br />

foraging <strong>and</strong><br />

homing<br />

behaviours<br />

Mortality<br />

Number of<br />

active bees<br />

inside hive<br />

Brood<br />

development<br />

Colony weight<br />

Feeders avoided at 500-<br />

1000ppb<br />

At 100ppb, 2h observation<br />

57% returned to hive, 3%<br />

returned to feeder (control<br />

72-80% return, 31-33%<br />

feeder). At 5h observation<br />

57% returned to hive, 7%<br />

returned to feeder (control<br />

79-87% return, 76-77%<br />

feeder). At 24h<br />

observation 84% returned<br />

to hive, 73% returned to<br />

feeder (control 87-90%<br />

return).<br />

At 500 <strong>and</strong> 1000ppb none<br />

of the bees returned to<br />

hive or feeder at any<br />

observation.<br />

No significant differences<br />

between treated <strong>and</strong><br />

control hives or in<br />

foraging activity.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 71 of 133<br />

Report to Syngenta Ltd<br />

21)<br />

Reference<br />

(29) Bortolotti et al<br />

(2003)<br />

Fenoxycarb,<br />

Indoxacarb also<br />

tested (30)<br />

Beliën et al<br />

(2009)


Compound tested<br />

Species<br />

Imidacloprid<br />

Apis mellifera<br />

Imidacloprid<br />

Honeybee<br />

Imidacloprid<br />

Apis mellifera<br />

mellifera<br />

Study type Test dose Test<br />

duration<br />

Dosed in field /<br />

oral exposure with<br />

syrup in hive /<br />

adults + brood<br />

Dosed in field<br />

/Larvae exposure<br />

in hive<br />

Dosed in field<br />

/oral/adults<br />

1 ppb? Every 2<br />

weeks for<br />

10 weeks;<br />

foraging<br />

behaviour<br />

was<br />

measured<br />

on<br />

individual<br />

bees of 13,<br />

15, 18, 20<br />

<strong>and</strong> 25<br />

0.4, 24, 200,<br />

2000, 4000,<br />

6000, 8000ng<br />

a.i./larva<br />

0.5or 5.0µg/L<br />

in saccharose<br />

syrup (50g<br />

saccharose+5<br />

0ml water)<br />

days-old<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

21)<br />

Foraging activity<br />

Colony<br />

parameters<br />

(active & dead<br />

bees; surface of<br />

capped brood,<br />

colony weight).<br />

Foraging<br />

behaviour<br />

(phototaxis)<br />

- Capped brood<br />

rate<br />

Exposure 3<br />

times per<br />

week 12/07<br />

to 14/08<br />

(last check<br />

21/03)<br />

Pupation rate<br />

Eclosion rate<br />

(i) Activity<br />

(bees/min)<br />

(ii) Pollen<br />

carrying<br />

(iii) Occupied<br />

inter-frames<br />

(iv) Capped<br />

brood area<br />

First 6 weeks: normal<br />

population size <strong>and</strong> drop<br />

during the next 4 weeks,<br />

significantly after 6 weeks.<br />

Total number of active<br />

bees <strong>and</strong> caped brood<br />

cells decreased after 6<br />

weeks.<br />

Significant reduction in<br />

capped brood, pupation<br />

<strong>and</strong> eclosion rates at<br />

2000ng/larva <strong>and</strong> above<br />

(i) Non significant<br />

increase<br />

(ii) Significant increase<br />

(iii) No significant effect<br />

(iv) No significant effect<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 72 of 133<br />

Report to Syngenta Ltd<br />

Fenoxycarb,<br />

Indoxacarb also<br />

tested (31)<br />

Reference<br />

Beliën et al<br />

(2010).<br />

(32) Yang et al<br />

(2011)<br />

(33) Faucon et al<br />

(2005)


Compound tested<br />

Species<br />

Imidacloprid<br />

Honeybee<br />

Imidacloprid<br />

(Technical)<br />

Apis mellifera L.<br />

Study type Test dose Test<br />

duration<br />

Dosed in field<br />

/oral/adults<br />

Dosed in field<br />

/oral/colony<br />

(i) 0, 2, 10, 50,<br />

100. 500 ppm<br />

(imidaclprid<br />

240 FS in<br />

syrup)<br />

(ii) 0.05 <strong>and</strong><br />

0.112kg a.i./ha<br />

(imidaclprid<br />

240 FS in<br />

syrup)<br />

(iii) 0.112kg<br />

a.i./ha<br />

(imidaclprid<br />

240 FS in<br />

syrup)<br />

0.1, 1.1, 5.3 or<br />

10.5 µg/kg<br />

high fructose<br />

corn syrup<br />

(HFCS). 2.6kg<br />

supplied<br />

weekly for 4<br />

wks followed<br />

by 9 wks at 20,<br />

40, 200 or 400<br />

Endpoints<br />

(v) Hive weight<br />

Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

21)<br />

(v) No significant effect<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 73 of 133<br />

Report to Syngenta Ltd<br />

(i) 2d<br />

(ii) 4h<br />

(iii) 6h<br />

13wks<br />

exposure<br />

23wks<br />

observation<br />

period<br />

(i) Visits to<br />

feeders<br />

(choice test)<br />

(ii) Foraging on<br />

d<strong>and</strong>elions in<br />

orchard<br />

(iii) Foraging on<br />

trees <strong>and</strong><br />

d<strong>and</strong>elions in<br />

orchard<br />

(i) Number of<br />

sealed broods<br />

during exposure<br />

period<br />

(ii) Colony<br />

survival (colony<br />

collapse)<br />

(i) Avoidance - visits<br />

reduced 7% at lower dose<br />

<strong>and</strong> 85% at higher<br />

(ii) Significant reduction in<br />

foraging at higher dose at<br />

0.5h <strong>and</strong> 1h (59 <strong>and</strong> 60%<br />

reduction respectively).<br />

Significant increase in<br />

foraging at higher dose at<br />

4h (149% increase).<br />

(iii) No significant effect.<br />

(i) Significantly lower than<br />

controls but not<br />

concentration related<br />

(ii) Hive loss began at 18<br />

weeks post exposure. At<br />

23 weeks post exposure<br />

only one treated hive<br />

remained alive, only one<br />

(34)<br />

Reference<br />

Mayer <strong>and</strong><br />

Lunden (1997)<br />

(35) Lu et al (2012)


Compound tested<br />

Species<br />

Imidacloprid<br />

Apis mellifera<br />

Imidacloprid<br />

(98%)<br />

Apis mellifera<br />

ligustica<br />

Imidacloprid<br />

(analytical)<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

21)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 74 of 133<br />

Report to Syngenta Ltd<br />

Reference<br />

µg/kg HFCS control hive (of 4) had<br />

died<br />

Dosed in field 10 or 20ppb in Colony Development of Significantly greater (36) Pettis et al<br />

/oral/colony Megabee® exposed for Nosema over number of Nosema<br />

(2012)<br />

protein patties 10 weeks. 12d in newly spores per bee in bees<br />

Newly emerged bees from imidacloprid exposed<br />

emerged from<br />

colonies compared to<br />

bees imidacloprid controls<br />

collected at treated vs.<br />

5 <strong>and</strong> 8 untreated<br />

weeks <strong>and</strong><br />

fed sucrose<br />

containing<br />

Nosema<br />

spores.<br />

colonies.<br />

Dosed in semi 24 μg/kg (in Recording (i) Foraging (i) Decrease in foraging (37) Decourtye et<br />

field; (flight cage) 50% sucrose visits at activity<br />

activity on the food source<br />

al (2004b)<br />

studies + feeder / solution) scented/uns<br />

<strong>and</strong> activity at the hive<br />

oral (feeding +<br />

cented sites<br />

entrance.<br />

foraging) <strong>and</strong> (LOEC for every 30s<br />

contact (PER) olfactory for 5min; (ii) Associative (ii) Significant effects<br />

exposures / adults learning bee counter learning found in both semi-field<br />

following to measure<br />

<strong>and</strong> laboratory conditions<br />

chronic oral colony<br />

exposure) activity at<br />

the hive<br />

entrance in<br />

June-July<br />

Dosed in semi- 6 µg/kg (in 8 control Foraging activity No significant effects on (38) Colin et al<br />

field (Tunnel) / oral 40% sucrose colonies at feeders in attendance at feeder.<br />

(2004)<br />

exposure / adults solution) during 5 tunnels<br />

days at<br />

Significant decrease in


Compound tested<br />

Species<br />

Imidacloprid<br />

‘<strong>Bees</strong>’<br />

Imidacloprid<br />

(60%, Gaucho FS)<br />

Apis mellifera<br />

ligustica<br />

Study type Test dose Test<br />

duration<br />

Dosed in semifield<br />

(tunnel)/oral/adults<br />

(foraging)<br />

Field study / oral<br />

exposure / adults<br />

+ brood<br />

50µg/kg <strong>and</strong><br />

higher<br />

imidacloprid in<br />

sucrose<br />

25µg/kg <strong>and</strong><br />

higher<br />

imidacloprid in<br />

sucrose<br />

100µg/kg to<br />

3ug/kg<br />

imidacloprid in<br />

sucrose<br />

Seeds treated<br />

with 0.24 mg<br />

a.i./seed<br />

(Sunflower<br />

treated at 600<br />

ml/100 kg of<br />

different<br />

times of the<br />

season <strong>and</strong><br />

3 colonies<br />

before<br />

contaminati<br />

on <strong>and</strong><br />

during 4<br />

days after<br />

Long-term<br />

(226 days:<br />

10 days in<br />

the field <strong>and</strong><br />

observation<br />

s on the<br />

remaining<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

Foraging activity<br />

(i) Frequency of<br />

visits to feeding<br />

station<br />

(ii) quantity of<br />

syrup taken<br />

(iii) duration of<br />

visits<br />

Population<br />

development<br />

<strong>and</strong> honey<br />

production (hive<br />

weight, nectar,<br />

pollen, brood,<br />

honey<br />

the proportion of active<br />

bees at the feeder<br />

(i) Number of bees fell to<br />

0 during the imidacloprid<br />

treated phase (1h)<br />

(ii) Quantity of syrup taken<br />

declined during the<br />

treated phase (1h)<br />

(iii) Affected at all<br />

concentrations<br />

No significant difference<br />

for their development<br />

regarding pollen entrance<br />

<strong>and</strong> pollen in the hives,<br />

nectar <strong>and</strong> mortality.<br />

Treated hives were<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 75 of 133<br />

Report to Syngenta Ltd<br />

21)<br />

Reference<br />

(39) Colin et al<br />

(2001)<br />

Stadler et al<br />

(2003)


Compound tested<br />

Species<br />

Imidacloprid<br />

(Gaucho)<br />

Honeybees<br />

Imidacloprid<br />

Bee<br />

Imidacloprid<br />

(200 SL)<br />

<strong>Bees</strong><br />

Imidacloprid<br />

(Confidor 200 SL)<br />

Honeybees<br />

Study type Test dose Test<br />

duration<br />

Field test / field /<br />

workers<br />

Field/field<br />

application/adults<br />

Field/field<br />

exposure/adults<br />

Field/field<br />

exposure/workers<br />

seed, 60.000<br />

seeds/ha)<br />

Not recorded<br />

but states<br />

recommended<br />

rate is 0.7mg<br />

a.i./plant<br />

(sunflower).<br />

(Equivalent to<br />

50g a.i./ha at<br />

70,000<br />

plants/ha.)<br />

0.0178%<br />

(??)<br />

140, 168 or<br />

196ml<br />

product/ha<br />

46g a.i./ha leaf<br />

wall area<br />

(calculated<br />

taking height<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

216 days) production,<br />

foraging activity,<br />

pollen entrance<br />

<strong>and</strong> mortality)<br />

Not<br />

recorded<br />

Number of bees<br />

entering hive.<br />

Number of bees<br />

visiting flowers<br />

Hive weight<br />

development<br />

5d Bee visits to<br />

crop<br />

NR Number of<br />

foraging bees<br />

Flower visits<br />

following<br />

spraying at<br />

either green bud<br />

significantly more<br />

productive (higher weight,<br />

honey production,<br />

increased foraging<br />

activity, brood).<br />

High proportion of<br />

sunflower pollen in both<br />

treated <strong>and</strong> controls<br />

No effects on any<br />

parameter. No<br />

behaviourally impaired<br />

bees observed.<br />

Reduced number of visits<br />

compared to controls (in<br />

line with data for other<br />

insecticides, endosulfan,<br />

malathion)<br />

No effect on number of<br />

foraging bees.<br />

No effects on visits to<br />

flowers following either<br />

treatment therefore no<br />

repellency observed.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 76 of 133<br />

Report to Syngenta Ltd<br />

21)<br />

Reference<br />

Cure et al<br />

(2001)<br />

Kumar <strong>and</strong><br />

Singh (2012)<br />

Singh <strong>and</strong><br />

Singh (2004)<br />

Gobin et al<br />

(2008)


Compound tested<br />

Species<br />

Imidacloprid<br />

(200g/L)<br />

+ Oliocin<br />

(Confidor 200 SL)<br />

Honeybees<br />

Study type Test dose Test<br />

duration<br />

Field/oral<br />

exposure/colony<br />

<strong>and</strong> length of<br />

sprayed plot)<br />

Orchards (3 x<br />

Jonagold, 1 x<br />

Golden<br />

delicious)<br />

Confidor 200<br />

SL 600-800ml<br />

product/h<br />

(120-160g<br />

imidacloprid/h<br />

a)<br />

(Both control<br />

<strong>and</strong> treated<br />

plots treated<br />

with Oliocin at<br />

36-48L<br />

product/ha)<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

or 10% open<br />

flower stages.<br />

14d (i) Weight of<br />

hives<br />

(ii) Development<br />

of colony size<br />

(iii)<br />

Determination of<br />

the percentage<br />

of cells<br />

containing<br />

pollen, nectar,<br />

larvae <strong>and</strong><br />

pupae, number<br />

of cells that<br />

have eggs in<br />

them or are<br />

empty on both<br />

sides of comb.<br />

(iv) Percentage<br />

of combs with<br />

pollen, nectar or<br />

(i) No significant<br />

difference 1995. In 1998<br />

mean increase 7.3%<br />

treated, 4.8% in controls.<br />

(not significant).<br />

(ii) Increase in worker<br />

bees greater in treated<br />

plots<br />

(iii) Normal development<br />

of colonies in both<br />

treatments<br />

(iv) No significant<br />

differences between<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 77 of 133<br />

Report to Syngenta Ltd<br />

21)<br />

Reference<br />

Cantoni et al<br />

(2001)


Compound tested<br />

Species<br />

Imidacloprid<br />

Confidor SL 200<br />

Honeybees<br />

Study type Test dose Test<br />

duration<br />

Semi-field (Cage<br />

trial)/field<br />

exposure/workers<br />

0.6, 1.2, 2, 4, 9<br />

<strong>and</strong> 14g a.i./ha<br />

(on rape<br />

plants)<br />

4d (after<br />

treatment)<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

21)<br />

brood cells. control <strong>and</strong> treated<br />

(v) Number of<br />

bees returning<br />

to hives<br />

(vi) Percentage<br />

of bees<br />

returning with<br />

pollen<br />

(vii) Visits to<br />

flowers<br />

(i) Foraging<br />

intensity<br />

(ii) Mortality<br />

(v) In 1995 there were no<br />

significant differences. In<br />

1998 mean numbers were<br />

lower in the treated crop<br />

but relative differences<br />

were variable <strong>and</strong> not<br />

significant.<br />

(vi) In both years there<br />

were no significant<br />

differences between plots.<br />

(vii) <strong>The</strong>re were no<br />

significant differences<br />

between plots (1995).<br />

(i) No effect on foraging at<br />

2g/ha or less. At 4 <strong>and</strong><br />

9g/ha feeding was<br />

significantly reduced on<br />

the day after treatment<br />

only. At 14g/ha foraging<br />

was significantly lower for<br />

the first two days after<br />

treatment.<br />

(ii) No increase in<br />

mortality compared to<br />

controls.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 78 of 133<br />

Report to Syngenta Ltd<br />

Reference<br />

Schnier et al<br />

(2003)


Compound tested<br />

Species<br />

Imidacloprid<br />

(technical)<br />

Apis mellifera<br />

Imidacloprid<br />

(Gaucho)<br />

Honeybees<br />

Imidacloprid<br />

(Gaucho 70 WS)<br />

Honeybees<br />

Study type Test dose Test<br />

duration<br />

Semi-field (cages<br />

on field) / oral /<br />

workers<br />

Semi-field (Tunnel<br />

test) / field<br />

exposure / workers<br />

Semi-field<br />

(tunnels) /field<br />

exposure/adults<br />

Field/field<br />

exposure/adults<br />

0.002, 0.005,<br />

0.010 <strong>and</strong><br />

0.020mg/kg (in<br />

sunflower<br />

honey)<br />

(no replication<br />

of tests doses)<br />

Between 0.35<br />

<strong>and</strong> 1.05mg<br />

a.i./plant<br />

(sunflower)<br />

39d<br />

(chronic)<br />

Not<br />

recorded<br />

0.005g/cm2 (i) 5d<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

Feeding activity<br />

Wax/comb<br />

production<br />

Breeding<br />

performance<br />

Colony vitality<br />

Increase in bee<br />

numbers<br />

Number of<br />

foraging bees<br />

per 100<br />

No concentration related<br />

effects on any of the<br />

endpoints.<br />

No effects of treatment on<br />

these parameters. No<br />

records of behaviourally<br />

impaired bees.<br />

Fertilisation rates<br />

unaffected<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 79 of 133<br />

Report to Syngenta Ltd<br />

(ii) -<br />

(iii) -<br />

(iv) -<br />

(v) 4 dates<br />

(i) Foraging<br />

activity<br />

(returning<br />

foragers)<br />

(ii) Orientation<br />

(iii) Honey sac<br />

weight<br />

(iv) Effects on<br />

larvae<br />

(v) Foraging<br />

activity on flower<br />

clusters<br />

(i) No negative effect, 9.0<br />

bees/min vs. 8.2 bees/min<br />

(control)<br />

(ii) No effect<br />

(iii) No negative effect,<br />

26mg/bee vs. 25mg/bee<br />

(control)<br />

(iv) None recorded<br />

(v) No negative effect, 3.2<br />

bees/inflorescence vs. 8.2<br />

bees/ inflorescence<br />

21)<br />

French testing<br />

guideline CEB 129<br />

(adapted for seed<br />

treatment)<br />

Reference<br />

Schmuck et al<br />

(2001)<br />

Cure et al<br />

(2001)<br />

Wallner (2001)


Compound tested<br />

Species<br />

Imidacloprid<br />

(Gaucho, 70% a.i.)<br />

Apis melliferea<br />

ligustica L. x A. m.<br />

caucasica L.<br />

Imidacloprid<br />

(Gaucho, 70% a.i.)<br />

‘Honeybees’<br />

Study type Test dose Test<br />

duration<br />

Semi-field/oral<br />

exposure/adults<br />

Semi-field/oral<br />

exposure/adults<br />

0, 0.35, 0.7 mg<br />

a.i./seed<br />

(in tunnels)<br />

0.35, 0.7, 1.05<br />

mg a.i./seed<br />

(in tunnels)<br />

0.7 mg<br />

a.i./seed (in<br />

field)<br />

20ppb spiked<br />

sugar solution<br />

(feeding<br />

experiments<br />

under field<br />

conditions)<br />

Endpoints Results Notes (reference<br />

to study numbers<br />

in figures 20 <strong>and</strong><br />

21)<br />

- Behaviour,<br />

activity, flower<br />

foraging,<br />

progress of<br />

pollination,<br />

collection of<br />

nectar.<br />

- Vitality, foraging<br />

activity,<br />

behaviour<br />

(control)<br />

No effects observed on<br />

any of the measures<br />

No effects observed on<br />

any of the measures.<br />

No residues of<br />

imidacloprid found in<br />

sunflower nectar (LOQ<br />

10ppb)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 80 of 133<br />

Report to Syngenta Ltd<br />

Reference<br />

In french Ambolet et al<br />

(1997)<br />

In french Ambolet et al<br />

(1999)<br />

Table 17: Overview of semi-field <strong>and</strong> field studies of the effects of sublethal <strong>and</strong> chronic exposure to clothianidin <strong>and</strong> thiamethoxam on Apis bees<br />

Compound tested Study type Test dose Test Endpoints Results Notes Reference<br />

Species<br />

duration<br />

Thiamethoxam Dosed in field 1.34ng in 20<br />

µl/bee<br />

Clothianidin<br />

(powder form)<br />

Dosed in field /<br />

oral exposure<br />

0.05, 0.5, 1,<br />

2ng/bee<br />

3 days after<br />

dosing<br />

Immediately<br />

after<br />

Return to hive Significant reduction in<br />

numbers of treated<br />

foragers returning<br />

particularly from<br />

Foraging<br />

behaviour:<br />

unfamiliar l<strong>and</strong>scapes<br />

At 1ng/bee 73.8%<br />

returned to the hive<br />

(5) Henry et al<br />

2012<br />

(6) Schneider et al<br />

(2012)


Compound tested<br />

Species<br />

Apis mellifera<br />

carnica<br />

Clothianidin<br />

(Prosper FL,<br />

Poncho FS)<br />

Honeybees<br />

(control seed<br />

treated with blank<br />

(no clothianidin)<br />

Prosper Fl <strong>and</strong><br />

Poncho FS)<br />

Study type Test dose Test<br />

duration<br />

(bees treated in<br />

lab) / adults<br />

Field study / oral<br />

exposure / adults<br />

+ brood<br />

(dosed in 10µL<br />

of 2M sucrose<br />

solution)<br />

400 g<br />

a.i./100kg<br />

seed<br />

80kg seed/ha<br />

32g a.i./ha<br />

Seed<br />

treatment<br />

slurry<br />

contained<br />

Prosper FL<br />

(9.64%<br />

treatment<br />

for 3h <strong>and</strong><br />

24 <strong>and</strong> 48h<br />

From spring<br />

to spring<br />

(1 year)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 81 of 133<br />

Report to Syngenta Ltd<br />

Endpoints Results Notes Reference<br />

number of trips<br />

from hive to<br />

feeder, duration<br />

of trips, time<br />

interval between<br />

trips<br />

Colony weight<br />

gain, honey<br />

production ;<br />

adult mortality,<br />

brood<br />

development,<br />

longevity<br />

versus 20.6% at 2ng/bee.<br />

Significantly reduction in<br />

feeder visits at 0.5, 1 <strong>and</strong><br />

2ng/bee immediately after<br />

treatment No significant<br />

effect at 24h.<br />

At 0.5, 1 <strong>and</strong> 2ng/bee<br />

foraging trip duration,<br />

duration of feeder stay<br />

<strong>and</strong> flight time to hive,<br />

interval between foraging<br />

trips all significantly<br />

increased immediately<br />

after treatment but mostly<br />

recovered by 24h except<br />

at the highest dose. Time<br />

in hive after treatment<br />

significantly extended in 1<br />

<strong>and</strong> 2ng/bee groups.<br />

No significant effects of<br />

treatment<br />

Cutler <strong>and</strong><br />

Scott-Dupree<br />

(2007)


Compound tested<br />

Species<br />

Thiamethoxam<br />

(Cruiser 350g a.i./L)<br />

Honeybees<br />

[seed also treated<br />

with Celest xl<br />

(fludioxonil <strong>and</strong><br />

metalaxyl-M at<br />

0.525 <strong>and</strong><br />

0.21 g/ha<br />

respectively)]<br />

Study type Test dose Test<br />

duration<br />

clothianidin,<br />

plus thiram,<br />

carboxin, <strong>and</strong><br />

metalaxyl) at<br />

1,375.0 ml/100<br />

kg seed, <strong>and</strong><br />

Poncho 600<br />

FS<br />

(48.96%<br />

clothianidin) at<br />

458.7 ml/<br />

100 kg seed.<br />

Field/dust/workers 7.35g a.i./ha<br />

(corn dressed<br />

at 100mL<br />

product/100 kg<br />

of seeds,<br />

70,000<br />

seeds/ha,<br />

mean seed<br />

weight 0.3g,<br />

21 kg<br />

seeds/ha,).<br />

[calculated as<br />

0.105mg/seed<br />

based on<br />

above]<br />

15d<br />

observation<br />

after<br />

sowing.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 82 of 133<br />

Report to Syngenta Ltd<br />

Endpoints Results Notes Reference<br />

(i) Direct<br />

mortality in hive<br />

area<br />

(ii) Foraging<br />

activity<br />

(i) Significant increase in<br />

mortality in period after<br />

sowing compared presowing<br />

<strong>and</strong> controls<br />

(ii) Reduction of foraging<br />

in all hives after sowing<br />

but significantly greater<br />

reduction in hives next to<br />

treated fields.<br />

Tremolada et<br />

al (2010)<br />

Table 18: Overview of semi-field <strong>and</strong> field studies of the effects of sublethal <strong>and</strong> chronic exposure to fipronil on Apis bees<br />

Compound tested Study type Test dose Test Endpoints Results Notes Reference<br />

Species<br />

duration


Compound tested<br />

Species<br />

Fipronil<br />

Apis mellifera<br />

Fipronil<br />

(98%)<br />

Apis mellifera L.<br />

Fipronil<br />

(98%)<br />

Apis mellifera<br />

ligustica<br />

Study type Test dose Test<br />

duration<br />

Dosed in field<br />

/oral/workers<br />

Dosed in semifield<br />

(Outdoor flight<br />

cage) + feeder /<br />

oral exposure /<br />

adults<br />

Dosed in semifield<br />

(tunnel) / oral<br />

exposure / adults<br />

2, 10, 50, 100,<br />

500ppm in<br />

syrup – Choice<br />

tests<br />

(50% sucrose<br />

solution <strong>and</strong><br />

honey mixed<br />

3:1 v/v)<br />

1µg/kg<br />

(in sucrose<br />

solution)<br />

0.06 <strong>and</strong> 0.3<br />

ng/bee<br />

(6 <strong>and</strong> 30<br />

µg/kg in 50%<br />

w/w sucrose<br />

solution <strong>and</strong><br />

providing 10<br />

µL per bee)<br />

4h on two<br />

test days<br />

with feeders<br />

placed at<br />

1030 <strong>and</strong><br />

checks at<br />

1100, 1130,<br />

1200 <strong>and</strong><br />

1230<br />

6 - 7 h out<br />

of the<br />

tunnel<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 83 of 133<br />

Report to Syngenta Ltd<br />

Endpoints Results Notes Reference<br />

Visits to feeders<br />

(honeybees /5s<br />

/dish)<br />

Orientation<br />

capacities<br />

Foraging with<br />

RFID (time<br />

spent in the<br />

hive, at the<br />

feeder, between<br />

the feeder <strong>and</strong><br />

hive, number of<br />

entries <strong>and</strong> exits<br />

from the hive<br />

<strong>and</strong> at the<br />

feeder<br />

Visits <strong>and</strong> consumption<br />

significantly reduced<br />

compared to control dish<br />

(untreated syrup) only at<br />

100 <strong>and</strong> 500ppm.<br />

Significant effect on<br />

number of foragers<br />

entering maze <strong>and</strong> finding<br />

correct path. This was<br />

reduced from 86-89%<br />

before <strong>and</strong> after treatment<br />

to 60% for fipronil treated<br />

bees<br />

4% of bees do not find the<br />

path within 5min in control<br />

<strong>and</strong> 34% in treated<br />

0.3 ng/bee significantly<br />

reduced the number of<br />

foraging flights <strong>and</strong><br />

prolonged the duration of<br />

homing flights over 3d<br />

Mayer <strong>and</strong><br />

Lunden (1999)<br />

Decourtye et al<br />

(2009)<br />

Decourtye et al<br />

(2011)<br />

Fipronil Dosed in semi- 2 µg/kg (in 8 control Foraging activity Significant effects on Colin et al


Compound tested<br />

Species<br />

(analytical)<br />

Apis mellifera<br />

Fipronil<br />

(80WG)<br />

Apis mellifera<br />

Study type Test dose Test<br />

duration<br />

field / oral<br />

exposure / adults<br />

40% sucrose<br />

solution)<br />

Field/field/workers 0.014 or<br />

0.028kg a.i./ha<br />

sprayed on<br />

canola<br />

(Brassica<br />

napus cv.<br />

Legend)<br />

colonies<br />

during 5<br />

days at<br />

different<br />

times of the<br />

season <strong>and</strong><br />

3 colonies<br />

before<br />

contaminati<br />

on <strong>and</strong><br />

during 4<br />

days after<br />

(i) 2d<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 84 of 133<br />

Report to Syngenta Ltd<br />

(ii) 3d<br />

Endpoints Results Notes Reference<br />

at feeders in<br />

tunnels<br />

(i) Visits to crop<br />

(honybees /30s<br />

/9.1m)<br />

(ii) Mortality<br />

(Mean no. dead<br />

honeybees<br />

/colony in Todd<br />

traps)<br />

attendance at feeder.<br />

Significant decrease in<br />

the proportion of active<br />

bees at the feeder.<br />

Clinical signs of<br />

intoxication<br />

(i) Visits not significantly<br />

different from untreated<br />

(control) field<br />

(ii) Mortality not<br />

significantly different from<br />

untreated (control) field<br />

(2004)<br />

Mayer <strong>and</strong><br />

Lunden (1999)


Table 19 Overview of studies of the effects of sublethal <strong>and</strong> chronic exposure to acetamiprid <strong>and</strong> thiacloprid on non-Apis bees<br />

Compound tested Study type Test dose Test Endpoints Results Notes Reference<br />

species/subspecies<br />

duration<br />

Acetamiprid<br />

Bombus terrestris<br />

Thiacloprid<br />

(Calypso 48% SC)<br />

Bombus terrestris<br />

Little detail<br />

(tomato plants)<br />

Lab (artificial<br />

nestbox) /Oral<br />

exposure/adults<br />

Little detail<br />

(maximum<br />

label rate?)<br />

From the<br />

MFRC to<br />

several<br />

dilutions:<br />

120 (MFRC),<br />

60, 12, 1.2,<br />

0.12 ppm <strong>and</strong><br />

12 ppb(in<br />

sugar water)<br />

12 ppm (1/10<br />

MFRC) for<br />

foraging<br />

behaviour<br />

Pollination<br />

observed at<br />

3, 8 <strong>and</strong> 12<br />

d postreatment<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 85 of 133<br />

Report to Syngenta Ltd<br />

14d<br />

Up to 11<br />

weeks<br />

(chronic<br />

exposure)<br />

(i) Pollination<br />

rate<br />

(ii) Hive status<br />

Mortality, drone<br />

production <strong>and</strong><br />

foraging<br />

behavior<br />

(i) Pollination slightly<br />

reduced compared to<br />

Flonicamid (Teppeki)<br />

treatment<br />

(ii) No detailed effects on<br />

hives reported (‘generally<br />

homogeneous’)<br />

Without foraging<br />

100% mortality at 120 ppm<br />

after 11 weeks. Mortality at<br />

to 60, 12, 1.2 <strong>and</strong><br />

0.12 ppm <strong>and</strong> 12 ppb was<br />

78, 41, 39, 17 <strong>and</strong> 0%,<br />

respectively<br />

Chronic<br />

LC50 = 18 ppm;<br />

Total reproductive failure at<br />

120 <strong>and</strong> 60ppm.<br />

Significant effect at 12ppm<br />

with reproduction reduced<br />

by 36% relative to control.<br />

EC50 = 12 ppm.<br />

Very little detail<br />

given. Comparison<br />

of two treatments<br />

rather than with<br />

control<br />

This study reports<br />

the development of<br />

a new bioassay to<br />

assess the impact<br />

of sublethal<br />

concentrations on<br />

the bumblebee<br />

foraging behavior<br />

under laboratory<br />

conditions.<br />

Fanigliulo et al<br />

(2009)<br />

Mommaerts et<br />

al (2010)


Table 20 Overview of studies of the effects of sublethal <strong>and</strong> chronic exposure to imidacloprid on non-Apis bees<br />

Compound tested<br />

species/subspecies<br />

Imidacloprid<br />

Bombus terrestris<br />

Imidacloprid<br />

Bombus terrestris<br />

Imidacloprid<br />

Bombus terrestris<br />

Study type Test dose Test<br />

duration<br />

Field (lab<br />

exposure) /oral<br />

/colony<br />

Low:<br />

6µg/kg (pollen)<br />

<strong>and</strong> 0.7µg/kg<br />

(sugar water)<br />

High:<br />

12µg/kg<br />

(pollen) <strong>and</strong><br />

1.4µg/kg<br />

(sugar water)<br />

Lab /oral /workers 10ppb (in 40%<br />

sucrose<br />

solution)<br />

Field / field /<br />

workers<br />

0.7mg/seed<br />

(sunflower)<br />

Endpoints Results Notes (study<br />

reference figure<br />

8 weeks Colony growth Significant effect on<br />

colony weight with low<br />

<strong>and</strong> high dose 8 <strong>and</strong> 12%<br />

smaller than controls<br />

respectively.<br />

28d<br />

(exposure)<br />

Effects at<br />

colony level<br />

(relative to<br />

controls)<br />

Significant reduction in<br />

queen production with<br />

means of 13.72, 2.00 <strong>and</strong><br />

1.4 in control, low <strong>and</strong><br />

high respectively.<br />

Worker production<br />

significantly lower<br />

Brood number<br />

significantly lower<br />

Nest structure mass<br />

unaffected<br />

Worker mortality<br />

unaffected<br />

Worker loss significantly<br />

greater<br />

No colony losses (0/10<br />

failures)<br />

(iii) Losses were 33.5% in<br />

treated field <strong>and</strong> 23.1% in<br />

control (not significant)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 86 of 133<br />

Report to Syngenta Ltd<br />

(i) 9d<br />

(i) Loss of<br />

workers<br />

22)<br />

Reference<br />

(1) Whitehorn et<br />

al (2012)<br />

Effects of λcyhalothrin<br />

alone<br />

<strong>and</strong> imidacloprid+<br />

λ-cyhalothrin also<br />

tested<br />

(2)<br />

53% of foragers<br />

visited sunflowers<br />

in the control field,<br />

compared with 62%<br />

Gill et al<br />

(2012)<br />

Tasei et al<br />

(2001a)<br />

Tasei et al


Compound tested<br />

species/subspecies<br />

Imidacloprid<br />

(97.5% TG)<br />

Osmia lignaria<br />

Imidacloprid<br />

Bombus terrestris<br />

Imidacloprid<br />

Bombus terrestris<br />

Study type Test dose Test<br />

duration<br />

Field / Oral<br />

exposure (pollen)/<br />

larvae<br />

Field /oral<br />

/workers<br />

Greenhouse /<br />

field / workers<br />

low (3ppb),<br />

intermediate<br />

(30ppb), or<br />

high (300ppb)<br />

in pollen<br />

provisions<br />

10ppb (in 40%<br />

sucrose<br />

solution)<br />

Not recorded –<br />

assumed<br />

0.7mg/seed<br />

(ii) 26d<br />

Total<br />

developme<br />

nt period<br />

28d<br />

(exposure)<br />

Endpoints Results Notes (study<br />

reference figure<br />

(ii) Population<br />

increase<br />

Mortality rate,<br />

Development<br />

duration, adult<br />

weight<br />

Effects on<br />

individual<br />

behaviour<br />

(relative to<br />

controls)<br />

4d (i) Total number<br />

of foragers<br />

visiting the<br />

(iii) No significant<br />

difference. 3.3 (treated<br />

field) <strong>and</strong> 3.0 (control<br />

field)<br />

workers/d/colony. Queens<br />

per colony were 17<br />

(control) <strong>and</strong> 24 (treated).<br />

Mating ability was 71 <strong>and</strong><br />

74% respectively.<br />

No lethal effects<br />

Significant sublethal<br />

effects on larval<br />

development with greater<br />

developmental time at the<br />

intermediate (30 ppb) <strong>and</strong><br />

high (300 ppb) doses.<br />

Number of foragers<br />

significantly increased<br />

Foraging bout frequency<br />

unaffected<br />

Amount of pollen<br />

collected significantly<br />

reduced<br />

Duration of pollen<br />

foraging bouts +<br />

(i) No significant<br />

differences between<br />

control <strong>and</strong> treated plants.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 87 of 133<br />

Report to Syngenta Ltd<br />

22)<br />

in the treated field.<br />

(Same data<br />

reported in both<br />

papers)<br />

Effects of λcyhalothrin<br />

alone<br />

<strong>and</strong> imidacloprid+<br />

λ-cyhalothrin also<br />

tested (3)<br />

(Same data<br />

reported in both<br />

papers)<br />

Reference<br />

(2001b)<br />

Abbott et al<br />

(2008)<br />

Gill et al<br />

(2012)<br />

Tasei et al<br />

(2001a)


Compound tested<br />

species/subspecies<br />

Imidacloprid<br />

(Confidor 20% SC)<br />

Bombus terrestris<br />

Study type Test dose Test<br />

duration<br />

Lab (artificial<br />

nestbox) /Oral<br />

exposure/adults<br />

based on field<br />

study<br />

(sunflower)<br />

From the<br />

MFRC to<br />

several<br />

dilutions:<br />

200 (MFRC),<br />

20, 2 <strong>and</strong> 0.2<br />

ppm <strong>and</strong> 20 <strong>and</strong><br />

10 ppb (in sugar<br />

water) for<br />

chronic <strong>and</strong><br />

foraging<br />

assessments<br />

Up to 11<br />

weeks<br />

(chronic<br />

exposure)<br />

Endpoints Results Notes (study<br />

reference figure<br />

heads at each<br />

blooming stage<br />

(ii) Mean visit<br />

duration/head<br />

was estimated<br />

for 75 foragers<br />

Mortality, drone<br />

production <strong>and</strong><br />

foraging<br />

behavior<br />

(ii) Numbers of short<br />

(50s)<br />

visits not significantly<br />

different.<br />

Without foraging<br />

100% mortality at 0.2ppm<br />

<strong>and</strong> higher, 15 <strong>and</strong> 0% at<br />

20 <strong>and</strong> 10ppb. Significant<br />

effect on drone production<br />

at 0.2ppm <strong>and</strong> higher.<br />

Chronic toxicity<br />

LC50 = 59 ppb (NOEC for<br />

survival = 10 ppb);<br />

EC50 = 37 ppb (NOEC for<br />

reproduction = 20 ppb);<br />

With foraging<br />

100% worker mortality at<br />

200, 20, 2 <strong>and</strong> 0.2 ppm<br />

observed after a few hours,<br />

7, 14 <strong>and</strong> 49 days<br />

respectively. 20 ppb caused<br />

50% mortality after<br />

49 days with none at 10ppb.<br />

Significant effect on<br />

reproduction at 200,<br />

20, 2 <strong>and</strong> 0.2 ppm <strong>and</strong> 20<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 88 of 133<br />

Report to Syngenta Ltd<br />

22)<br />

This study reports<br />

the development of<br />

a new bioassay to<br />

assess the impact<br />

of sublethal<br />

concentrations on<br />

the bumblebee<br />

foraging behaviour<br />

under laboratory<br />

conditions. (4)<br />

Reference<br />

Tasei et al<br />

(2001b)<br />

Mommaerts et<br />

al (2010)


Compound tested<br />

species/subspecies<br />

Imidacloprid<br />

(98%)<br />

Bombus occidentalis<br />

(Experiment 1);<br />

Bombus impatiens<br />

(Experiment 2);<br />

Imidacloprid<br />

Bombus terrestris<br />

Study type Test dose Test<br />

duration<br />

Lab (artificial<br />

nestbox) /Oral<br />

exposurevia<br />

pollen or 30%<br />

sucrose<br />

solution/colony<br />

Lab / Oral<br />

(chronic)<br />

exposure via<br />

pollen sugar<br />

solution/adults<br />

Experiment 1<br />

Realistic<br />

residue level in<br />

pollen:<br />

7 ng/g pollen;<br />

Experiment 2<br />

7 <strong>and</strong> 30 ng/g<br />

pollen (in<br />

sugar water)<br />

D1 = 10 µg<br />

a.i./kg in syrup<br />

<strong>and</strong> 6 µg<br />

a.i./kg in<br />

pollen;<br />

Endpoints Results Notes (study<br />

reference figure<br />

11 weeks Pollen<br />

consumption,<br />

bumble bee<br />

worker weights,<br />

colony size,<br />

amount of<br />

brood, queens<br />

<strong>and</strong> drones<br />

produced <strong>and</strong><br />

foraging ability<br />

on artificial<br />

flowers (only in<br />

the Exp 2).<br />

85 days <strong>Food</strong><br />

consumption,<br />

survival rate,<br />

brood<br />

production,<br />

larval<br />

<strong>and</strong>10 ppb with 0, 0, 0,<br />

4.8,7.0 <strong>and</strong> 10.8 drones<br />

produced respectively (c.f.<br />

28.4 in controls.)<br />

LC50 = 20ppb (NOEC for<br />

survival = 10 ppb);<br />

EC50 = 3.7ppb (NOEC for<br />

reproduction =


Compound tested<br />

species/subspecies<br />

Imidacloprid<br />

(97.5% TG)<br />

Osmia lignaria<br />

Imidacloprid<br />

(in acetonitrile –<br />

removed before use)<br />

Bombus terrestris<br />

Study type Test dose Test<br />

duration<br />

Lab / Oral<br />

exposure (pollen)/<br />

larvae<br />

D2 was 25 µg<br />

a.i./kg (2.5<br />

times higher)<br />

in syrup <strong>and</strong><br />

16 µg a.i./kg<br />

(2.7 times<br />

higher) in<br />

pollen<br />

low (3ppb),<br />

intermediate<br />

(30ppb), or<br />

high (300ppb)<br />

in pollen<br />

provisions<br />

Lab/oral/adults 0.08, 0.20,<br />

0.51, 1.28,<br />

3.20, 8.00,<br />

20.00, 50.00,<br />

125.00µg a.i./L<br />

(in syrup)<br />

Total<br />

developme<br />

nt period<br />

1d<br />

acclimatisat<br />

ion then<br />

13d<br />

exposure to<br />

treated<br />

syrup <strong>and</strong><br />

Endpoints Results Notes (study<br />

reference figure<br />

development<br />

duration.<br />

Mortality rate,<br />

Development<br />

duration, adult<br />

weight<br />

(i) Worker<br />

fecundity<br />

(ii) First<br />

oviposition date<br />

(iii) Syrup<br />

worker survival rate by<br />

10% during the first<br />

month, without any doseeffect<br />

relationship.<br />

Before egg-laying, daily<br />

intake of<br />

imidacloprid from pollen<br />

<strong>and</strong> syrup was 2.15ng<br />

<strong>and</strong> 4.81ng per worker in<br />

D1 <strong>and</strong> D2 respectively.<br />

Brood production was<br />

significantly reduced in<br />

D1.<br />

No significant effect of D1<br />

<strong>and</strong> D2 treatments on the<br />

duration of larval<br />

development.<br />

No lethal effects<br />

Minor sublethal effects on<br />

larval development.<br />

(i) Significantly declined<br />

with increasing dose.<br />

(ii) No effect<br />

(iii) Significantly reduced<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 90 of 133<br />

Report to Syngenta Ltd<br />

22)<br />

Reference<br />

Abbott et al<br />

(2008)<br />

(6) Laycock et al<br />

(2012)


Compound tested<br />

species/subspecies<br />

Imidacloprid<br />

Melipona<br />

quadrifasciata<br />

anthidioides<br />

(Native stingless<br />

bee)<br />

Study type Test dose Test<br />

duration<br />

Lab/oral/larvae 0.0056,<br />

0.014, 0.028,<br />

0.037, 0.051,<br />

0.056, 0.08,<br />

0.112, 0.28,<br />

0.37, 0.56,<br />

1.12, 1.75,<br />

3.50, 7.00,<br />

14.00, 28.00<br />

or 56µg<br />

a.i./bee (fed to<br />

larvae)<br />

untreated<br />

pollen balls<br />

Exposure<br />

during<br />

larval<br />

period (c.<br />

41d)<br />

Behaviour<br />

<strong>and</strong><br />

morphomet<br />

ry at 1, 4<br />

<strong>and</strong> 8d post<br />

emergence<br />

Endpoints Results Notes (study<br />

reference figure<br />

uptake<br />

(iv) Oocyte size<br />

(i) Survival of<br />

larvae<br />

(ii) Walking<br />

behaviour of<br />

emerged<br />

workers<br />

(iii)<br />

Morphometry of<br />

mushroom<br />

bodies in<br />

with increasing dose<br />

(although imidacloprid<br />

intake still increased)<br />

(iv) significantly reduced<br />

by increasing dose<br />

(i) At 0.28-28 µg/bee<br />

larvae survived only 5d.<br />

At 56 µg/bee larvae<br />

survived50% only at lowest dose<br />

with dose related<br />

reduction. Development<br />

period <strong>and</strong> bodyweight<br />

not significantly affected<br />

(ii) No effect of dose at<br />

1d. Dose related effects<br />

(reductions in distance<br />

walked, reduced walking<br />

velocity, increased<br />

resting, increased number<br />

of stops in the arena) at 4<br />

<strong>and</strong> 8d.<br />

(iii) No significant effect at<br />

1d but growth<br />

compromised by<br />

imidacloprid exposure in<br />

dose related manner. At<br />

highest dose (0.112µg<br />

/bee) volume reduced by<br />

36% at 8d.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 91 of 133<br />

Report to Syngenta Ltd<br />

22)<br />

Reference<br />

Tome et al<br />

(2012)


Compound tested<br />

species/subspecies<br />

Imidacloprid<br />

(600 g/kg WP)<br />

(Intercept 60 WP)<br />

Bombus impatiens<br />

Imidacloprid<br />

(Confidor 200 SL)<br />

Bombus terrestris<br />

Study type Test dose Test<br />

duration<br />

Lab/oral/workers 0.0192mg<br />

a.i./g pollen<br />

Lab/treated<br />

plants/ adults<br />

(paste created<br />

by mixing<br />

pollen, honey<br />

<strong>and</strong> pesticide<br />

dispersion<br />

together in a<br />

ratio of 5:1:1.<br />

Balls were<br />

created coated<br />

with melted<br />

beeswax. A 2g<br />

ball was<br />

provided on<br />

which brood<br />

was started<br />

<strong>and</strong> remained<br />

with the colony<br />

throughout.<br />

Supplemental<br />

1g treated ball<br />

also provided<br />

which was<br />

replaced twice<br />

weekly)<br />

50ml/hl (on<br />

flowering<br />

cucumber<br />

plants)<br />

Treated<br />

pollen was<br />

provided for<br />

30d;<br />

colonies<br />

were then<br />

maintained<br />

on<br />

untreated<br />

pollen balls<br />

for an<br />

additional<br />

30 d.<br />

ELT<br />

Introduced<br />

1h after<br />

treatment,<br />

Endpoints<br />

emerged<br />

Results Notes (study<br />

reference figure<br />

22)<br />

workers<br />

(i) Number of<br />

days<br />

to first<br />

oviposition,<br />

(ii) Number of<br />

ejected larvae<br />

(iii) Total pollen<br />

consumption<br />

(iv) Worker<br />

lifespan<br />

(i) Oviposition not initiated<br />

(ii) No larvae produced<br />

(iii) Significantly reduced<br />

pollen consumption<br />

(iv) Significantly reduced<br />

lifespan<br />

Mortality Reduced mortality<br />

following delayed<br />

introduction (DELT)<br />

relative to early<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 92 of 133<br />

Report to Syngenta Ltd<br />

Complete<br />

reproductive failure<br />

(7)<br />

Reference<br />

Gradish et al<br />

(2010)<br />

Incerti et al<br />

(2003)


Compound tested<br />

species/subspecies<br />

Imidacloprid<br />

Bombus terrestris<br />

Imidacloprid<br />

(Confidor 20% SC)<br />

Bombus terrestris<br />

Study type Test dose Test<br />

duration<br />

Semi-field<br />

(Greenhouse)<br />

/exposure route<br />

not known<br />

/workers<br />

[tomato crop]<br />

Semi-field<br />

(greenhouse)<br />

/Oral<br />

exposure/adults<br />

observed at<br />

24, 48 <strong>and</strong><br />

72h<br />

DELT<br />

Introduced<br />

24h after<br />

treatment,<br />

observed at<br />

24 <strong>and</strong> 48 h<br />

after this.<br />

- - Pollination<br />

efficiency<br />

20, 10 <strong>and</strong> 2ppb<br />

(in sugar water)<br />

for chronic <strong>and</strong><br />

foraging<br />

assessments<br />

Up to 11<br />

weeks<br />

(chronic<br />

exposure)<br />

Endpoints Results Notes (study<br />

reference figure<br />

Mortality, drone<br />

production <strong>and</strong><br />

foraging<br />

behavior<br />

introduction (ELT) to<br />

treated plants.<br />

An interval of 7 days was<br />

necessary before<br />

releasing Bombus<br />

terrestris so that its<br />

pollination efficiency<br />

would not be reduced<br />

All workers affected at 10<br />

<strong>and</strong> 20ppb after 2 weeks<br />

with mortality of 62 <strong>and</strong><br />

92% respectively <strong>and</strong> all<br />

survivors apathic. At<br />

20ppb nearly all dead<br />

bees found at feeder<br />

while at 10ppb all dead<br />

bees found in hive.<br />

Complete reproductive<br />

failure at these doses.<br />

No effects on mortality,<br />

reproduction or foraging<br />

behaviour at 2ppb.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 93 of 133<br />

Report to Syngenta Ltd<br />

22)<br />

Information taken<br />

from abstract<br />

(paper in Italian)<br />

This study reports<br />

the development of<br />

a new bioassay to<br />

assess the impact<br />

of sublethal<br />

concentrations on<br />

the bumblebee<br />

foraging behavior<br />

under laboratory<br />

conditions. (8)<br />

Reference<br />

Vacante<br />

(1997).<br />

Mommaerts et<br />

al (2010)


Compound tested<br />

species/subspecies<br />

Imidacloprid<br />

Bombus terrestris<br />

Imidacloprid<br />

(SL 200)<br />

Bombus terrestris<br />

Imidacloprid<br />

Bombus terrestris<br />

Study type Test dose Test<br />

duration<br />

Semi-field<br />

(Greenhouse)/fiel<br />

d<br />

exposure/workers<br />

Semi-field<br />

(Greenhouse)/fiel<br />

d-spray/adult<br />

Semi-field<br />

(Greenhouses)<br />

/field exposure/<br />

adults<br />

-<br />

Treated 7, 14<br />

<strong>and</strong> 21d<br />

before<br />

introduction of<br />

bumblebees<br />

into cold<br />

greenhouse<br />

(tomato crop)<br />

0.05 ml/plant<br />

(0.75 l/ha)<br />

[38, 48, 58 <strong>and</strong><br />

68 days after<br />

transplanting<br />

of tomato<br />

plants]<br />

7d<br />

exposure<br />

before<br />

endpoint<br />

38, 44, 52,<br />

59, 66, 73<br />

<strong>and</strong> 80<br />

days after<br />

transplant<br />

of plants<br />

2, 3, 4, 5, 6,<br />

7 weeks<br />

1.5 months<br />

after setting<br />

Endpoints Results Notes (study<br />

reference figure<br />

Flower visits<br />

after 7d.<br />

(i) Pollination<br />

efficiency (4<br />

parameters).<br />

(ii) Flight<br />

frequencies.<br />

(iii) Laboratory<br />

assessments of<br />

final hive status<br />

(10 parameters)<br />

Visits reduced by 88, 50<br />

<strong>and</strong> 30% respectively<br />

compared to controls.<br />

In 21d before introduction<br />

group, visits returned to<br />

normal within 14d<br />

(i) No significant effect<br />

(ii) No significant effect<br />

(iii) No significant effects<br />

- - Foraging activity No negative effect on B.<br />

terrestris foraging on<br />

imidacloprid-treated<br />

plants<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 94 of 133<br />

Report to Syngenta Ltd<br />

22)<br />

Information from<br />

abstract (paper in<br />

Italian)<br />

In Italian<br />

(information taken<br />

from Blacquiere et<br />

al 2012).<br />

Reference<br />

Nucifora <strong>and</strong><br />

Vasquez<br />

(1999)<br />

Bielza et al<br />

(2001)<br />

Colombo <strong>and</strong><br />

Buonocore<br />

(1997)<br />

Imidacloprid<br />

(non-heated<br />

greenhouses<br />

‘ragusa cultivated<br />

with tomato)<br />

Semi-field 15g a.i./ha 6 weeks (i) Pollination (i) Significant (p


Compound tested<br />

species/subspecies<br />

Bombus terrestris L. (Greenhouses)/fie<br />

ld exposure/adults<br />

Imidacloprid<br />

(Merit 0.5 G, granular<br />

formulation)<br />

Bombus impatiens<br />

Study type Test dose Test<br />

duration<br />

(bumble bee<br />

hives introduced<br />

for pollination)<br />

Semi-field<br />

(pollination<br />

cages)/field<br />

exposure/adults<br />

[Tall fescue,<br />

(Festuca<br />

Arundinacea) with<br />

25-50% flowering<br />

(foliar spray)<br />

0.4483 kg<br />

a.i./ha<br />

+<br />

1.5 cm of<br />

irrigation from<br />

lawn sprinklers<br />

Endpoints Results Notes (study<br />

reference figure<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 95 of 133<br />

Report to Syngenta Ltd<br />

rate<br />

(ii) Fruit<br />

setting/develop<br />

ment<br />

(iii) Life span of<br />

colony<br />

(iv) Broth<br />

consumption<br />

(v) Colony<br />

parameters at<br />

end of study<br />

30d Weight (g)<br />

(i) Colony (with<br />

hive)<br />

(ii) Workers<br />

(iii) Queen<br />

No. in colony<br />

(i) Workers<br />

(ii) Brood<br />

reduction in pollination<br />

following both hive<br />

introductions<br />

(ii) ‘Inferior’ flower<br />

pollinations<br />

(iii) No effects observed<br />

(few larvae found around<br />

hives when checks made)<br />

(iv) 1st hive: c. 1/3 of<br />

control consumption<br />

2nd hive: c. 4/5 of control<br />

consumption<br />

(v) 1st hive: no. small<br />

larvae, weight of workers,<br />

weight of nest all lower<br />

than controls (nest weight<br />

c. 54% of control). 2nd<br />

hive: less clear<br />

differences<br />

No significant difference<br />

for any endpoint<br />

22)<br />

applications were<br />

also made to all<br />

test plots including<br />

controls.<br />

Reference<br />

(2005)<br />

Gels et al<br />

(2002)


Compound tested<br />

species/subspecies<br />

Imidacloprid<br />

(Merit 75 WP, spray<br />

formulation)<br />

Bombus impatiens<br />

Imidacloprid<br />

(Merit 75 WP, spray<br />

Study type Test dose Test<br />

duration<br />

white<br />

clover cover]<br />

Semi-field<br />

(pollination<br />

cages)/field<br />

exposure/adults<br />

[Tall fescue,<br />

(Festuca<br />

Arundinacea) with<br />

25-50% flowering<br />

white<br />

clover cover]<br />

Semi-field<br />

(pollination<br />

0.336 kg<br />

a.i./ha<br />

+<br />

1.5 cm of<br />

irrigation from<br />

lawn sprinklers<br />

0.336 kg<br />

a.i./ha<br />

Endpoints Results Notes (study<br />

reference figure<br />

chambers<br />

(iii) Honey pots<br />

Defensive<br />

response<br />

(i) Time to initial<br />

response (s)<br />

(ii) Duration of<br />

response (s)<br />

(iii) No. of bees<br />

responding<br />

30d Weight (g)<br />

(i) Colony (with<br />

hive)<br />

(ii) Workers<br />

(iii) Queen<br />

No. in colony<br />

(i) Workers<br />

(ii) Brood<br />

chambers<br />

(iii) Honey pots<br />

Defensive<br />

response<br />

(i) Time to initial<br />

response (s)<br />

(ii) Duration of<br />

response (s)<br />

(iii) No. of bees<br />

responding<br />

30d Weight (g)<br />

(i) Colony (with<br />

No significant difference<br />

for any endpoint<br />

Significant treatment<br />

related decrease for all<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 96 of 133<br />

Report to Syngenta Ltd<br />

22)<br />

Significant effects<br />

seen only in non-<br />

Reference<br />

Gels et al<br />

(2002)<br />

Gels et al<br />

(2002)


Compound tested<br />

species/subspecies<br />

formulation)<br />

Bombus impatiens<br />

Imidacloprid<br />

(Confidor LS 200)<br />

Bombus terrestris<br />

Study type Test dose Test<br />

duration<br />

cages)/fieldexpos<br />

ure/adults<br />

[Tall fescue,<br />

(Festuca<br />

Arundinacea) with<br />

25-50% flowering<br />

white<br />

clover cover]<br />

Semi-field (tent)/<br />

contact <strong>and</strong><br />

oral/adults<br />

+<br />

No irrigation<br />

Endpoints Results Notes (study<br />

reference figure<br />

hive)<br />

(ii) Workers<br />

(iii) Queen<br />

No. in colony<br />

(i) Workers<br />

(ii) Brood<br />

chambers<br />

(iii) Honey pots<br />

Defensive<br />

response<br />

(i) Time to initial<br />

response (s)<br />

(ii) Duration of<br />

response (s)<br />

(iii) No. of bees<br />

responding<br />

150g a.i./ha 28d Effects of single<br />

drench<br />

application on<br />

tomatoes<br />

endpoints except weight<br />

of queen<br />

49% mortality, 58% in<br />

controls<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 97 of 133<br />

Report to Syngenta Ltd<br />

22)<br />

irrigated sprayed<br />

plots<br />

Table 21: Overview of studies of the effects of sublethal <strong>and</strong> chronic exposure to clothianidin <strong>and</strong> thiamethoxam on non-Apis bees<br />

Compound tested<br />

species/subspecies<br />

Clothianidin<br />

(99.75% TG)<br />

Megachile rotundata<br />

Study type Test dose Test<br />

duration<br />

Lab / Oral<br />

exposure/ larvae<br />

low (6 ppb),<br />

intermediate<br />

(30 ppb), or<br />

high (300 ppb)<br />

in pollen<br />

provisions<br />

Total<br />

developme<br />

nt period<br />

Endpoints Results Notes (study<br />

reference figure<br />

Mortality rate,<br />

Development<br />

duration, adult<br />

weight<br />

No lethal effects.<br />

No major sublethal effects<br />

on larval development.<br />

23)<br />

Reference<br />

Sechser et al<br />

(2002)<br />

Reference<br />

(1) Abbott et al<br />

(2008)


Clothianidin<br />

(99.75% TG)<br />

Bombus impatiens<br />

Thiamethoxam<br />

(Actara 25% WG)<br />

Bombus terrestris<br />

Thiamethoxam<br />

(Actara WG 25)<br />

Bombus terrestris<br />

Semi-field (flight<br />

cage) /Oral via<br />

pollen (chronic<br />

exposure)/colony<br />

Lab (artificial<br />

nestbox) /Oral<br />

exposure/adults<br />

Lab/ contact <strong>and</strong><br />

oral/adults<br />

6 <strong>and</strong> 36 ppb<br />

(in pollen)<br />

From the<br />

MFRC to<br />

several<br />

dilutions:<br />

100 (MFRC),<br />

10, 1, 0.5,<br />

0.2, 0.1 ppm<br />

<strong>and</strong> 10 ppb (in<br />

sugar water)<br />

0.1 ppm (1/1000<br />

MFRC) only for<br />

foraging<br />

behaviour<br />

(i) 10g a.i./ha<br />

(ii) 10g a.i./ha<br />

(50ppm in<br />

70% sugar<br />

solution)<br />

> 80 days Pollen<br />

consumption,<br />

progeny weight,<br />

number of<br />

males, queens<br />

<strong>and</strong> workers,<br />

foraging<br />

Up to 11<br />

weeks<br />

(chronic<br />

exposure)<br />

behavior.<br />

Mortality, drone<br />

production <strong>and</strong><br />

foraging<br />

behavior<br />

No colony effects were<br />

observed.<br />

<strong>The</strong> foraging ability of the<br />

workers bees tested on<br />

artificial flowers did not<br />

differ among treatments<br />

(but sample size small).<br />

Without foraging<br />

100% mortality at 0.5 <strong>and</strong><br />

1ppm at 1 <strong>and</strong> 3 weeks of<br />

exposure, respectively,<br />

0.2, 0.1 ppm <strong>and</strong> 10 ppb<br />

killed 83, 25 <strong>and</strong> 6% of the<br />

workers, respectively.<br />

Chronic<br />

LC50 = 0.12 ppm<br />

Total reproductive failure<br />

at100, 10, 1 <strong>and</strong> 0.5 ppm.<br />

Significant effect at 0.1ppm<br />

with number of drones only<br />

14% of control.<br />

EC50 = 35 ppb<br />

(i) 100% mortality<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 98 of 133<br />

Report to Syngenta Ltd<br />

(i) 7d<br />

(i) 7d<br />

(i) 12d<br />

(i) Contact<br />

toxicity glass<br />

plate<br />

(ii) Oral activity<br />

(iii) contact <strong>and</strong><br />

residual activity<br />

(ii) 100% mortality<br />

(iii) 95% mortality<br />

(2) Franklin et al<br />

(2004)<br />

This study reports<br />

the development of<br />

a new bioassay to<br />

assess the impact<br />

of sublethal<br />

concentrations on<br />

the bumblebee<br />

foraging behavior<br />

under laboratory<br />

conditions. (3)<br />

Mommaerts et<br />

al (2010)<br />

Sechser et al<br />

(2002)


Thiamethoxam<br />

Bombus terrestris L.<br />

Thiamethoxam<br />

(Actara WG 25)<br />

Semi-field<br />

(Greenhouses)/fie<br />

ld exposure/adults<br />

(bumble bee<br />

hives introduced<br />

for pollination)<br />

Semi-field (tent)/<br />

contact <strong>and</strong><br />

(iii) 40g a.i./ha<br />

(4x maximum<br />

rate)<br />

2 x 100g<br />

a.i./ha 7d apart<br />

(drip irrgation)<br />

OR<br />

Single<br />

application at<br />

200g a.i./ha<br />

(drip irrigation)<br />

(i) 40g a.i./ha<br />

on tomatoes<br />

6 weeks (i) Pollination<br />

rate<br />

(i) Hives<br />

placed in<br />

(ii) Fruit<br />

setting/develop<br />

ment<br />

(iii) Life span of<br />

colony<br />

(iv) Broth<br />

consumption<br />

(v) Colony<br />

parameters at<br />

end of study<br />

(i) Effects of<br />

foliar application<br />

(delaying release by 2d<br />

reduced mortality to 65%)<br />

(i) Significant (pdouble<br />

application>single<br />

application<br />

2nd hive: less clear<br />

differences<br />

(i) 92% mortality at 3<br />

weeks following<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 99 of 133<br />

Report to Syngenta Ltd<br />

Other phytosanitary<br />

applications were<br />

also made to all<br />

test plots including<br />

controls.<br />

Alarcon et al<br />

(2005)<br />

Sechser et al<br />

(2002)


Bombus terrestris oral/adults<br />

Thiamethoxam<br />

(Actara WG 25)<br />

Bombus terrestris<br />

Semi-field<br />

(tunnel)/ contact<br />

<strong>and</strong> oral/adults<br />

(ii) 100g a.i./ha<br />

(iii) 40g a.i./ha<br />

(iv) 150g<br />

a.i./ha<br />

(i) 10g a.i./ha<br />

(ii) 10g a.i./ha<br />

(50ppm in<br />

70% sugar<br />

tent either<br />

immediatel<br />

y spray dry<br />

or 1wk later<br />

(ii) 28d<br />

observation<br />

, Hives<br />

placed in<br />

tent either<br />

immediatel<br />

y spray dry<br />

or 14d later<br />

(iii) 24d<br />

observation<br />

. Sprayed<br />

1, 2, 7 or<br />

14d before<br />

exposure<br />

(iv) 28d<br />

(i) 28d<br />

(ii) 35d<br />

(Phacelia)<br />

(ii) Effects of<br />

foliar application<br />

(tomatoes)<br />

(iii) Effects of<br />

foliar application<br />

(tomatoes)<br />

(iv) Effects of<br />

single drench<br />

application on<br />

tomatoes<br />

(i) Effects of<br />

single<br />

application via<br />

irrigation (Trial<br />

1)<br />

(ii) Effects of<br />

single<br />

application via<br />

immediate introduction.<br />

68% mortality if<br />

introduced after 1wk.<br />

Control mortality 50%<br />

(ii) 93% mortality at 3<br />

weeks following<br />

immediate introduction.<br />

94% mortality if<br />

introduced after 14d.<br />

(iii) Mortality following 1,<br />

2, 7 or 14d delay before<br />

introduction was 79, 80,<br />

88, <strong>and</strong> 78% respectively.<br />

Control mortality 50%<br />

(iv) 50% mortality, 58% in<br />

controls<br />

(i) No negative effects on<br />

hives observed<br />

(ii) No negative effects on<br />

hives observed<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 100 of 133<br />

Report to Syngenta Ltd<br />

Sechser et al<br />

(2002)


Thiamethoxam<br />

(Actara WG 25)<br />

Bombus terrestris<br />

Semi-field<br />

(tunnel)/ contact<br />

<strong>and</strong> oral/colony<br />

solution)<br />

150 <strong>and</strong> 161g<br />

a.i./ha (via<br />

irrigation<br />

system –<br />

single drip<br />

application)<br />

Hives<br />

opened 13-<br />

36d after<br />

application<br />

irrigation (Trial<br />

2)<br />

Impact on<br />

broods<br />

No negative impact<br />

deteceted.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 101 of 133<br />

Report to Syngenta Ltd<br />

Sechser <strong>and</strong><br />

Freuler (2003)


5. References<br />

References in bold are used in the text<br />

Aajoud A, Raveton M, Aouadi H, Tissut M, <strong>and</strong> Ravanel P, 2006. Uptake <strong>and</strong> xylem transport<br />

of fipronil in sunflower. Journal of Agricultural <strong>and</strong> <strong>Food</strong> Chemistry 54, 5055-5060.<br />

Abbott VA, Nadeau JL, Higo HA <strong>and</strong> Winston ML (2008). Lethal <strong>and</strong> sublethal effects of<br />

imidacloprid on Osmia lignaria <strong>and</strong> clothianidin on Megachile rotundata (Hymenoptera:<br />

megachilidae). Journal of Economic Entomology, 101:784-796.<br />

Adler LS, 2000. <strong>The</strong> ecological significance of toxic nectar. Oikos 91, 409-420.<br />

AFSSA, 2007. OPINION of the French <strong>Food</strong> Safety Agency (Afssa. on the conclusions of the<br />

THE DIRECTOR GENERAL Cruiser assessment regarding the long-term risk to bee colonies<br />

AFSSA Request no. 2007-SA-0393 subject related to no. 2007-3845 – Cruiser<br />

AFSSA, 2008. Weakening, collapse <strong>and</strong> mortality of bee colonies, AFSSA. pp. 155.<br />

Alarcon AL, Canovas M, Senn R <strong>and</strong> Correia R (2005) <strong>The</strong> safety of thiamethoxam to<br />

pollinating bumble bees (Bombus terrestris L.) when applied to tomato plants through drip<br />

irrigation. Communications in Agricultural <strong>and</strong> Applied Biological Sciences 70(4): 569-579.<br />

Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A,<br />

Belzunces LP, <strong>and</strong> Le Conte Y, 2010b. Interactions between Nosema microspores <strong>and</strong> a<br />

neonicotinoid weaken honeybees (Apis mellifera. <strong>Environment</strong>al Microbiology 12, 774-782.<br />

Alaux C, Ducloz F, Crauser D, <strong>and</strong> Le Conte Y, 2010a. Diet effects on honeybee<br />

immunocompetence. Biology Letters.<br />

Al-Fattah MA, <strong>and</strong> El-Shemy AAM, 1990. Eight methods for ventilating confined honeybee<br />

colonies during the application of insecticides. Journal of Apicultural Research 29, 214-220.<br />

Alferis KA, <strong>and</strong> Jabaji S, 2011. Metabolomics - a robust bioanalytical approach for the<br />

discovery of modes of action of pesticides, A review. Pesticide Biochemistry <strong>and</strong><br />

Physiology 100, 105-117.<br />

Alghamdi A, Dalton L, Phillis A, Rosato E, <strong>and</strong> Mallon EB, 2008. Immune response impairs<br />

learning in free-flying bumble-bees. Biology Letters 4, 479-481.<br />

Aliouane Y, El Hassani AK, Gary V, Armengaud C, Lambin M <strong>and</strong> Gauthier M (2009)<br />

Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behaviour.<br />

<strong>Environment</strong>al Toxicology <strong>and</strong> Chemistry, 28(1):113-122.<br />

Alptekin S, Bass C, <strong>and</strong> Paine M, 2011. Microarray analysis of P450 upregulation in honey<br />

bee following neonicotinoid treatment. Current Opinion in Biotechnology 225, G17, S152.<br />

Ambolet B, Crevat JF <strong>and</strong> Schmidt HW (1997) Recherche d’eventuels effets secondaires<br />

d’un traitement de semences a base d’imidaclopride sur le comportement des abeilles<br />

domestique sur les fleurs de tournesol [Research on possible side effects of a seed<br />

treatment imidacloprid based on the behavior of domestic bees on sunflowers]. Annales<br />

ANPP - 4 eme Conference Internationale sur Les Ravageurs en Agriculture, Montpelier 6-7-8<br />

Janvier 1997. 103-110.<br />

Ambolet B, Crevat JF, Cure G, Schmuck R <strong>and</strong> Vincinaux C (1999) Etude au Champ des<br />

Effets de l’Imidaclopride sur Abeilles [Influence Under Field Conditions of Imidacloprid on<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees<br />

Report to Syngenta Ltd<br />

Page 102 of 133


Honeybees]. Annales ANPP - 5 eme Conference Internationale sur Les Ravageurs en<br />

Agriculture, Montpelier 7-8-9 Decembre 1999. 617-624.<br />

Andersen KE, Sheehan TH, Eckholm BJ, Mott BM, <strong>and</strong> DeGr<strong>and</strong>i-Hoffman G, 2011. An<br />

emerging paradigm of colony health, microbial balance of the honey bee <strong>and</strong> hive (Apis<br />

mellifera.. Insectes Sociaux, 431-444.<br />

Anon, 2008. Pesticide build-up could lead to poor honey bee health. American Bee Journal<br />

148, 861-861.<br />

Antúnez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, <strong>and</strong> Higes M, 2009. Immune<br />

suppression in the honey bee (Apis mellifera following infection by Nosema ceranae<br />

(Microsporidia). <strong>Environment</strong>al Microbiology 11.<br />

Armengaud C, Lambin M <strong>and</strong> Gauthier M (2002) Effects of imidacloprid on the neural<br />

processes of memory in honeybees. In: Honey <strong>Bees</strong>: Estimating the <strong>Environment</strong>al Impact<br />

of Chemicals (Devillers J <strong>and</strong> Pham-Delège MH Eds.). Taylor & Francis, London. pp. 85-100.<br />

Aronstein KA, <strong>and</strong> Murray KD, 2010. Chalkbrood disease in honey bees. Journal of<br />

Invertebrate Pathology 103, S20-29.<br />

Aufauvre, J., D. G. Biron, et al. (2012). "Parasite-insecticide interactions: a case study of<br />

Nosema ceranae <strong>and</strong> fipronil synergy on honeybee." Scientific Reports 2.<br />

Babendrier D, Kalberger N, Romeis J, Fluri P, <strong>and</strong> Bigler F, 2004. Pollen consumption in<br />

honeyb bee larvae, a step forward in the risk assessment of transgenic plants. Apidologie<br />

35, 293-300.<br />

Bac<strong>and</strong>ritsos N, Granato A, Budge G, Papanastasiou I, Roinioti E, Caldon M, Falcaro C,<br />

Gallina A, <strong>and</strong> Mutinelli F, 2010. Sudden deaths <strong>and</strong> colony population decline in Greek<br />

honey bee colonies. Journal of Invertebrate Pathology 105, 335-340.<br />

Bailey, J., C. Scott-Dupree, et al. (2005). "Contact <strong>and</strong> oral toxicity to honey bees (Apis<br />

mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada."<br />

Apidologie 36(4): 623-633.<br />

Barbara, G. S., B. Gruenewald, et al. (2008). "Study of nicotinic acetylcholine receptors on<br />

cultured antennal lobe neurones from adult honeybee brains." Invertebrate Neuroscience<br />

8(1): 19-29.<br />

Barbara, G. S., C. Zube, et al. (2005). "Acetylcholine, GABA <strong>and</strong> glutamate induce ionic<br />

currents in cultured antennal lobe neurons of the honeybee, Apis mellifera." Journal of<br />

Comparative Physiology A Neuroethology Sensory Neural & Behavioral Physiology 191(9):<br />

823-836.<br />

Bekesi L, 2005. Infection <strong>and</strong> immunity of the honeybee (Apis mellifera.. Literature review.<br />

Magyar Allatorvosok Lapja 127, 594-602.<br />

Belien T, Kellers J, Heylen K, Billen J, Arckens L, Huybrechts R <strong>and</strong> Gobin B (2010).<br />

Identification <strong>and</strong> evaluation of sublethal effects of crop protection products on honey bees<br />

(Apis mellifera). IOBC/WPRS Bulletin, 55:55-59.<br />

Belien T, Kellers J, Heylen K, Keulemans W, Billen J, Arckens L, Huybrechts R <strong>and</strong> Gobin B<br />

(2009). Effects of sublethal doses of crop protection agents on honey bee (Apis mellifera)<br />

global colony vitality <strong>and</strong> its potential link with aberrant foraging activity. Communications<br />

in agricultural <strong>and</strong> applied biological sciences, 74(1):245-253.<br />

Benzidane, Y., B. Lapied, et al. (2011). "<strong>Neonicotinoid</strong> insecticides imidacloprid <strong>and</strong><br />

clothianidin affect differently neural Kenyon cell death in the cockroach Periplaneta<br />

americana." Pesticide Biochemistry <strong>and</strong> Physiology 101(3): 191-197.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 103 of 133<br />

Report to Syngenta Ltd


Bernadou A, Damares F, Couret-Fauvel T,. S<strong>and</strong>oz JC <strong>and</strong> Gauthier M (2009). Effect of<br />

fipronil on side-specific antennal tactile learning in the honeybee. Journal of Insect<br />

Physiology, 55(12):1099-1106.<br />

Bernal J, Garrido-Bailon E, del Nozal M, Gonzalez-Porto AV, Martin-Hern<strong>and</strong>ez R, Diego J,<br />

Jimenez J, <strong>and</strong> Higes M, 2010. Overview of Pesticide Residues in Stored Pollen <strong>and</strong> <strong>The</strong>ir<br />

Potential Effect on Bee Colony (Apis mellifera. Losses in Spain. Journal of Economic<br />

Entomology 103, 1964-1971.<br />

Bielza P, Contreras J, Guerrero MM, Izquierdo J, Lacasa A <strong>and</strong> Mansanet V (2001). Effects of<br />

Confidor 20 LS <strong>and</strong> Nemacur CS on bumblebees pollinating greenhouse tomatoes. Bulletin<br />

OILB/SROP 24(4):83-88.<br />

Bishop A. (1994) Bumble bees (Bombus hypnorum) collect aphid honeydew on stone pine<br />

(Pinus pumila) in the Russian Far East Journal of the Kansas Entomological Society, 67<br />

220–222.<br />

Bonmatin JM, March<strong>and</strong> PA, Charvet R, Moineau I, Bengsch ER, <strong>and</strong> Colin ME, 2005.<br />

Quantification of imidacloprid uptake in maize crops. Journal of Agricultural <strong>and</strong> <strong>Food</strong><br />

Chemistry 53, 5336-5341.<br />

Bonmatin JM, March<strong>and</strong> PA, Cotte JF, Aajoud A, Casabianca H, Goutailler G, <strong>and</strong> Courtiade<br />

M, 2007. <strong>Bees</strong> <strong>and</strong> systemic insecticides (imidacloprid, fipronil. in pollen, subnanoquantification<br />

by HPLC/MS/MS <strong>and</strong> GC/MS. <strong>Environment</strong>al fate <strong>and</strong> ecological effects of<br />

pesticides, 827-834.<br />

Bonmatin JM, Moineau I, Charvet R, Fleche C, Colin ME, <strong>and</strong> Bengsch ER, 2003. a LC/APCI-<br />

MS/MS method of analysis of imidacloprid in soils, plants <strong>and</strong> in pollens. Analytical<br />

Chemistry 75, 2027-2033.<br />

Bonzini S, Tremolada P, Bernardinelli I, Colombo M, <strong>and</strong> Vighi M, 2011. Predicting pesticide<br />

fate in the hive (part 1., experimentally determined tau-fluvalinate residues in bees, honey<br />

<strong>and</strong> wax. Apidologie 42, 378-390.<br />

Bortolotti L, Montanari R, Marcelino J, Medrzycki P, Maini S, Porrini C, 2003. Effects of sublethal<br />

imidacloprid doses on the homing rate <strong>and</strong> foraging activity of honey bees. Bulletin of<br />

Insectology, 56:63-67.<br />

Bortolotti, L., E. Grazioso, et al. (2001). "Effect of pesticides on the bumblebee Bombus<br />

terrestris L. in the laboratory." Institute National de la Colloques 98: 217-225.<br />

Boucias DG, Stokes C, Storey G, <strong>and</strong> Pendl<strong>and</strong> JC, 1996. <strong>The</strong> effects of imidacloprid on the<br />

termite Reticulitermes flavipes <strong>and</strong> its interaction with the mycopathogen Beauveria<br />

bassiana. Pflanzenschutz-Nachrichten Bayer (English ed.. 49, 103-144.<br />

Brattsten LB, Berger DA, <strong>and</strong> Dungan LB, 1994. In vitro inhibition of midgut microsomal<br />

P450s from Spodoptera eridania caterpillars by demethylation inhibitor fungicides <strong>and</strong> plant<br />

growth regulators. Pesticide Biochemistry <strong>and</strong> Physiology 49.<br />

Brodsgaard CJ, Ritter W, Hansen H, <strong>and</strong> Brodsgaard HF, 2000. Interactions among Varroa<br />

jacobsoni mites, acute paralysis virus, <strong>and</strong> Paenibacillus larvae larvae <strong>and</strong> their influence<br />

on mortality of larval honeybees in vitro. Apidologie 31, 543-554.<br />

Broznic, D., J. Marinic, et al. (2008). "Kinetic evaluation of imidacloprid degradation in mice organs<br />

treated with olive oil polyphenols extract." Croatica Chemica Acta 81(1): 203-209.<br />

Brunet, J. L., A. Badiou, et al. (2005). "In vivo metabolic fate of [C-14]-acetamiprid in six<br />

biological compartments of the honeybee, Apis mellifera L." Pest Management Science<br />

61(8): 742-748.<br />

Buckingham, S. D., B. Lapied, et al. (1997). "Imidacloprid actions on insect neuronal<br />

acetylcholine receptors." Journal or Experimental Biology 200(2685-2692).<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 104 of 133<br />

Report to Syngenta Ltd


Buczek K, Chelminski M, <strong>and</strong> Kauko L, 2008. Immunotoxic <strong>and</strong> immunosuppressive action<br />

of environment on the honey bee (Apis mellifera L.., Pol<strong>and</strong>. pp. 21-26.<br />

Buss DS, <strong>and</strong> Callaghan A, 2008. Interaction of pesticides with p-glycoprotein <strong>and</strong> other<br />

ABC proteins, a survey of the possible importance to insecticide, herbicide <strong>and</strong> fungicide<br />

resistance. Pesticide Biochemistry <strong>and</strong> Physiology 90, 141-153.<br />

Cadeddu, 2000. <strong>The</strong> heuristic function of “error” in the scientific methodology of Louis<br />

Pasteur , the case of silkworm diseases.. History <strong>and</strong> Philosophy of the Life Sciences 22, 3-<br />

28.<br />

Cang T, Wu C, Wang X, Wu S, Yu R, Chen L, Zhang Z, <strong>and</strong> Zhao X, 2008. <strong>The</strong> toxicity of<br />

fipronil <strong>and</strong> trichlorfon on Italian honey bees (Apis mellifera.. Zhejiang Nongye Kexue, 473-<br />

475.<br />

Cantoni A, Schmidt HW <strong>and</strong> Gilli, J (2001) Bee-friendly use of Confidor [R] + oliocin in apple<br />

cultivation in Italy. Pflanzenschutz Nachrichten Bayer 54(3): 353-368.<br />

Cantwell GE, 1974. Honey bee diseases, parasites, <strong>and</strong> pests, in, G.E.Cantwell, Ed.., Insect<br />

diseases, Vol.II,, New York. pp. 501-547.<br />

Casteels P, Ampe C, Jacobs F, Vaeck M, <strong>and</strong> Tempst P, 1989. Apidaecins, antibacterial<br />

peptides from honeybees. EMBO Journal 8, 2387-2391.<br />

Cedergreen N, Kamper A, <strong>and</strong> Streibig JC, 2006. Is prochloraz a potent synergist across<br />

aquatic species? A study on bacteria, daphnia, algae <strong>and</strong> higher plants. Aquatic Toxicology<br />

78, 243-252.<br />

Celli G, <strong>and</strong> Porrini C, 1988. Flower morphology <strong>and</strong> pesticide contamination of nectar<br />

(some theoretical considerations.. Preliminary report, Atti XV Congresso Nazionale Italiano<br />

di Entomologia, L'Aquila, 13-17 Giugno 1988. pp. 1039-1045.<br />

Chan QWT, Melathopoulos AP, Pernal SF, <strong>and</strong> Foster LJ, 2009 <strong>The</strong> innate immune <strong>and</strong><br />

systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC<br />

Genomics 10, 387 doi, 10.1186/1471-2164-10-387.<br />

Chauzat MP, Carpentier P, Martel AC, Bougeard S, Cougoule N, Porta P, Lachaize J, Madec<br />

F, Aubert M, <strong>and</strong> Faucon JP, 2009. Influence of Pesticide Residues on Honey Bee<br />

(Hymenoptera, Apidae. Colony Health in France. <strong>Environment</strong>al Entomology 38, 514-523.<br />

Chauzat MP, Faucon JP, Martel AC, Lachaize J, Cougoule N, <strong>and</strong> Aubert M, 2006. A survey<br />

of pesticide residues in pollen loads collected by honey bees in France. Journal of<br />

Economic Entomology 99, 253-262.<br />

Chauzat MP, Martel AC, Blanchard P, Clement MC, Schurr F, Lair C, Ribiere M, Wallner K,<br />

Rosenkranz P, <strong>and</strong> Faucon JP, 2010b. A case report of a honey bee colony poisoning<br />

incident in France. Journal of Apicultural Research 49, 113-115.<br />

Chauzat MP, Martel AC, Cougoule N, Porta P, Lachaize J, Zeggane S, Aubert M, Carpentier<br />

P, <strong>and</strong> Faucon JP, 2011. An Assessment of Honeybee Colony Matrices, Apis Mellifera<br />

(Hymenoptera Apidae. to Monitor Pesticide Presence in Continental France. <strong>Environment</strong>al<br />

Toxicology <strong>and</strong> Chemistry 30, 103-111.<br />

Chauzat MP, Martel AC, Zeggane S, Drajnudel P, Schurr F, Clement MC, Ribiere-Chabert M,<br />

Aubert M, <strong>and</strong> Faucon JP, 2010a. A case control study <strong>and</strong> a survey on mortalities of honey<br />

bee colonies (Apis mellifera. in France during the winter of 2005-6. Journal of Apicultural<br />

Research 49, 40-51.<br />

Che S, 2007. Honey bee viruses. Honey bee viruses. 70, 33-80.<br />

Claudianos C, Ranson H, Johnson RM, Schluer MA, Berenbaum MR, <strong>and</strong> Feyereisen R,<br />

2006. A deficit of detoxification enzymes, pesticide sensitivity <strong>and</strong> environmental response<br />

in the honeybee. Insect Molecular Biology 15, 615-636.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 105 of 133<br />

Report to Syngenta Ltd


Colin M, Bonmatin J, Moineau I, Gaimon C, Brun S <strong>and</strong> Verm<strong>and</strong>ere J (2004). A method to<br />

quantify an analyze the foraging activity of honey bees: relevance to the sublethal effects<br />

induced by systemic insecticides. <strong>Environment</strong>al Contamination <strong>and</strong> Toxicology, 47:387-<br />

395.<br />

Colin ME, Le Conte Y <strong>and</strong> Verm<strong>and</strong>ere JP (2001). Managing nuclei in insect-proof tunnel as<br />

an observation tool for foraging bees : sublethal effects of deltamethrin <strong>and</strong> imidacloprid.<br />

In: Hazards of <strong>Pesticides</strong> to <strong>Bees</strong>. (Belzunces LP, Pelissier C <strong>and</strong> Lewis GB eds.). Inst Natl<br />

Recherche Agronomique (INRA), Paris, pp. 259-268.<br />

Colombo A <strong>and</strong> Buonocore E (1997) In nonheated greenhouses of Ragusa cultivated with<br />

tomato. <strong>The</strong> effect of soil treatment with imidacloprid on activities of bees. L’Informatore<br />

Agrario 53(38): 85-87.<br />

Conte Yl, <strong>and</strong> Ellis M, 2008. Mortality <strong>and</strong> depopulation in domesticated bee colonies, the<br />

American case. Biofutur, 49-53.<br />

Cox-Foster DL, Conlan S, Holmes E, Palacios G, Evans JD, Moran NA, Quan P, Briese T,<br />

Hornig M, Geiser DM, Martinson V, Van Engelsdorp D, Kalkstein A, Drysdale A, Hui J, ZhaiI<br />

J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, <strong>and</strong> Lipkin WI, 2007. A<br />

metagenomic survey of microbes in honey bee Colony Collapse Disorder.. Science USA<br />

318, 283=287.<br />

Cruz ADS, da Silva-Zacarin ECM, Bueno OC <strong>and</strong> Malaspina O (2010). Morphological<br />

alterations induced by boric acid <strong>and</strong> fipronil in the midgut of worker honeybee (Apis<br />

mellifera L.) larvae: Morphological alterations in the midgut of A. mellifera. Cell Biology <strong>and</strong><br />

Toxicology, 26(2):165-176.<br />

Cure G, Schmidt HW <strong>and</strong> Schmuck R (2001). Results of a comprehensive field research<br />

programme with the systemic insecticide imidacloprid (Gaucho((R))). In: Hazards of<br />

<strong>Pesticides</strong> to <strong>Bees</strong>. Belzunces LP, Pelissier C <strong>and</strong>. Lewis GB (eds). Inst Natl Recherche<br />

Agronomique (INRA), Paris, pp 49-59.<br />

Cutler CG <strong>and</strong> Scott-Dupree CD (2007). Exposure to clotianidin seed-treated canola has no<br />

long-term impact on honey bees. Journal of Economic Entomology, 100(3):765-772.<br />

Dechaume Moncharmont FX, Decourtye A, Hennequet-Hantier C, Pons O <strong>and</strong> Pham-Delegue<br />

MH (2003) Statistical analysis of honeybee survival after chronic exposure to insecticides.<br />

<strong>Environment</strong>al Toxicology <strong>and</strong> Chemistry 22(12): 3088-94.<br />

Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S, Gauthier M, Delegue MHP<br />

(2004a). Imidacloprid impairs memory <strong>and</strong> brain metabolism in the honeybee (Apis mellifera<br />

L.). Pesticide Biochemistry <strong>and</strong> Physiology, 78:83-92.<br />

Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delègue MH (2004b). Effects of<br />

imidacloprid <strong>and</strong> deltamethrin on associative learning in honeybee under semi-field <strong>and</strong><br />

laboratory conditions. Ecotoxicology <strong>and</strong> <strong>Environment</strong>al Safety, 57:410–419.<br />

Decourtye A, Lacassie E, Pham-Delègue MH (2003). Learning performances of honeybees<br />

(Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest<br />

Management Science, 59(3):269-278.<br />

Decourtye A, Le Metayer M, Pottiau H, Tisseur M, Odoux JF <strong>and</strong> Pham-Delegue MH (2001)<br />

Impairment of olfactory learning performances in the honey bee after long term ingestion of<br />

imidacloprid. Hazards of <strong>Pesticides</strong> to <strong>Bees</strong>. Belzunces LP, Pelissier C <strong>and</strong> Lewis GB (eds).<br />

Inst Natl Recherche Agronomique (INRA), Paris. pp. 113-117.<br />

Decourtye A, Lefort S, Devillers J, Gauthier M, Aupinel P <strong>and</strong> Tisseur M (2009). Sublethal<br />

effects of fipronil on the ability of honeybees (Apis mellifera L.) to orientate in a complex<br />

maze. Julius-Kühn Archiv, 423:75-83.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 106 of 133<br />

Report to Syngenta Ltd


Decourtye A. <strong>and</strong> Devillers J (2010). Ecotoxicity of <strong>Neonicotinoid</strong> Insecticides to <strong>Bees</strong>.<br />

Insect Nicotinic Acetylcholine Receptors. Thany SH (ed). Springer, New York. pp. 85-95.<br />

Decourtye, A., C. Armengaud, et al. (2004). "Imidacloprid impairs memory <strong>and</strong> brain<br />

metabolism in the honeybee (Apis mellifera L.)." Pesticide Biochemistry <strong>and</strong> Physiology<br />

78(2): 83-92.<br />

Defra PS2354 2011. Background information for considering risk of exposure to multiple<br />

pesticides<br />

Defra PS2368 2012. Potential impacts of synergism between systemic seed treatments <strong>and</strong><br />

sprayed fungicides in crops<br />

Defra report PS2368 2012 Potential impacts of synergism in honeybees between systemic<br />

seed treatments <strong>and</strong> sprayed fungicides in crops<br />

Defra report PS2548 2011 Development <strong>and</strong> Improvement of methods for the Wildlife<br />

Incident Investigation Scheme<br />

Defra Report PS2549 2012 Development <strong>and</strong> Improvement of methods for the Wildlife<br />

Incident Investigation Scheme<br />

Deglise, P., B. Grunewald, et al. (2002). "<strong>The</strong> insecticide imidacloprid is a partial agonist of<br />

the nicotinic receptor of honeybee Kenyon cells." Neuroscience Letters 321(1-2): 13-16.<br />

Deglise, P., D. Wuestenberg, et al. (2001). "<strong>The</strong> insecticide imidacloprid: A new tool for the<br />

study of honeybee neuronal nicotinic <strong>and</strong> GABA receptors?" Society for Neuroscience<br />

Abstracts 27(1).<br />

deGr<strong>and</strong>i-Hoffman G, <strong>and</strong> Hagler J, 2000. <strong>The</strong> flow of incoming nectar through a honey bee<br />

(Apis mellifera L. colony as revealed by a protein marker. Insectes Sociaux 47, 302-306.<br />

Delaplane KS, 1998. Nosema disease <strong>and</strong> its control. American Bee Journal 138, 343-344.<br />

Deneer JW, 2000. Toxicity of mixtures of pesticides in aquatic systems. Pest Management<br />

Science 56, 516-520.<br />

Dent, J. A. (2012). <strong>The</strong> evloution of pentameric lig<strong>and</strong>-gated ion channels. Insect Nicotinic<br />

Acetylcholine Receptors. S. H. Thany. Berlin, Springer-Verlag Berlin. 683: 11-23.<br />

Desneux N, Decourtyre A, <strong>and</strong> Delpuech J-M, 2007. <strong>The</strong> sublethal effects of pesticides on<br />

beneficial arthropods. Annual Reviews of Entomology 52, 81-106.<br />

Dieckmann EA, 2010. Systemicity enhancers, in, U. S. P. Application (Ed...<br />

Donnarumma L, Pulcini P, Pochi D, Rosati S, Lusco L, <strong>and</strong> Conte E, 2011. Preliminary study<br />

on persistence in soil <strong>and</strong> residues in maize of imidacloprid. Journal of <strong>Environment</strong>al<br />

Science <strong>and</strong> Health.Part B, <strong>Pesticides</strong>, <strong>Food</strong> Contaminants, <strong>and</strong> Agricultural Wastes 46, 469-<br />

472.<br />

Doums C, Moret Y, Benelli E, <strong>and</strong> Schmid-Hempel P, 2002. Senescence of immune defence<br />

in Bombus workers. Ecological Entomology 27, 138-144.<br />

Dupuis, J. P., M. Gauthier, et al. (2011). "Expression patterns of nicotinic subunits alpha 2,<br />

alpha 7, alpha 8, <strong>and</strong> beta 1 affect the kinetics <strong>and</strong> pharmacology of ACh-induced currents<br />

in adult bee olfactory neuropiles." Journal of Neurophysiology 106(4): 1604-1613.<br />

EFSA (2012) Scientific Opinion on the science behind the development of a risk assessment<br />

of Plant Protection Products on bees (Apis mellifera, Bombus spp. <strong>and</strong> solitary bees)<br />

http://www.efsa.europa.eu/en/efsajournal/pub/2668.htm<br />

EFSA (2012a) Interaction between pesticides <strong>and</strong> other factors in effects on bees<br />

http://www.efsa.europa.eu/en/supporting/pub/340e.htm<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 107 of 133<br />

Report to Syngenta Ltd


EFSA (2012b) Public consultation on the Risk Assessment of Plant Protection Products on<br />

bees (Apis mellifera, Bombus spp. <strong>and</strong> solitary bees)<br />

http://www.efsa.europa.eu/en/consultationsclosed/call/120920.htm<br />

EFSA (2012d) Statement on the findings in recent studies investigating sub-lethal effects in<br />

bees of some neonicotinoids in consideration of the uses currently authorised in Europe<br />

http://www.efsa.europa.eu/en/efsajournal/pub/2752.htm<br />

Eiri DM <strong>and</strong> Nieh JC (2012) A nicotinic acetylcholine receptor agonist affects honey bee<br />

sucrose responsiveness <strong>and</strong> decreases waggle dancing. Journal of Experimental Biology<br />

215(12):2022-2029.<br />

El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M <strong>and</strong> Armengaud C (2008). Effects of<br />

sublethal doses of acetamiprid <strong>and</strong> thiamethoxam on the behavior of the honeybee (Apis<br />

mellifera), Archives of <strong>Environment</strong>al Contamination <strong>and</strong> Toxicology, 54, 653-661.<br />

El Hassani AK, Dacher M, Gauthier M <strong>and</strong> Armengaud C (2005). Effects of sublethal doses<br />

of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacology Biochemistry<br />

<strong>and</strong> Behavior, 82(1):30-39.<br />

El Hassani AK, Dupuis JP, Gauthier M <strong>and</strong> Armengaud C (2009). Glutamatergic <strong>and</strong><br />

GABAergic effects of fipronil on olfactory learning <strong>and</strong> memory in the honeybee.<br />

Invertebrate Neuroscience, 9(2):91-100.<br />

Elbert, A., C. Erdelen, et al. (2000). Thiacloprid, a novel neonicotinoid insecticide for foliar<br />

application. Bcpc Conference: Pests & Diseases 2000, Vols 1-3, Proceedings. Farnham, British<br />

Crop Protection Council. 1-3: 21-26.<br />

Elbert, A., C. Erdelen, et al. (2000). Thiacloprid, a novel neonicotinoid insecticide for foliar<br />

application. Farnham, <strong>The</strong> BCPC Conference<br />

Elbert, A., C. Erdelen, et al. (2001). "CalypsoReg., a new plant protection product for foliar<br />

application in fruit crops." Mitteilungen der Deutschen Gesellschaft fur allgemeine und angew<strong>and</strong>te<br />

Entomologie 13: 1-6.<br />

Elbert, A., D. Ebbinghaus, et al. (2002). "CalypsoReg., a new foliar insecticide for berry fruit." Acta<br />

Horticulturae 585: 337-341.<br />

El-Sebae AH, Komeil AM, <strong>and</strong> Thabet AAM, 1990. Interaction of conventional insecticides with<br />

Bacillus-thuringiensis against the mediterranean fruit fly ceratitis-capitata weid, british crop<br />

protection council. brighton crop protection conference, pests <strong>and</strong> diseases, 1990, vols. 1, 2 <strong>and</strong><br />

3; International Conference, Brighton, Engl<strong>and</strong>, UK, November 19-22, 1990. British Crop<br />

Protection, Farnham, Engl<strong>and</strong>, UK. illus. maps. paper. pp. 241-244.<br />

EPPO 170,1992, Efficacy evaluation of Plant Protection Products PP1/170(4) Side Effects on<br />

honeybees Bulletin OEPP/EPPO Bulletin 22 213-216<br />

Erickson EH, Jr, Erickson BJ, <strong>and</strong> Wyman JA, 1994. Effects of honey bees of insecticides<br />

applied to snap beans in Wisconsin, Chemical <strong>and</strong> biotic factors. Journal of Economic<br />

Entomology 87, 597-600.<br />

EU Commission, 2009. State of the Art Report on Mixture Toxicity.<br />

Evans JD, 2004. Transcriptional immune responses by honey bee larvae during invasion by<br />

the bacterial pathogen, Paenibacillus larvae.. Journal of Invertebrate Pathology 85, 105-111.<br />

Evans JD, Aronstein K, Chen Y-P, Hetru C, Imler J-L, Jiang H, Kanost M, Thompson GJ, Zou<br />

Z, <strong>and</strong> Hultmark D, 2006. Immune pathways <strong>and</strong> defence mechanisms in honey bees Apis<br />

mellifera. Insect Molecular Biology 15, 645-656.<br />

Evison SEF, Robertts KE, Laurenson L, Pietravalle S, Hui J, Biesmeijer JC, Smith JE, Budge<br />

G, <strong>and</strong> Hughes WOH, 2012. Pervasiveness of Parasites in Pollinators. PLoS One 7, e30641.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 108 of 133<br />

Report to Syngenta Ltd


Falco JRP, Hashimoto JH, Fermino F <strong>and</strong> Toledo VAA (2010). Toxicity of thiamethoxam,<br />

behavioral effects <strong>and</strong> alterations in chromatin of Apis mellifera L, 1758 (Hymenoptera;<br />

Apidae). Research Journal of Agriculture <strong>and</strong> Biological Sciences, 6(6):823-828.<br />

Fanigliulo A, Fili V, Pacella R, Comes S <strong>and</strong> Crescenzi A (2009). Teppeki, selective<br />

insecticide about Bombus terrestris. Communications in Agricultural & Applied Biological<br />

Sciences 74(2): 407-10.<br />

Fanti M, Maines R <strong>and</strong> Angeli G (2006). Evaluation of the repellency <strong>and</strong> acute toxicity of<br />

<strong>Neonicotinoid</strong>s insecticides on Apis mellifera ligustica [Valutazione dei livelli di repellenza e<br />

della tossicita di insetticidi <strong>Neonicotinoid</strong>i su Apis mellifera ligustica. Giornate<br />

Fitopatologiche 2006, Riccione (RN), 27-29 marzo 2006. Atti, volume primo; 2006. 51-58<br />

(Brunelli A,. Canova A <strong>and</strong>. Collina M eds), Universita di Bologna, Bologna.<br />

Faucon JP, Aurieres C, Drajnudel P, Mathieu L, Ribiere M, Martel AC, Zeggane S, Chauzat<br />

MP <strong>and</strong> Aubert MFA (2005) Experimental study on the toxicity of imidacloprid given in syrup<br />

to honey bee (Apis mellifera) colonies. Pest Management Science 61(2):111-125.<br />

Faucon JP, Vitu C, Russo P, <strong>and</strong> Vignoni M, 1992 Diagnosis of acute paralysis application to<br />

epidemic honeybee diseases in France during 1990. Apidologie 23, 139-146.<br />

Feng MG, <strong>and</strong> Pu XY, 2005. Time-concentration modelling of the synergistic interaction of<br />

Beauvaria bassiana <strong>and</strong> imidacloprid against Nilaparvata lugens. Pest Management Science 61,<br />

363-370.<br />

Fischer M.K., Shingelton A.W.( 2001) Host plant <strong>and</strong> ants influence the honeydew sugar<br />

composition of aphids Functional Ecology 15(4) 544-<br />

FOAG 2009 (www.blw.admin.ch/<br />

themen/00011/00077/00590/index.html?lang=fr)<br />

Franklin MT, Winston ML <strong>and</strong> Mor<strong>and</strong>in LA (2004). Effects of Clothianidin on Bombus<br />

impatiens (Hymenoptera: Apidae) Colony Health <strong>and</strong> Foraging Ability. Journal of Economic<br />

Entomology, 97:369-373.<br />

Free JB, <strong>and</strong> Ferguson AW, 1980. Foraging of bees on oil-seed rape (Brassica napus L.. in<br />

relation to the stage of flowering of the crop <strong>and</strong> pest control. Journal of Agricultural<br />

Science, UK 94, 151-154.<br />

Fries I, 2010. Nosema ceranae in European honeybees (Apis mellifera.. Journal of<br />

Invertebrate Pathology 103, S73-79.<br />

Furlong MJ, <strong>and</strong> Groden E, 2001. Evaluation of synergistic interactions between the Colorado<br />

potato beetle (Coleoptera, Chrysomelidae. pathogen Beauveria bassiana <strong>and</strong> the insecticides,<br />

imidacloprid, <strong>and</strong> cyromazine. pp. 344-356.<br />

Ganzelmeier, H., D. Rautmann, R. Spangenberg, M. Streloke, M. Herrmann, H.-J.<br />

Wenzelburger, <strong>and</strong> H.-F. Walter. 1995. Studies on the spray drift of plant protection<br />

products. Heft 305, Blackwell Wissenschafts-Verlag GmbH, Berlin: 111 pp<br />

Garcia M.A, Fern<strong>and</strong>ez MI, <strong>and</strong> Melgar MJ, 1995. Contamination of honey with<br />

organophosphorus pesticides. Bullentin of <strong>Environment</strong>al Contamination <strong>and</strong> Toxicology<br />

54, 825-832.<br />

Gary NE, <strong>and</strong> Mussen EC, 1984. impact of Mediterranean fruit fly malathion bait spray on<br />

honey bees. <strong>Environment</strong>al Entomology 13, 711-717.<br />

Gauthier M <strong>and</strong> El Hassani AK, Aliouane Y, Bernadou A <strong>and</strong> Armengaud C (2009). Effets du<br />

fipronil à des doses sublétales sur le comportement de l’abeille. Centre de Recherches sur<br />

la Cognition Animale UMR 5169 Université Paul Sabatier 118, Toulouse, France, 10 pp.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 109 of 133<br />

Report to Syngenta Ltd


Gauthier, M. (2010). State of the Art on Insect Nicotinic Acetylcholine Receptor Function in<br />

Learning <strong>and</strong> Memory. Insect Nicotinic Acetylcholine Receptors. S. H. Thany. Berlin, Springer-<br />

Verlag Berlin. 683: 97-115.<br />

Gels JA, Held DW <strong>and</strong> Potter DA (2002) Hazards of insecticides to the bumble bees Bombus<br />

impatiens (Hymenoptera : Apidae) foraging on flowering white clover in turf. Journal of<br />

Economic Entomology 95(4): 722-728.<br />

Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, Buechler R, Berg S, Ritter W,<br />

Muehlen W, Gisder S, Meixner M, Liebig G, <strong>and</strong> Rosenkranz P, 2010. <strong>The</strong> German bee<br />

monitoring project, a long term study to underst<strong>and</strong> periodically high winter losses of<br />

honey bee colonies. Apidologie 41, 332-352.<br />

Georghiou GP, <strong>and</strong> Atkins Jr EL, 1964. Temperature coefficients of toxicity of certain nmethyl<br />

carbamates against honeybees, <strong>and</strong> the effect of the synergist piperonyl butoxide.<br />

Journal of Apicultural Research 3, 31-35.<br />

Georgiadis, P. T., J. Pistorius, et al. (2010). "Gone with the wind - drift of abrasive dust from seed<br />

treatments - a risk for honey bees ( Apis mellifera L.)? [German, English]." Julius Kuhn Archiv<br />

424(33).<br />

Ghini S, Fern<strong>and</strong>ez M, Pico Y, Marin R, Fini F, Manes J, <strong>and</strong> Girotti S, 2004. Occurrence <strong>and</strong><br />

distribution of pesticides in the province of Bologna, Italy, using honeybees as<br />

bioindicators. Archives of <strong>Environment</strong>al Contamination <strong>and</strong> Toxicology 47, 479-488.<br />

Gill RJ, Ramos-Rodriguez O <strong>and</strong> Raine NE (2012) Combined pesticide exposure severely<br />

affects individual- <strong>and</strong> colony-level traits in bees. Nature<br />

http://dx.doi.org/10.1038/nature11585.<br />

Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Bernardo AD, Greatti M, Giorio C, <strong>and</strong><br />

Tapparo A, 2009. Translocation of neonicotinoid insecticides from coated seeds to seedling<br />

guttation drops, a novel way of intoxication for bees. Journal of Economic Entomology 102,<br />

1808-1815.<br />

Glinski Z, 2000. Immuno-suppressive <strong>and</strong> immuno-toxic action of contaminated honey bee<br />

products on consumers. pp. 634-638.<br />

Glinski Z, <strong>and</strong> Buczek K, 2003. Immune response impairs learning in free-flying bumblebees.<br />

Apiacta 38, 183-189.<br />

Glinski Z, <strong>and</strong> Jarosz J, 2001. Infection <strong>and</strong> immunity in the honey bee Apis mellifera.<br />

Apiacta 1.<br />

Glinski Z, <strong>and</strong> Kauko L, 2000. Problems of immunosuppression <strong>and</strong> immunotoxicolgy in<br />

respect to the honeybee protection against microbial <strong>and</strong> parasitic nvaders. Apiacta 2, 65-<br />

76.<br />

Gobin B, Heylen K, Billen J, Arckens L <strong>and</strong> Huybrechts R (2008). Sublethal effects of crop<br />

protection on honey bee pollination: foraging behaviour <strong>and</strong> flower visits. Communications<br />

in Agricultural & Applied Biological Sciences 73(3): 405-8.<br />

Gradish AE, Scott-Dupree CD, Shipp L, Harris CR <strong>and</strong> Ferguson G (2010) Effect of reduced<br />

risk pesticides for use in greenhouse vegetable production on Bombus impatiens<br />

(Hymenoptera: Apidae). Pest Management Science 66(2): 142-146.<br />

Greatti M, Barbattini R, Stravisi A, Sabatini AG, <strong>and</strong> Rossi S, 2006. Presence of the a.i.<br />

imidacloprid on vegetation near corn fields sown with GauchoReg. dressed seeds. Bulletin<br />

of Insectology 59, 99-103.<br />

Greatti M, Sabatini AG, Barbattini R, Rossi S, <strong>and</strong> Stravisi A, 2003. Risk of environmental<br />

contamination by the active ingredient imidacloprid used for corn seed dressing.<br />

Preliminary results. Bulletin of Insectology 56.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 110 of 133<br />

Report to Syngenta Ltd


Greig-Smith PW, Thompson HM, Hardy AR, Bew MH, Findlay E, <strong>and</strong> Stevenson JH, 1994.<br />

Incidents of poisoning of honeybees (Apis mellifera. by agricultural pesticides in Great<br />

Britain 1981-1991. Crop Protection 13, 567-582.<br />

Guez D, Belzunces LP <strong>and</strong> Maleszka R (2003) Effects of imidacloprid metabolites on<br />

habituation in honeybees suggest the existence of two subtypes of nicotinic receptors<br />

differentially expressed during adult development. Pharmacology Biochemistry <strong>and</strong><br />

Behavior 75(1):217-222.<br />

Guez D, Suchail S, Cauthier M, Maleszka R <strong>and</strong> Belzunces L (2001). Contrasting effects of<br />

Imidacloprid on habituation in 7- <strong>and</strong> 8-days old honeybees. Neurobiology of Learning <strong>and</strong><br />

Memory, 76(2):183-191.<br />

Han P, Niu CY, Lei CL, Cui JJ <strong>and</strong> Desneux N (2010) Use of an innovative T-tube maze assay<br />

<strong>and</strong> the proboscis extension response assay to assess sublethal effects of GM products<br />

<strong>and</strong> pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19(8):<br />

1612-1619.<br />

Harbo JR, 1986. Effect of population size on brood production, worker survival <strong>and</strong> honey<br />

gain in colonies of honeybees. Journal of Apicultural Research 25, 22-29.<br />

Hashimoto, J. H., M. C. C. Ruvolo-Takasusuki, et al. (2003). "Evaluation of the use of the<br />

inhibition esterases activity on Apis mellifera as bioindicators of insecticide thiamethoxam<br />

pesticide residues." Sociobiology 42(3): 693-699.<br />

Hawthorne DJ, <strong>and</strong> Dively GP, 2011. Killing <strong>The</strong>m with Kindness? In-Hive Medications May<br />

Inhibit Xenobiotic Efflux Transporters <strong>and</strong> Endanger Honey <strong>Bees</strong>. PLoS One 6, e26796.<br />

Henry,M, Beguin, B, Requier, F.,Rollin,O, Odoux,J-F, Aupinel P., Aptel, J,Tchamitchian,S,<br />

Decourtye, A, (2012) A common pesticides decreases fopraging success <strong>and</strong> survival in<br />

honeybees Science 29 March 2012 / Page 1/ 10.1126/science.1215039<br />

Hepburn HR, Bernard RTF, Davindson BC, Muller WJ, Lloyd P, Kurstjens SP, <strong>and</strong> Vincent<br />

SL, 1991. Synthesis <strong>and</strong> secretion of beeswax in honeybees. Apidologie 22, 21-36.<br />

Hern<strong>and</strong>ez D, Mansanet V <strong>and</strong> Puiggros Jove JM (1999) Use of ConfidorReg. 200 SL in vegetable<br />

cultivation in Spain. Pflanzenschutz Nachrichten Bayer 52(3): 374-385.<br />

Heylen K, Gobin B, Arckens L, Huybrechts R <strong>and</strong> Billen J (2010). <strong>The</strong> effects of four crop<br />

protection products on the morphology <strong>and</strong> ultrastructure of the hypopharyngeal gl<strong>and</strong> of<br />

the European honeybee, Apis mellifera. Apidologie, 42(1):103-116.<br />

Higes M, García-Palencia P, Martín-Hernández R, <strong>and</strong> Meana A, 2007. Experimental infection<br />

of Apis mellifera honeybees with the Microsporidia Nosema ceranae. Journal of Invertebrate<br />

Pathology 94, 211-217.<br />

Higes M, Martin-Hern<strong>and</strong>ez R, <strong>and</strong> Meana A, 2010. Nosema ceranae in Europe, an emergent<br />

type C nosemosis Apidologie 41, 375-392.<br />

Higes M, Martin-Hern<strong>and</strong>ez R, Botias C, Garrido-Bailon E, Gomnzalez-Porto AV, Barrios L,<br />

Jesus del Nozal MJ, Bernal JL, Jimenez JJ, Garcia-Palencia MP, <strong>and</strong> Meana A, 2008. How<br />

natural infection by Nosema ceranae causes honey bee colony collapse. <strong>Environment</strong>al<br />

Microbiology 10, 2659-2669.<br />

Hogervost, P.A.M., Wackers, Romeis J (2007) Effects of honeydew sugar composition on<br />

the longevity of Aphidius ervi Entomologia Experimentalis et Applicata 122: 223–232.<br />

Horgan, A. R. (2007). "Acetamiprid: novel neonicotinoid systemic insecticide." Aspects of<br />

Applied Biology 83: 47-49.<br />

Huang ZY, <strong>and</strong> Lin R, 2004. JH titers, biosynthesis <strong>and</strong> metabolism in honey bee workers<br />

infected by a microsporidia parasite, Nosema apis. Journal of Insect Science 4, 7.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 111 of 133<br />

Report to Syngenta Ltd


Iwasa, T., N. Motoyama, et al. (2004). "Mechanism for the differential toxicity of<br />

neonicotinoid insecticides in the honey bee, Apis mellifera." Crop Protection 23(5): 371-378.<br />

James RR, <strong>and</strong> Elzen GW, 2001. Antagonism Between Beauveria bassiana <strong>and</strong> Imidacloprid<br />

When Combined for Bemisia argentifolii (Homoptera, Aleyrodidae. Control. Journal of Economic<br />

Entomology 94, 357-361.<br />

James RR, <strong>and</strong> Xu J, 2011. Mechanisms by which pesticides affect insect immunity. Journal<br />

of Invertebrate Pathology.<br />

Jaramillo J, Borgemeister C, Ebssa L, Gaigl A, Tobon R, <strong>and</strong> Zimmermann G, 2005. Effect of<br />

combined applications of Metarhizium anisopliae (Metsch. Sorokin (Deuteromycotina,<br />

Hyphomycetes. strain CIAT 224 <strong>and</strong> different dosages of imidacloprid on the subterranean<br />

burrower bug Cyrtomenus bergi Froeschner (Hemiptera, Cynidae.. Biological Control 34, 12-20.<br />

Jeyalakshmi, T., R. Shanmugasundaram, et al. (2011). "Comparative toxicity of certain<br />

insecticides against Apis cerana indica under semi field <strong>and</strong> laboratory conditions."<br />

Pestology 35(12): 23-26.<br />

Johnson RM, 2008. Toxicogenomics of Apis mellifera, Graduate College of the University of<br />

Illinois at Urbana-Champaign, 2008.<br />

Johnson RM, Ellis MD, Mullin CA, <strong>and</strong> Frazier M, 2010. <strong>Pesticides</strong> <strong>and</strong> honey bee toxicity -<br />

USA. Apidologie 41, 312-331.<br />

Johnson RM, Mao W, Pollock HS, Niu G, Schuler MA, <strong>and</strong> Berenbaum MR, 2012.<br />

Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera. PLoS<br />

One 7, e31051.<br />

Johnson RM, Pollock HS, <strong>and</strong> Berenbaum MR, 2009. Synergistic interactions between inhive<br />

miticides in Apis mellifera. Journal of Economic Entomology 102, 474-479.<br />

Johnson RM, Wen Z, Shuler MA, <strong>and</strong> Berenbaum MR, 2006. Mediation of Pyrethroid<br />

Insecticide Toxicity to Honey <strong>Bees</strong> (Hymenoptera, Apidae. by Cytochrome P450<br />

Monooxygenases. Journal of Economic Entomology 99, 1046-1050.<br />

Jones, A. K. <strong>and</strong> D. B. Sattelle (2010). Diversity of Insect Nicotinic Acetylcholine Receptor<br />

Subunits. Insect Nicotinic Acetylcholine Receptors. S. H. Thany. Berlin, Springer-Verlag Berlin.<br />

683: 25-43.<br />

Jones, A. K., L. A. Brown, et al. (2007). "Insect nicotinic acetylcholine receptor gene<br />

families: from genetic model organism to vector, pest <strong>and</strong> beneficial species." Invertebrate<br />

Neuroscience 7(1): 67-73.<br />

Jones, A. K., V. Raymond-Delpech, et al. (2006). "<strong>The</strong> nicotinic acetylcholine receptor gene<br />

family of the honey bee, Apis mellifera." Genome Research 16(11): 1422-1430.<br />

Jullien J, 2009. <strong>Bees</strong> <strong>and</strong> phytosanitary products. PHM Revue Horticole 509, 22-27.<br />

Kezic N, Lucic D, <strong>and</strong> Sulimanovic D, 1992 Induction of mixed function oxidase activity in<br />

honey bee as a bioassay for detection of environmental xenobiotics. Apidologie 23, 217-<br />

223.<br />

Kirchner WH (1999). Mad-bee-disease? Sublethal effects of imidacloprid (Gaucho®) on the<br />

behaviour of honeybees. Apidologie, 30:421-422.<br />

Koch H, <strong>and</strong> Weisser P, 1997. Exposure of honey bees during pesticide application under<br />

field conditions. Apidologie 28, 439-447.<br />

Konig B, 1985. Plant sources of propolis. Bee World 66, 136-139.<br />

Konrad R., Wackers F. L., Romeis J., Babendreier D. (2009). Honeydew feeding in the<br />

solitary bee Osmia bicornis as affected by aphid species <strong>and</strong> nectar availability. Journal of<br />

Insect Physiology 55: 1158-1166.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 112 of 133<br />

Report to Syngenta Ltd


Koppenhofer AM, <strong>and</strong> Kaya HK, 2000. Interactions of a nucleopolyhedrovirus with azadirachtin <strong>and</strong><br />

imidacloprid. Journal of Invertebrate Pathology 75, 84-86.<br />

Kostromytska OS, Buss EA, <strong>and</strong> Scharf ME, 2011. Toxicity <strong>and</strong> neurophysiological effects of<br />

selected insecticides on the mole cricket, Scapteriscus vicinus (Orthoptera, Gryllotapidae..<br />

Pesticide Biochemistry <strong>and</strong> Physiology 100, 27-34.<br />

Kruype CH, Hunt GJ, Eitzer BD, Andino G, <strong>and</strong> Given K, 2012. Multiple routes of pesticide<br />

exposure for honey bees living near agricultural fields. PLoS One 7, e29268.<br />

Kumar A <strong>and</strong> Singh R (2012). Effect of biopesticides <strong>and</strong> insecticides on aphid population,<br />

bee visits <strong>and</strong> yield of mustard. Annals of Plant Protection Sciences 20(1): 205-208.<br />

Kumar, S., C. M. Regupathy, et al. (2005). "Risk assessment of neonicotinoids applied to<br />

coffee ecosystem." International Pest Control 47(2): 82-87.<br />

Ladas A, 1972. Effects of certain internal <strong>and</strong> external factors on the resistance of<br />

honeybees to insecticides. Apidologie 3, 55-78.<br />

Lambin M, Armengaud C, Raymond S <strong>and</strong> Gauthier M (2001). Imidacloprid-induced<br />

facilitation of the proboscis extension reflex habituation in the honeybee. Archives of Insect<br />

Biochemistry <strong>and</strong> Physiology, 48(3):129-134.<br />

Laughton AM, Boots M, <strong>and</strong> Siva-Jothy MT, 2011. <strong>The</strong> ontogeny of immunity in the honey<br />

bee, Apis mellifera L. following an immune challenge Journal of Insect Physiology 57, 1023-<br />

1032.<br />

Laurent FM, <strong>and</strong> Rathahao E, 2003. Distribution of [14C] Imidacloprid in sunflowers<br />

(Helianthus annuus L.. following seed treatment. Journal of Agricultural & <strong>Food</strong> Chemistry<br />

51, 8005-8010.<br />

Laurino, D., A. Manino, et al. (2010). "Acute oral toxicity of neonicotinoids on different bee<br />

strains." Redia-Giornale Di Zoologia 93: 99-102.<br />

Laycock I, Lenthall KM, Barratt AT <strong>and</strong> Cresswell JE (2012) Effects of imidacloprid, a<br />

neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris).<br />

Ecotoxicology 21(7):1937–1945<br />

Lee KP, Simpson SJ, <strong>and</strong> Wilson K, 2008. Dietary protein-quality influences melanization<br />

<strong>and</strong> immune function in an insect. Functional Ecology 22.<br />

Leroy, PD, Wathelet, B , Sabri, A ,; Francis, F; Verheggen, FJ, Capella, Q, Thonart, P,<br />

Haubruge, E (2011) Aphid-host plant interactions: does aphid honeydew exactly reflect the<br />

host plant amino acid composition? Arthropod-Plant Interactions 5(3) 193-199<br />

Li W-F, Ma GX, <strong>and</strong> Zhou XX, 2006. Apidaecin-type peptides, Biodiversity, structurefunction<br />

relationships <strong>and</strong> mode of action. Peptides (New York. 27, 2350-2359.<br />

Li X, Schuler MA, <strong>and</strong> Berenbaum MR, 2007. Molecular mechanisms of metabolic resistance<br />

to synthetic <strong>and</strong> natural xenobiotics.. Annual Review of Entomology 52, 231-253.<br />

Lind, R. J., M. S. Clough, et al. (1999). "Characterisation of multiple alpha-bungarotoxin<br />

binding sites in the aphid Myzus persicae (Hemiptera : Aphididae)." Insect Biochemistry<br />

<strong>and</strong> Molecular Biology 29(11): 979-988.<br />

Liu MY, Lanford J, <strong>and</strong> Casida JE, 1995. Relevance of [3H]imidacloprid binding site in house<br />

fly head nicotinic acetylcholine receptor to insecticidal activity of 2-nitromethylene- <strong>and</strong> 2nitroimino-imidazolidines.<br />

Pesticide Biochemistry <strong>and</strong> Physiology 46.<br />

Liu X., Liang P., Gao X., Shi X, 2006. Induction of the cytochrome P450 activity by plant<br />

allelochemicals in the cotton bollworm, Helicoverpa armigera (Hubner.. Pesticide<br />

Biochemistry <strong>and</strong> Physiology 84, 127-134.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 113 of 133<br />

Report to Syngenta Ltd


Liu, M. Y. <strong>and</strong> J. E. Casida (1993). "High affinity binding of [3H] Imidacloprid in the insect<br />

acetylcholine receptor." Pesticide Biochemistry <strong>and</strong> Physiology 46: 40-46.<br />

Locke B, Forsgren E, Fries I, <strong>and</strong> de Mir<strong>and</strong>a JR, 2011. Acaracide treatment affects viral<br />

dynamics in Varroa destructor-infested honey bee colonies via both host physiology <strong>and</strong><br />

mite control. Applied <strong>Environment</strong>al Microbiology.<br />

Lu C, Warchol KM <strong>and</strong> Callahan RA (2012) In situ replication of honey bee colony collapse<br />

disorder. Bulletin of Insectology 65(1):99-106.<br />

Luft D, Zon MT, <strong>and</strong> Mikolajczak M, 2007. <strong>The</strong> honey bee natural <strong>and</strong> synthetic<br />

immunestimulators - characteristics. Annales Universitatis Mariae Curie-Sklodowska.Sectio<br />

DD, Medicina Veterinaria 62, 23-31.<br />

Maccagnani B, Ferrari R, Zucchi L, <strong>and</strong> Bariselli M, 2008. Measures against grasshoppers<br />

while safeguarding bees. Informatore Agrario 64, 53-56.<br />

Macfarlane RP, Lipa JJ, <strong>and</strong> Liu HJ, 1995. Bumble bee pathogens <strong>and</strong> internal enemies. Bee<br />

World 76, 130-148.<br />

Maini S, Medrzycki P, <strong>and</strong> Porrini C, 2010. <strong>The</strong> puzzle of honey bee losses, a brief review.<br />

Bulletin of Insectology 63, 153-160.<br />

Mallon EB, Brockmann A, <strong>and</strong> Schmid-Hempel P, 2003. Immune response inhibits<br />

associative learning in insects. Proceedings of the Royal Society of London B 270, 2471-<br />

2473.<br />

Malone LA, Gatehouse HS, <strong>and</strong> Tregidga EL, 2001. Effects of time, temperature, <strong>and</strong> honey<br />

on Nosema apis (Microsporidia , Nosematidae., a parasite of the honeybee, Apis mellifera<br />

(Hymenoptera , Apidae.. Journal of Invertebrate Pathology 77, 258-268.<br />

Mao W, Schuler MA, <strong>and</strong> Berenbaum MR, 2011. CYP9Q-mediated detoxification of<br />

acaricides in the honey bee (Apis mellifera.. Proceedings of the National Academy of<br />

Sciences of the United States of America 108, 12657-12662.<br />

Marletto, F., A. Patetta, et al. (2003). "Laboratory assessment of pesticide toxicity to bumble<br />

bees." Bulletin of Insectology 56(1): 155-158.<br />

Martin-Hern<strong>and</strong>ez R, Meana A, Garcia-Palencia MP, Marin P, Botias C, Garrido-Bailon E,<br />

Barrios L, <strong>and</strong> Higes M, 2009. Temperature effect on biotic potential of honey bee<br />

microsporidia.. Applied <strong>and</strong> <strong>Environment</strong>al Microbiology 75, 2554-2557.<br />

Marzaro M, Vivan L, Targa A, Mazzon L, Mori N, Greatti M, Toffolo EP, Di Bernardo A, Giorio<br />

C, Marton D, Tapparo A, <strong>and</strong> Girolami V, 2011. Lethal aerial powdering of honey bees with<br />

neonicotinoids from fragments of maize seed coat. Bulletin of Insectology 64, 119-126.<br />

Matsuda, K., S. Kanaoka, et al. (2009). "Diverse Actions <strong>and</strong> Target-Site Selectivity of<br />

<strong>Neonicotinoid</strong>s: Structural Insights." Molecular Pharmacology 76(1): 1-10.<br />

Matsuo, H., M. Tomizawa, et al. (1998). "Structure-activity relationships of acyclic<br />

nicotinoids <strong>and</strong> neonicotinoids for insect nicotinic acetylcholine receptor/ion channel<br />

complex." Archives of Insect Biochemistry <strong>and</strong> Physiology 37(1): 17-23.<br />

Mattila HR, <strong>and</strong> Otis GW, 2006. Effects of pollen availability <strong>and</strong> Nosema infection during the<br />

spring on division of labor <strong>and</strong> survival of worker honey bees (Hymenoptera , Apidae..<br />

<strong>Environment</strong>al Entomology 35, 708-717.<br />

Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, <strong>and</strong> Newton ILG, 2012.<br />

Characterization of the Active Microbiotas Associated with Honey <strong>Bees</strong> Reveals Healthier<br />

<strong>and</strong> Broader Communities when Colonies are Genetically Diverse. PLoS One 7, e32962.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 114 of 133<br />

Report to Syngenta Ltd


Maurizio A. (1985) Honigtau-Honigtauhonig W.J. Kloft, A. Maurizio, W. Käser (Eds.),<br />

Waldtracht und Waldhonig in der Imkerei, Franz Ehrenwirth Verlag GmbH & Co., München<br />

pp. 268–295<br />

Mayer DF <strong>and</strong> Lunden JD (1997). Effects of imidacloprid insecticide on three bee<br />

pollinators. Horticultural Science 29(1): 93-97.<br />

Mayer DF <strong>and</strong> Lunden JD (1999) Field <strong>and</strong> laboratory tests of the effects of fipronil on adult<br />

female bees of Apis mellifera, Megachile rotundata <strong>and</strong> Nomia mel<strong>and</strong>eri. Journal of<br />

Apicultural Research 38(3-4): 191-197.<br />

Meana A, Martín-Hernández R, <strong>and</strong> Higes M, 2010. <strong>The</strong> reliability of spore counts to<br />

diagnose Nosema ceranae infections in honey bees. Journal of Apicultural Research 49,<br />

212-214.<br />

Medrzycki P, Montanari R, Bortolotti L, Sabatini AG, Maini S, Porrini V (2003). Effects of<br />

Imidacloprid administered in sub-lethal doses on honey bee behaviour. Lab tests. Bulletin<br />

of Insectology, 56:59-62.<br />

Meled M, Thrasyvoulou A, <strong>and</strong> Belzunces LP, 1998. Seasonal variations in susceptibility of<br />

Apis mellifera to the synergistic action of prochloraz <strong>and</strong> deltamethrin. <strong>Environment</strong>al<br />

Toxicology <strong>and</strong> Chemistry 17, 2517-2520.<br />

Millar, N. S. <strong>and</strong> S. J. Lansdell (2012). Characterisation of insect nicotinic acetylcholine<br />

receptors by heterlolgus expression. Insect Nicotinic Acetylcholine Receptors. S. H. Thany.<br />

Heidelberger Platz 3, D-14197 Berlin, Germany, Springer-Verlag Berlin. 683: 65-73.<br />

Moise A, Marghitas LA, Dezmirean D <strong>and</strong> Man M. (2003). Research concerning the effect of<br />

imidacloprid on honey bees (Apis mellifera carpatica). Buletinul Universitatii de Stiinte<br />

Agricole si Medicina Veterinara Cluj Napoca, Seria Zootehnie si Biotehnologii, 59:184-187.<br />

Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G <strong>and</strong> Smagghe G (2010). Risk<br />

assessment for side-effects of neonicotinoids against bumble bees with <strong>and</strong> without<br />

impairing foraging behaviour. Ecotoxicology, 19, 207-215.<br />

Moncharmont F-X D, Decourtye A, Hennequet-Hantier C, Pons O <strong>and</strong> Pham-Delegue MH<br />

(2003). Statistical analysis of honeybee survival after chronic exposure to insecticides.<br />

<strong>Environment</strong>al Toxicology <strong>and</strong> Chemistry 22(12): 3088-3094.<br />

Mor<strong>and</strong>in LA <strong>and</strong> Winston ML (2003). Effects of novel pesticides on bumble bees<br />

(Hymenoptera: Apidea) colony health <strong>and</strong> foraging ability. <strong>Environment</strong>al Entomology,<br />

32:555-563.<br />

Morimoto T, Kojima Y, Toki T, Komeda Y, Yoshiyama M, Kimura K, Nirasawa K, <strong>and</strong><br />

Kadowaki T, 2011. <strong>The</strong> habitat disruption induces immune-suppression <strong>and</strong> oxidative stress<br />

in honey bees. Ecology <strong>and</strong> Evolution.<br />

Moritz RF, de Mir<strong>and</strong>a J, Fries I, Le Conte Y, Neumann P, <strong>and</strong> Paxton RJ, 2010. Research<br />

strategies to improve honeybee health in Europe. Apidologie 41, 227-242.<br />

Morse RA, <strong>and</strong> Nowogrodski R, 1990. Honey bee pests, predators <strong>and</strong> diseases Comstock<br />

Publishing Associates, New York.<br />

Mouches C, Bove JM, Albisetti J, Clark TB, <strong>and</strong> Tully JG, 1982. A Spiroplasma of Serogroup-<br />

Iv Causes A May-Disease-Like Disorder of Honeybees in Southwestern France. Microbial<br />

Ecology 8, 387-399.<br />

Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, vanEngelsdorp D, <strong>and</strong> Pettis JS,<br />

2010. High Levels of Miticides <strong>and</strong> Agrochemicals in North American Apiaries, Implications<br />

for Honey Bee Health. PLoS One 5.<br />

Nakajima C, Okayama A, Sakogawa T, Nakamura A, <strong>and</strong> Hayama T, 1997. Disposition of<br />

ampicillin in honeybees <strong>and</strong> hives. Journal of Veterinary Medical Science 59, 765-767.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 115 of 133<br />

Report to Syngenta Ltd


Nakajima C, Sakogawa T, Okayama A, Nakamura A, <strong>and</strong> Hayama T, 1998. Disposition of<br />

mirosamicin in honeybee hives. Journal of Veterinary Pharmacology <strong>and</strong> <strong>The</strong>rapeutics 21,<br />

269-273.<br />

Nakayama, A. <strong>and</strong> M. Sukekawa 1998. "Quantitative correlation between molecular similarity<br />

<strong>and</strong> receptor-binding activity of neonicotinoid insecticides." Pesticide Science 52(2): 104-<br />

110.<br />

Nauen, R., U. Ebbinghaus-Kintscher, et al. 2001. Toxicity <strong>and</strong> nicotinic acetylcholine<br />

receptor interaction of imidacloprid <strong>and</strong> its metabolites in Apis mellifera (Hymenoptera :<br />

Apidae). Pest Management Science 57(7): 577-586.<br />

Naug D, 2009. Nutritional stress due to habitat loss may explain recent honeybee colony<br />

collapses. Biological Conservation 142, 2369-2372.<br />

Navajas M, Migeon A, Alaux C, Martin-Magniette ML, Robinson GE, Evans JD, Cros-Arteil S,<br />

Crauser D, <strong>and</strong> Le Conte Y, 2008. Differential gene expression of the honey bee Apis<br />

mellifera associated with Varroa destructor infection. BMC Genomics 9, 301.<br />

Nguyen B, Saegerman C, Pirard C, Mignon J, Widart J, Tuirionet B, Verheggen F, Berkvens<br />

D, De Pauw E, <strong>and</strong> Haubruge E, 2009. Does Imidacloprid Seed-Treated Maize Have an<br />

Impact on Honey Bee Mortality? Journal of Economic Entomology 102, 616-623.<br />

Nicolson SW, 2009. Water homeostasis in bees, with emphasis on sociality. <strong>The</strong> Journal of<br />

Experimental Biology 212.<br />

Nielsen SA, Brodsgaard CJ, <strong>and</strong> Hansen H, 2000. Effects on detoxification enzymes in<br />

different life stages of honey bees (Apis mellifera L., Hymenoptera, Apidae. treated with a<br />

synthetic pyrethroid (flumethrin.. ATLA, Alternatives to Laboratory Animals 28, 437-443.<br />

Nixon HL, <strong>and</strong> Ribb<strong>and</strong>s CR, 1952. <strong>Food</strong> transmission within the honeybee community.<br />

Proceedings of the Royal Society 140, 43-50.<br />

Nucifora S. <strong>and</strong> Vasquez G (1999) Influence of imidacloprid on the activity of Bombus<br />

terrestris. l’Informatore Agrario 55(39): 87-88.<br />

Oliver R, 2010. Sick <strong>Bees</strong>. American Bee Journal 150, 767-772.<br />

Otti O, <strong>and</strong> Schmid-Hempel P, 2007. Nosema bombi, A pollinator parasite with detrimental<br />

fitness effects. Journal of Invertebrate Pathology 96, 118-124.<br />

Pereboom JJM, 2000. <strong>The</strong> composition of larval food <strong>and</strong> the significance of exocrine<br />

secretions in the bumblebee Bombus terrestris. Insectes Sociaux 47, 11-20.<br />

Pettis JS, vanEngelsdorp D, Johnson J <strong>and</strong> Dively G (2012). "Pesticide exposure in honey<br />

bees results in increased levels of the gut pathogen Nosema." Naturwissenschaften<br />

99(2):153-158.<br />

Ramirez-Romero R, Chaufaux J <strong>and</strong> Minh HaPham D (2005). Effects of Cry1Ab protoxin,<br />

deltamethrin <strong>and</strong> imidacloprid on the foraging activity <strong>and</strong> the learning performances of the<br />

honeybee Apis mellifera, a comparative approach. Apidologie 36(4): 601-611.<br />

Reetz JE, Zuehlke S, Spiteller M, <strong>and</strong> Wallner K, 2011. <strong>Neonicotinoid</strong> insecticides<br />

translocated in guttated droplets of seed-treated maize <strong>and</strong> wheat, a threat to honeybees?<br />

Apidologie 42, 596-606.<br />

Reinhard A, Janke M, Ohe WD, Kempf M, <strong>The</strong>uring C, Hartmann T, Schreier P, <strong>and</strong> Beuerle<br />

T, 2009. Feeding deterrence <strong>and</strong> detrimental effects of pyrrolizidine alkaloids fed to honey<br />

bees (Apis mellifera.. Journal of Chemical Ecology 35, 1086-1095.<br />

Rinderer TE, <strong>and</strong> Dell Elliott E, 1977. Worker Honey Bee Response to Infection with Nosema<br />

apis, Influence of Diet. Journal of Economic Entomology 70, 431-433.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 116 of 133<br />

Report to Syngenta Ltd


Rocher, A. <strong>and</strong> N. March<strong>and</strong>-Geneste (2008). "Homology modelling of the Apis mellifera<br />

nicotinic acetylcholine receptor (nAChR) <strong>and</strong> docking of imidacloprid <strong>and</strong> fipronil<br />

insecticides <strong>and</strong> their metabolites." Sar <strong>and</strong> Qsar in <strong>Environment</strong>al Research 19(3-4): 245-<br />

261.<br />

Romano G, <strong>and</strong> Moncecchi AG, 1988. Interaction <strong>and</strong> additive effects of varroasis <strong>and</strong><br />

European foul brood, Interaccion y potenciacion entre varroasis y loque europea. pp. 675-<br />

685.<br />

Rortais A, Arnold G, Halm MP, <strong>and</strong> Touffet-Briens F, 2005. Modes of honeybees exposure to<br />

systemic insecticides, estimated amounts of contaminated pollen <strong>and</strong> nectar consumed by<br />

different categories of bees. Apidologie 36, 71-83.<br />

Russell CW, Ugine TA, <strong>and</strong> Hajek AE, 2010. Interactions between imidacloprid <strong>and</strong> Metarhizium<br />

brunneum on adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky..<br />

(Coleoptera, Cerambycidae.. Journal of Invertebrate Pathology 105, 305-311.<br />

Santas LA, 1985. Parthenolecanium corni (Bouche. an orchard scale pest producing<br />

honeydew foraged by bees in Greece. Entomologia Hellenica 3, 53-58.<br />

Sattelle, D. B. (2009). "Invertebrate nicotinic acetylcholine receptors-targets for chemicals<br />

<strong>and</strong> drugs important in agriculture, veterinary medicine <strong>and</strong> human health." Journal of<br />

Pesticide Science 34(4): 233-240.<br />

Schmid MR, Brockmann A, Pirk CWW, Stanley DW, <strong>and</strong> Tautz J, 2008. Adult honeybees<br />

(Apis mellifera L.. ab<strong>and</strong>on hemocytic, but not phenoloxidase-based immunity. journal of<br />

Insect Physiology 54, 439-444.<br />

Schmid-Hempel P, Kacelnik A, <strong>and</strong> Houston A, 1985. Honeybees maximise efficiency by not<br />

filling their crop. Behavioural Ecology <strong>and</strong> Sociobiology 17, 61-66.<br />

Schmidt-Hempel R, <strong>and</strong> Schmidt-Hempel P, 1998. Colony performance <strong>and</strong><br />

immunocompetence of a social insect, Bombus terrestris, in poor <strong>and</strong> variable<br />

environments. Functional Ecology 12, 22-30.<br />

Schmuck R (2004). Effects of a chronic dietary exposure of the honeybee Apis mellifera<br />

(Hymenoptera: Apidae) to imidacloprid. Archives of <strong>Environment</strong>al Contamination <strong>and</strong><br />

Toxicology, 47:471-484.<br />

Schmuck R, Nauen R, <strong>and</strong> Ebbinghaus-Kintscher U, 2003a. Effects of imidacloprid <strong>and</strong><br />

common plant metabolites of imidacloprid in the honeybee, toxicological <strong>and</strong> biochemical<br />

considerations, in, C. Porrini (Ed... pp. 27-34.<br />

Schmuck R, Schoning R, Stork A, <strong>and</strong> Schramel O, 2001. Risk posed to honeybees (Apis<br />

mellifera L, Hymenoptera. by an imidacloprid seed dressing of sunflowers. Pest<br />

Management Science 57, 225-238.<br />

Schmuck R, Stadler T, <strong>and</strong> Schmidt HW, 2003b. Field relevance of a synergistic effect<br />

observed in the laboratory between an EBI fungicide <strong>and</strong> a chloronicotinyl insecticide in the<br />

honeybee (Apis mellifera L, Hymenoptera.. Pest Management Science 59, 279-286.<br />

Schneider CW, Tautz J, Grünewald B <strong>and</strong> Fuchs S (2012). RFID tracking of sub-lethal effects<br />

of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE,<br />

7(1): e30023.<br />

Schnier HF, Wenig G, Laubert F, Simon V <strong>and</strong> Schmuck R (2003) Honey bee safety of<br />

imidacloprid corn seed treatment." Bulletin of Insectology 56(1): 73-75.<br />

Schoning R, <strong>and</strong> Schmuck R, 2003. Analytical determination of imidacloprid <strong>and</strong> relevant<br />

metabolite residues by LC MS/MS. Bulletin of Insectology 56, 41-50.<br />

Scott-Dupree, C. D., L. Conroy, et al. (2009). "Impact of Currently Used or Potentially Useful<br />

Insecticides for Canola Agroecosystems on Bombus impatiens (Hymenoptera: Apidae),<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 117 of 133<br />

Report to Syngenta Ltd


Megachile rotundata (Hymentoptera: Megachilidae), <strong>and</strong> Osmia lignaria (Hymenoptera:<br />

Megachilidae)." Journal of Economic Entomology 102(1): 177-182.<br />

Sechser B <strong>and</strong> Freuler J (2003) <strong>The</strong> impact of thiamethoxam on bumble bee broods<br />

(Bombus terrestris L.) following drip application in covered tomato crops. Anzeiger Fur<br />

Schadlingskunde-Journal of Pest Science, 76(3): 74-77.<br />

Sechser B, Reber B <strong>and</strong> Freuler J (2002) <strong>The</strong> safe use of thiamethoxam by drench or drip<br />

irrigation in glasshouse crops where bumble bees Bombus terrestris (L.) are released.<br />

Mitteilungen der Schweizerischen Entomologischen Gesellschaft 75(3):273-287.<br />

Shao, Y. M., K. Dong, et al. (2007). "<strong>The</strong> nicotinic acetylcholine receptor gene family of the<br />

silkworm, Bombyx mori." Bmc Genomics 8.<br />

Singh RP <strong>and</strong> Singh RP (2004) Honey bee (Apis mellifera) foraging <strong>and</strong> management of<br />

aphid by spraying imidacloprid during flowering of Brassica rapa. Annals of Plant<br />

Protection Sciences 12(1):29-31.<br />

Singh, N. <strong>and</strong> A. K. Karnatak (2005). "Relative toxicity of some insecticides to the workers of<br />

Apis mellifera L." Shashpa 12(1): 23-25.<br />

Skerl MIS, Bolta SV, Cesnik HB, <strong>and</strong> Gregorc A, 2009. Residues of <strong>Pesticides</strong> in Honeybee<br />

(Apis mellifera carnica). Bee Bread <strong>and</strong> in Pollen Loads from Treated Apple Orchards.<br />

Bulletin of <strong>Environment</strong>al Contamination <strong>and</strong> Toxicology 83, 374-377.<br />

Smirle MJ, 1988. Insecticide resistance mechanisms in the honey bee, Apis mellifera L. pp.<br />

xii-xpp.<br />

Smirle MJ, <strong>and</strong> Winston ML, 1987. Intercolony Variation in Pesticide Detoxification by the<br />

Honey-Bee (Hymenoptera, Apidae.. Journal of Economic Entomology 80, 5-8.<br />

Smodis Skerl MIS <strong>and</strong> Gregorc A (2010). Heat shock proteins <strong>and</strong> cell death in situ<br />

localisation in hypopharyngeal gl<strong>and</strong>s of honeybee (Apis mellifera carnica) workers after<br />

imidacloprid or coumaphos treatment. Apidologie, 41:73-86.<br />

Song H-L, Zhou T, Wang Q, Dai P-L, Luo Q-H, Xu S-F <strong>and</strong> Wu Y-Y (2011). Effects of sublethal<br />

doses of insecticides on the olfactory sensitivity of the honeybee (Apis mellifera ligustica).<br />

Chinese Journal of Applied Entomology 48(3): 611-615.<br />

Stadler T, Gines DM <strong>and</strong> Buteler M (2003). Long-term toxicity assessment of imidacloprid to<br />

evaluate side effects on honey bees exposed to treated sunflower in Argentina. Bulletin of<br />

Insectology, 56(1):77-81.<br />

Suchail S, Debrauwer L, <strong>and</strong> Belzunces LP, 2004. Metabolism of imidacloprid in Apis<br />

mellifera. pp. 291-296.<br />

Suchail S, Guez D <strong>and</strong> Belzunces LP (2001). Discrepancy between acute <strong>and</strong> chronic<br />

toxicity induced by imidacloprid <strong>and</strong> its metabolites in Apis mellifera. <strong>Environment</strong>al<br />

Toxicology <strong>and</strong> Chemistry, 20:2482-2486.<br />

Suchail, S., D. Guez, et al. (2000). "Characteristics of imidacloprid toxicity in two Apis<br />

mellifera subspecies." <strong>Environment</strong>al Toxicology <strong>and</strong> Chemistry 19(7): 1901-1905.<br />

Suchail, S., G. De Sousa, et al. (2004). "In vivo distribution <strong>and</strong> metabolisation of C-14imidacloprid<br />

in different compartments of Apis mellifera L." Pest Management Science<br />

60(11): 1056-1062.<br />

Suchail, S., L. Debrauwer, et al. (2004). "Metabolism of imidacloprid in Apis mellifera." Pest<br />

Management Science 60(3): 291-296.<br />

Suh YT, <strong>and</strong> Shim JH, 1988. Enzyme activities of a honeybee Apis-mellifera l. associated<br />

with the degradation of some insecticides. Agricultural Chemistry & Biotechnology 31, 241-<br />

248.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 118 of 133<br />

Report to Syngenta Ltd


Szymas B, <strong>and</strong> Jedruszuk A, 2003. <strong>The</strong> influence of different diets on haemocytes of adult<br />

worker honey bees, Apis mellifera. Apidologie 34, 97-102.<br />

Tapparo A, Marton D, Giorio C, Zanella A, Solda L, Marzaro M, Vivan L, <strong>and</strong> Girolami V, 2012.<br />

Assessment of the environmental exposure of honeybees to particulate matter containing<br />

neonicotinoid insecticides coming from corn coated seeds. <strong>Environment</strong>al Science <strong>and</strong><br />

Technology.<br />

Tasei JN, <strong>and</strong> Aupinel P, 2008. Nutritive value of 15 single pollens <strong>and</strong> pollen mixes tested<br />

on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera, Apidae..<br />

Apidologie 39, 397-409.<br />

Tasei JN, Lerin J <strong>and</strong> Ripault G (2000). Sub-lethal effects of imidacloprid on bumblebees,<br />

Bombus terrestris (Hymenoptera: Apidae), during a laboratory feeding test. Pest<br />

Management Science, 56, 784-788.<br />

Tasei JN, Ripault G <strong>and</strong> Rivault E (2001a) Hazards of imidacloprid seed coating to Bombus<br />

terrestris (Hymenoptera : Apidae) when applied to sunflower. Journal of Economic<br />

Entomology 94(3): 623-627.<br />

Tasei JN, Ripault G <strong>and</strong> Rivault E (2001b) Effects of Gaucho [R] seed coating on<br />

bumblebees visiting sunflower. In: Hazards of <strong>Pesticides</strong> to <strong>Bees</strong>. Belzunces LP, Pelissier C<br />

<strong>and</strong> Lewis GB (eds). Inst Natl Recherche Agronomique (INRA), Paris, pp.207-212.<br />

Teeters BS, Johnson RM, Ellis MD <strong>and</strong> Siegfried BD. (2012). Using video-tracking to assess<br />

sublethal effects of pesticides on honey bees (Apis mellifera L.). <strong>Environment</strong>al Toxicology<br />

<strong>and</strong> Chemistry 31(6):1349-1354.<br />

Thany, S. H. (2010). Electrophysiological studies <strong>and</strong> pharmacological properties of insect native<br />

nicotinic acetylcholine receptors. Insect Nicotinic Acetylcholine Receptors. S. H. Thany.<br />

Heidelberger Platz 3, D-14197 Berlin, Germany, Springer-Verlag Berlin. 683: 53-63.<br />

Thany, S. H. (2010). Insect Nicotinic Acetylcholine Receptors. Insect Nicotinic Acetylcholine<br />

Receptors. S. H. Thany. Heidelberger Platz 3, D-14197 Berlin, Germany, SPRINGER-VERLAG<br />

BERLIN.<br />

Thany, S. H. (2012). <strong>Neonicotinoid</strong> Insecticides. Historical Evolution <strong>and</strong> Resistance Mechanisms.<br />

Insect Nicotinc Acetylcholine Receptors. S. H. Thany. Heidelberger Platz 3, D-14197 Berlin,<br />

Germany, Springer-Verlag Berlin. 683: 75-83.<br />

Thany, S. H. <strong>and</strong> H. Tricoire-Leignel (2011). "Emerging Pharmacological Properties of Cholinergic<br />

Synaptic Transmission: Comparison between Mammalian <strong>and</strong> Insect Synaptic <strong>and</strong> Extrasynaptic<br />

Nicotinic Receptors." Current Neuropharmacology 9(4): 706-714.<br />

Thany, S. H., G. Lenaers, et al. (2007). "Exploring the pharmacological properties of insect<br />

nicotinic acetylcholine receptors." Trends in Pharmacological Sciences 28(1): 14-22.<br />

Thany, S. H., H. Tricoire-Leignel, et al. (2010). Identification of cholinergic synaptic<br />

transmission in the insect nervous system. Insect Nicotinic Acetylcholine Receptors. S. H.<br />

Thany. Heidelberger Platz 3, D-14197 Berlin, Germany, Springer-Verlag Berlin. 683: 1-10.<br />

Thompson HM, 2001. Assessing the exposure <strong>and</strong> toxicity of pesticides to bumblebees (Bombus<br />

sp... Apidologie 32, 305-321.<br />

Thompson HM, 2010. Risk assessment for honey bees <strong>and</strong> pesticides - recent developments <strong>and</strong><br />

'new issues'. Pest Management Science 66, 1157-1162.<br />

Tome HVV, Martins GF, Lima MAP, Campos LAO <strong>and</strong> Guedes RNC (2012) Imidacloprid-<br />

Induced Impairment of Mushroom Bodies <strong>and</strong> Behavior of the Native Stingless Bee<br />

Melipona quadrifasciata anthidioides. Plos One 7(6), Article No. e38406.<br />

Tomizawa, M. <strong>and</strong> I. Yamamoto (1992). "Binding of nicotinoids <strong>and</strong> the related compounds<br />

to the insect nicotinic acetylcholine receptor." Journal of Pesticide Science 17(4): 231-236.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 119 of 133<br />

Report to Syngenta Ltd


Tomizawa, M. <strong>and</strong> I. Yamamoto (1993). "Structure activity relationships of niotinoids <strong>and</strong><br />

imidacloprid analogs." Journal of Pesticide Science 18(1): 91-98.<br />

Tomizawa, M., H. Otsuka, et al. (1995). "Pharmacological characteristics of insect nicotinic<br />

acetylcholine receptor with its ion channel <strong>and</strong> the comparison if the effect of nicotinoids<br />

<strong>and</strong> neonicotinoids." Journal of Pesticide Science 20(1): 57-64.<br />

Traver BE, Williams MR, <strong>and</strong> Fell RD, 2012. Comparison of within hive sampling <strong>and</strong><br />

seasonal activity of Nosema ceranae in honey bee colonies. Journal of Invertebrate<br />

Pathology 109, 187-193.<br />

Tremolada P, Bernardinelli I, Colombo M, Spreafico M, <strong>and</strong> Vighi M, 2004. Coumaphos<br />

distribution in the hive ecosystem, Case study for modeling applications. Ecotoxicology<br />

13, 589-601.<br />

Tremolada P, Bernardinelli I, Rossaro B, Colombo M, <strong>and</strong> Vighi M, 2011. Predicting pesticide<br />

fate in the hive (part 2., development of a dynamic hive model. Apidologie 42, 439-456.<br />

Tremolada P, Mazzoleni M, Saliu F, Colombo M <strong>and</strong> Vighi M (2010) Field Trial for Evaluating<br />

the Effects on Honeybees of Corn Sown Using Cruiser(A (R)) <strong>and</strong> Celest xl(A (R)) Treated<br />

Seeds. Bulletin of <strong>Environment</strong>al Contamination <strong>and</strong> Toxicology 85(3): 229-234.<br />

Tricoire-Leignel, H. <strong>and</strong> S. H. Thany (2010). Identification of Critical Elements Determining Toxins<br />

<strong>and</strong> Insecticide Affinity, Lig<strong>and</strong> Binding Domains <strong>and</strong> Channel Properties. Insect Nicotinic<br />

Acetylcholine Receptors. S. H. Thany. Berlin, Springer-Verlag Berlin. 683: 45-52.<br />

Vacante V (1997) <strong>The</strong> effect of imidacloprid on the pollination of tomato by Bombus<br />

terrestris. l’Informatore Agrario 53(43): 68-70.<br />

Valdovinos-Nunez, G. R., J. J. G. Quezada-Euan, et al. (2009). "Comparative toxicity of<br />

pesticides to stingless bees (Hymenoptera: Apidae: Meliponini)." Journal of Economic<br />

Entomology 102(5): 1737-1742.<br />

Van der Steen, J. J. M. (2001). "Review of the methods to determine the hazard <strong>and</strong> toxicity<br />

of pesticides to bumblebees." Apidologie 32(5): 399-406.<br />

vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M,<br />

Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, <strong>and</strong> Pettis JS, 2009b. Colony<br />

Collapse Disorder, A Descriptive Study. PLoS One 4, Article-No, e6481.<br />

vanEngelsdorp D, Speybroeck N, Evans JD, Nguyen BK, Mullin C, Frazier M, Frazier J, Cox-<br />

Foster D, Chen Y, Tarpy DR, Haubruge E, Pettis JS, <strong>and</strong> Saegerman C, 2010. Weighing Risk<br />

Factors Associated With Bee Colony Collapse Disorder by Classification <strong>and</strong> Regression<br />

Tree Analysis. Journal of Economic Entomology 103, 1517-1523.<br />

Verbruggen EMJ, <strong>and</strong> Van den Brink PJ, 2010. Review of recent literature concerning<br />

mixture toxicity of pesticides to aquatic organisms<br />

Vidau C, Diogon M, Aufauvre J, Fontbonne R, Vigues B, Brunet JL, Texier C, Biron DG, Blot<br />

N, El-Alaoui H, Belzunces LP <strong>and</strong> Delbac F (2011) Exposure to Sublethal Doses of Fipronil<br />

<strong>and</strong> Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema<br />

ceranae. Plos One 6(6): Article No. e21550.<br />

Viuda-Martos M, Ruis-Navajas Y, Fern<strong>and</strong>ez-L´Opez J, <strong>and</strong> Perez-´Alvarez JA, 2008.<br />

Functional Properties of Honey, Propolis, <strong>and</strong> Royal Jelly. Journal of <strong>Food</strong> Science 73,<br />

R117-R124.<br />

Vo, D. T., W. H. Hsu, et al. (2010). "Insect nicotinic acetylcholine receptor agonists as flea<br />

adulticides in small animals." Journal of Veterinary Pharmacology <strong>and</strong> <strong>The</strong>rapeutics 33(4): 315-<br />

322.<br />

Wahl O, <strong>and</strong> Ulm K, 1983. Influence of Pollen Feeding <strong>and</strong> Physiological Condition on<br />

Pesticide Sensitivity of the Honey Bee Apis-Mellifera-Carnica. Oecologia 59, 106-128.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 120 of 133<br />

Report to Syngenta Ltd


Walker CH, 1998. <strong>The</strong> use of biomarkers to measure the interactive effects of chemicals.<br />

Ecotoxicology <strong>and</strong> <strong>Environment</strong>al Safety 40, 65-70.<br />

Waller GD, Barker RJ, <strong>and</strong> Martin JH, 1979. Effects of dimethoate on honey bee foraging.<br />

Chemosphere, 461-463.<br />

Wallner K, 1997. Honeybee intoxication caused by chemical plant protection in vineyards.<br />

Mitteilungen der Deutschen Gesellschaft fur Allgemeine und Agew<strong>and</strong>te Entomologie, B<strong>and</strong><br />

11, Heft 1-6, Dezember 1997, Entomologists Conference 11, 205-209.<br />

Wallner K, 2009. Sprayed <strong>and</strong> seed dressed pesticides in pollen, nectar <strong>and</strong> honey of<br />

oilseed rape. Julius Kuhn Archive 423, 152-153.<br />

Wallner K. (2001). Tests regarding effects of imidacloprid on honey bees. In: Hazards of<br />

<strong>Pesticides</strong> to <strong>Bees</strong>. Belzunces LP, Pelissier C <strong>and</strong>. Lewis GB (eds). Paris, Inst Natl<br />

Recherche Agronomique: 91-94.<br />

Walorczyk S, <strong>and</strong> Gnusowski B, 2009. Development <strong>and</strong> validation of a multi-residue<br />

method for the determination of pesticides in honeybees using acetonitrile-based extraction<br />

<strong>and</strong> gas chromatography-t<strong>and</strong>em quadrupole mass spectrometry. Journal of<br />

Chromatography A 1216, 6522-6531.<br />

Wang C-J, Qiu L-H, Zheng M-Q, Tao C-J, Jiahg H, Zhang W-J, <strong>and</strong> JLi X-F, 2006. Safety<br />

evaluation of abamectin <strong>and</strong> its mixtures to honey bees (Apis mellifera L... Journal of Agro-<br />

<strong>Environment</strong> Science 25, 229-231.<br />

Warne MSJ, 2003. A Review of the ecotoxicity of mixtures, approaches to, <strong>and</strong><br />

recommendations for, their management., in, A. Langley, et al, Eds.., Proceedings of the<br />

5th national workshop on the assessment of site contamination, NEPC, Adelaide. pp. 253-<br />

276.<br />

Wehling M, Ohe Wvd, Brasse D, <strong>and</strong> Forster R, 2009 Colony losses - interactions of plant<br />

protection products <strong>and</strong> other factors, in, P. A. T. H. M. Oomen (Ed.., Hazards of pesticides<br />

to bees. 10th International Symposium of the ICP-Bee Protection Group. Bucharest,<br />

Romania, 8-10 October, 2008., JKI, Germany. pp. 153-154.<br />

Whitehorn PR, O’Connor S, Wackers FL <strong>and</strong> Goulson D (2012) <strong>Neonicotinoid</strong> pesticide<br />

reduces bumble bee colony growth <strong>and</strong> queen production. Science 336(6079):351-352<br />

Wiest L, Bulete A, Giroud B, Fratta C, Amic S, Lambert O, Pouliquen H, <strong>and</strong> Arnaudguilhem<br />

C, 2011. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees <strong>and</strong><br />

pollens by one extraction procedure followed by liquid <strong>and</strong> gas chromatography coupled<br />

with mass spectrometric detection. Journal of Chromatography A 1218, 5743-5756.<br />

Wilkinson CF, Christoph GR, Julien E, Kelley JM, Kronenberg J, McCarthy J, <strong>and</strong> Reiss R,<br />

2000. Assessing the risks of exposures to multiple chemicals with a common mechanism of<br />

toxicity, How to cumulate? Regulatory Toxicology <strong>and</strong> Pharmacology 31, 30-43.<br />

Wilson K, Knell R, Boots M, <strong>and</strong> Koch-Osborne J, 2003. Group living <strong>and</strong> investment in<br />

immune defence, an interspecific analysis. Journal of Animal Ecology 72, 133-143.<br />

Wilson-Rich N, Dres ST, <strong>and</strong> Starks PT, 2008. <strong>The</strong> ontogeny of immunity, Development of<br />

innate immune strength in the honey bee (Apis mellifera.. Journal of Insect Physiology 54,<br />

1392-1399.<br />

Winterlin W, Walker G, <strong>and</strong> Luce A, 1973. Carbaryl residues in bees, honey, <strong>and</strong> bee bread<br />

following exposure to carbaryl via the food supply. Archives of <strong>Environment</strong>al<br />

Contamination <strong>and</strong> Toxicology 1, 362-374.<br />

Woyciechowski M, 2007. Risk of water collecting in honeybee (Apis mellifera. workers<br />

(Hymenoptera, Apidae.. Scociobiology 50, 1059-1068.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 121 of 133<br />

Report to Syngenta Ltd


Wu JY, Anelli CM, <strong>and</strong> Sheppard WS, 2011. Sub-lethal effects of pesticide residues in brood comb<br />

on worker honey bee (Apis mellifera. development <strong>and</strong> longevity. PLoS One 6, e14720.<br />

Wu JY, Smart MD, Anelli CM, <strong>and</strong> Sheppard WS, 2012. Honey bees (Apis mellifera. reared in<br />

brood combs containing high levels of pesticide residues exhibit increased susceptibility to<br />

Nosema (Microsporidia. infection. Journal of Invertebrate Pathology.<br />

Wu, J., J. Li, et al. (2010). "Sensitivities of three bumblebee species to four pesticides<br />

applied commonly in greenhouses in China." Insect Science 17(1): 67-72<br />

Wustenberg, D. G. <strong>and</strong> B. Grunewald (2004). "Pharmacology of the neural nicotinic acetylcholine<br />

receptor of cultured Kenyon Cells of the honeybee, Apis mellifera." Journal of Comparative<br />

Physiology A Neuroethology Sensory Neural & Behavioral Physiology 190: 807.<br />

Wykes G.R (1953) <strong>The</strong> sugar content of nectars Biochem J 53 294-296<br />

Yamamoto I, Tomizawa M, Saito T, Miyamo to T, Walcott EC, <strong>and</strong> Sumikawa K, 1988.<br />

Structural factors contributing to insecticidal <strong>and</strong> selective actions of neonicotinoids.<br />

Archives of Insect Biochemistry <strong>and</strong> Physiology 37, 24-32.<br />

Yamamoto, I., G. Yabuta, et al. (1995). "Molecular mechanism for selective toxicity of<br />

nicotinoids <strong>and</strong> neonicotinoids." Journal of Pesticide Science 20: 33-40.<br />

Yang EC, Chuang YC, Chen, YL <strong>and</strong> Chang LH (2008). Abnormal Foraging Behavior Induced<br />

by sublethal dose of imidacloprid in the honey bee (Hymenoptera: Apidae) J Econ<br />

Enotomology 101 (6) 1743-1748<br />

Yang EC, Wu PS, Chang HC <strong>and</strong> Chen YW (2011) Effect of sub-lethal dosages of<br />

insecticides on honeybee behavior <strong>and</strong> physiology. Proceedings of International Seminar<br />

on Enhancement of Functional Biodiversity Relevant to Sustainable <strong>Food</strong> Production in<br />

ASPAC — In association with MARCO — November 9-11, 2010 Tsukuba, Japan.<br />

Ye S, Dun Y, <strong>and</strong> Feng M, 2005. Time <strong>and</strong> concentration dependent interactions of Beauveria<br />

bassiana with sublethal rates of imidacloprid against the aphid pests Macrosiphoniella sanborni<br />

<strong>and</strong> Myzus persicae. pp. 459-468.<br />

Yu SJ, Robinson FA, <strong>and</strong> Nation JL, 1984. Detoxication capacity in the honey bee, Apis<br />

mellifera L. Pesticide Biochemistry <strong>and</strong> Physiology 22, 360-368.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 122 of 133<br />

Report to Syngenta Ltd


6. Annex: Database search terms<br />

Databases:<br />

BIOSIS Previews , CAB Abstracts , Zoological<br />

Record <br />

All searches included the terms in the title, abstract <strong>and</strong>/or keywords<br />

revision 2, 13th Feb 2012<br />

1. agrochemical.mp. or pesticides.sh. or chemical control.sh. or herbicides.sh. or agricultural<br />

chemicals.sh. or fungicides.sh. or pesticide residues.sh. or insecticides.sh.<br />

2. plant protection product*.mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti,<br />

tm, tn, ot, hw, nm, rs, ui]<br />

3. plant protection compound*.mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st,<br />

ti, tm, tn, ot, hw, nm, rs, ui]<br />

4. plant protection chemical*.mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti,<br />

tm, tn, ot, hw, nm, rs, ui]<br />

5. (Pesticid* or insecticid* or Acaricid* or Nematicid* or Molluscicid*).mp. [mp=ab, bc, bo, bt, cb, cc,<br />

ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti, tm, tn, ot, hw, nm, rs, ui]<br />

6. (Herbicid* or Fungicid* or antifungal* or anti-fungal*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn,<br />

mc, mi, mq, or, ps, sq, st, ti, tm, tn, ot, hw, nm, rs, ui]<br />

7. 1 or 2 or 3 or 4 or 5 or 6<br />

8. veterinary medicine*.mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti, tm,<br />

tn, ot, hw, nm, rs, ui]<br />

9. veterinary pharmaceutical*.mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st,<br />

ti, tm, tn, ot, hw, nm, rs, ui]<br />

10. (varroacid* or miticid*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti,<br />

tm, tn, ot, hw, nm, rs, ui]<br />

11. (antibacterial* or antibiotic*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq,<br />

st, ti, tm, tn, ot, hw, nm, rs, ui]<br />

12. 7 or 8 or 9 or 10 or 11<br />

13. (honeybee* or honey bee*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st,<br />

ti, tm, tn, ot, hw, nm, rs, ui]<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 123 of 133<br />

Report to Syngenta Ltd


14. Apis mellifera.mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti, tm, tn, ot,<br />

hw, nm, rs, ui]<br />

15. 13 or 14<br />

16. 12 <strong>and</strong> 15<br />

17. (toxic* or sublethal* or sub-lethal*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or,<br />

ps, sq, st, ti, tm, tn, ot, hw, nm, rs, ui]<br />

18. (ecotox* or nontarget* or non-target*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or,<br />

ps, sq, st, ti, tm, tn, ot, hw, nm, rs, ui]<br />

19. ((additiv* or cumulativ* or synergis* or mixture* or sequent*) adj5 effect*).mp. [mp=ab, bc, bo,<br />

bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti, tm, tn, ot, hw, nm, rs, ui]<br />

20. (multiple adj exposur*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti,<br />

tm, tn, ot, hw, nm, rs, ui]<br />

21. (sublethal* or sub-lethal*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st,<br />

ti, tm, tn, ot, hw, nm, rs, ui]<br />

22. 19 or 20 or 21<br />

23. 17 or 18<br />

24. 16 <strong>and</strong> 23<br />

25. 16 <strong>and</strong> 22<br />

26. remove duplicates from 25<br />

27. route*.mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti, tm, tn, ot, hw, nm,<br />

rs, ui]<br />

28. (oral* or pollen* or nectar* or water*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or,<br />

ps, sq, st, ti, tm, tn, ot, hw, nm, rs, ui]<br />

29. (contact* or spray* or overspray* or systemic*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc,<br />

mi, mq, or, ps, sq, st, ti, tm, tn, ot, hw, nm, rs, ui]<br />

30. (dust* or guttation*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti, tm,<br />

tn, ot, hw, nm, rs, ui]<br />

31. (inhation* or vapor* or vapour*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps,<br />

sq, st, ti, tm, tn, ot, hw, nm, rs, ui]<br />

32. (adult* or larv* or brood*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st,<br />

ti, tm, tn, ot, hw, nm, rs, ui]<br />

33. 27 or 28 or 29 or 30 or 31 or 32<br />

34. 24 <strong>and</strong> 33<br />

35. remove duplicates from 34<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 124 of 133<br />

Report to Syngenta Ltd


36. 35 not 26<br />

37. (insect* or arthropod*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti,<br />

tm, tn, ot, hw, nm, rs, ui]<br />

38. 15 or 37<br />

39. 23 <strong>and</strong> 38<br />

40. (foulbrood* or bacillus* or leissococcus* or pathogen* or disease* or fungus* or fungal* or<br />

bacteria* or biocontrol*).mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti, tm,<br />

tn, ot, hw, nm, rs, ui]<br />

41. (nosema* or microsporidia* or varroa* or mite* or acarine* or virus* or viral* or parasit*).mp.<br />

[mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti, tm, tn, ot, hw, nm, rs, ui]<br />

42. 40 or 41<br />

43. 38 <strong>and</strong> 42<br />

44. 12 <strong>and</strong> 43<br />

45. interact*.mp. [mp=ab, bc, bo, bt, cb, cc, ds, ge, gn, mc, mi, mq, or, ps, sq, st, ti, tm, tn, ot, hw,<br />

nm, rs, ui]<br />

46. 12 <strong>and</strong> 38<br />

47. 42 <strong>and</strong> 46<br />

48. 45 <strong>and</strong> 47<br />

49. "interact*".m_titl.<br />

50. 47 <strong>and</strong> 49<br />

51. remove duplicates from 50<br />

52. 36 use mesz<br />

53. 51 use mesz<br />

15 th February 2012<br />

*** It is now 2012/02/15 16:22:06 ***<br />

(Dialog time 2012/02/15 11:22:06)<br />

Subaccount is set to W8JZ_HONEYBEES.<br />

Notice = $10.00<br />

? b155,50,5,185,10,203,40,156,76,41,34,434<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 125 of 133<br />

Report to Syngenta Ltd


SYSTEM:OS - DIALOG OneSearch<br />

File 155:MEDLINE(R) 1950-2012/Feb 13<br />

(c) format only 2012 Dialog<br />

*File 155: MEDLINE has been reloaded. Please see HELP NEWS154<br />

for details.<br />

File 50:CAB Abstracts 1972-2012/Feb W1<br />

(c) 2012 CAB International<br />

File 5:Biosis Previews(R) 1926-2012/Feb W1<br />

(c) 2012 <strong>The</strong> Thomson Corporation<br />

File 185:Zoological Record Online(R) 1864-2012/Feb<br />

(c) 2012 <strong>The</strong> Thomson Corp.<br />

File 10:AGRICOLA 70-2012/Feb<br />

(c) format only 2012 Dialog<br />

File 203:AGRIS 1974-2012/Dec<br />

Dist by NAL, Intl Copr. All rights reserved<br />

File 40:Enviroline(R) 1975-2008/May<br />

(c) 2008 Congressional Information Service<br />

*File 40: This file is closed <strong>and</strong> will no longer update. For<br />

similar data, please search File 76-<strong>Environment</strong>al Sciences.<br />

File 156:ToxFile 1965-2012/Feb W2<br />

(c) format only 2012 Dialog<br />

*File 156: <strong>The</strong> last daily update of Medline records for 2011 was<br />

UD20111114. Updates resumed with the 2012 MeSH with UD20120105.<br />

File 76:<strong>Environment</strong>al Sciences 1966-2012/Jan<br />

(c) 2012 CSA.<br />

File 41:Pollution Abstracts 1966-2012/Jan<br />

(c) 2012 CSA.<br />

File 34:SciSearch(R) Cited Ref Sci 1990-2012/Feb W2<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 126 of 133<br />

Report to Syngenta Ltd


(c) 2012 <strong>The</strong> Thomson Corp<br />

File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec<br />

(c) 2006 <strong>The</strong> Thomson Corp<br />

Set Items Description<br />

S1 1690058 AGROCHEMICAL? OR PESTICID? OR CHEMICAL()CONTROL? OR HERBIC-<br />

ID? OR AGRICULTURAL()CHEMICAL? OR FUNGICID? OR INSECTICID?<br />

S2 4562 PLANT()PROTECTION()PRODUCT? OR PLANT()PROTECTION()COMPOUND?<br />

OR PLANT()PROTECTION()CHEMICAL?<br />

S3 63739 ACARICID? OR NEMATICID? OR MOLLUSCICID?<br />

S4 232227 ANTIFUNGAL? OR ANTI-FUNGAL?<br />

S5 1882500 S1 OR S2 OR S3 OR S4<br />

S6 360277 VETERINARY()MEDICINE? OR VETERINARY()PHARMACEUTICAL?<br />

S7 2530 VARROACID? OR MITICID?<br />

S8 1199988 ANTIBACTERIAL? OR ANTIBIOTIC?<br />

S9 3314429 S5 OR S6 OR S7 OR S8<br />

S10 116545 APIS()MELLIFERA OR HONEYBEE? OR HONEY()BEE?<br />

S11 11752 S9 AND S10<br />

S12 4460623 TOXIC? OR SUBLETHAL? OR SUB-LETHAL?<br />

S13 137777 ECOTOX? OR NONTARGET? OR NON-TARGET?<br />

S14 2732942 ADDITIV? OR CUMULATIV? OR SYNERGIS? OR MIXTURE? OR SEQUENT?<br />

S15 284151 S14(3N)EFFECT?<br />

S16 23078 MULTIPLE()EXPOSURE? OR REPEATED()EXPOSURE?<br />

S17 78386 SUBLETHAL? OR SUB-LETHAL?<br />

S18 344571 (S12 OR S13) AND (S14 OR S16 OR S17)<br />

S19 123044 (S12 OR S13) AND (S15 OR S16 OR S17)<br />

S20 736 S11 AND S18<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 127 of 133<br />

Report to Syngenta Ltd


S21 486 S11 AND S19<br />

S22 500316 ROUTE?<br />

S23 8063047 ORAL? OR POLLEN? OR NECTAR? OR WATER?<br />

S24 2399654 CONTACT? OR SPRAY? OR OVERSPRAY? OR SYSTEMIC?<br />

S25 277125 DUST? OR GUTTATION?<br />

S26 442968 INHALATION? OR VAPOR? OR VAPOUR?<br />

S27 7976748 ADULT? OR LARV? OR BROOD?<br />

S28 18030575 S22 OR S23 OR S24 OR S25 OR S26 OR S27<br />

S29 5568 S11 AND S28<br />

S30 397 RD S20 (unique items) – ITEMS PRINTED FROM DATABASES NOT<br />

PREVIOUSLY SEARCHED<br />

S31 15336 EXPOSURE?(2N)ROUTE?<br />

S32 57 S29 AND S31<br />

S33 22 RD S32 (unique items) – ALL ITEMS PRINTED<br />

S34 4351537 INSECT? OR ARTHROPOD?<br />

S35 941 S9 AND S31 AND S34<br />

S36 35 S35 AND REVIEW?/TI,DE – ALL ITEMS PRINTED<br />

S37 20481533 FOULBROOD? OR BACILLUS? OR LEISSOCOCCUS? OR PATHOGEN? OR<br />

D-<br />

ISEASE? OR FUNGUS? OR FUNGAL? OR BACTERIA? OR BIOCONTROL?<br />

S38 5977919 NOSEMA? OR MICROSPORIDIA? OR VARROA? OR MITE? OR ACARINE? -<br />

OR VIRUS? OR VIRAL? OR PARASIT?<br />

S39 6010 S11 AND (S37 OR S38)<br />

S40 72 S39 AND INTERACT?/TI,DE<br />

S41 48 RD S40 (unique items) – ALL ITEMS PRINTED<br />

SearchSave "SD915239102" stored<br />

Temp SearchSave "TF960075806" stored<br />

? b155,5,50,34,185,28,40,73,76,144,156,10,399<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 128 of 133<br />

Report to Syngenta Ltd


SYSTEM:OS - DIALOG OneSearch<br />

File 155:MEDLINE(R) 1950-2012/Aug 08<br />

(c) format only 2012 Dialog<br />

File 5:Biosis Previews(R) 1926-2012/Aug W1<br />

(c) 2012 <strong>The</strong> Thomson Corporation<br />

File 50:CAB Abstracts 1972-2012/Jul W5<br />

(c) 2012 CAB International<br />

*File 50: For details on weekly updates in May & June 2012, please see<br />

HELP NEWS50.<br />

File 34:SciSearch(R) Cited Ref Sci 1990-2012/Aug W1<br />

(c) 2012 <strong>The</strong> Thomson Corp<br />

File 185:Zoological Record Online(R) 1864-2012/Aug<br />

(c) 2012 <strong>The</strong> Thomson Corp.<br />

File 28:Oceanic Abstracts 1966-2012/Jul<br />

(c) 2012 CSA.<br />

File 40:ENVIROLINE(R) 1975-2008/MAY<br />

(c) 2008 Cis<br />

*File 40: This file is closed <strong>and</strong> will no longer update. For<br />

similar data, please search File 76-<strong>Environment</strong>al Sciences.<br />

File 73:EMBASE 1974-2012/Aug 10<br />

(c) 2012 Elsevier B.V.<br />

*File 73: Embase has been enhanced with Conference Abstract records.<br />

Please see HELP NEWS072 for information.<br />

File 76:<strong>Environment</strong>al Sciences 1966-2012/Jul<br />

(c) 2012 CSA.<br />

File 144:Pascal 1973-2012/Aug W1<br />

(c) 2012 INIST/CNRS<br />

*File 144: Please see HELP NEWS144 for important information on<br />

recent update processing.<br />

File 156:ToxFile 1965-2012/Aug W1<br />

(c) format only 2012 Dialog<br />

*File 156: Toxfile has been reloaded with the 2012 MeSH <strong>The</strong>saurus.<br />

File 10:AGRICOLA 70-2012/Jul<br />

(c) format only 2012 Dialog<br />

File 399:CA SEARCH(R) 1967-2012/UD=15707<br />

(c) 2012 American Chemical Society<br />

*File 399: Use is subject to the terms of your user/customer agreement.<br />

IPCR/8 classification codes now searchable as IC=. See HELP NEWSIPCR.<br />

Set Items Description<br />

S1 6227 NEONICOTINOID?<br />

S2 4953 ACETAMIPRID? OR RN=(135410-20-7 OR 160430-64-8)<br />

S3 2498 CLOTHIANIDIN? OR RN=(210880-92-5 OR 205510-53-8)<br />

S4 1491 DINOTEFURAN? OR RN=165252-70-0<br />

S5 21253 IMIDACLOPRID? OR RN=138261-41-3<br />

S6 1394 NITENPYRAM? OR RN=(150824-47-8 OR 120738-89-8)<br />

S7 2642 THIACLOPRID? OR RN=111988-49-9<br />

S8 5761 THIAMETHOXAM? OR RN=153719-23-4<br />

S9 28561 S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8<br />

S10 234556 HONEYBEE? OR BEE OR BEES OR APIS OR BOMBUS OR BUMBLEBEE?<br />

S11 128067 ANDRENA OR LARANDRENA OR MELANDRENA OR PYROBOMBUS OR<br />

THORA-<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 129 of 133<br />

Report to Syngenta Ltd


COBOMBUS OR CERATINA OR ZADONTOMERUS OR FLORILEGUS OR HABROP-<br />

ODA OR ACENTRON OR AGAPOSTEMON OR AUGOCHLORELLA OR<br />

AUGOCHLORO-<br />

PSIS OR BEES OR BOREOCOELIOXYS OR COELIOXYS OR COLLETES OR CO-<br />

LLETIDAE OR DIALICTUS OR DIEUNOMIA OR EOXENOGLOSSA OR EUMELIS-<br />

SODES OR EUTRICHARAEA OR EVYLAEUS OR HALICTIDAE OR HALICTUS OR<br />

LASIOGLOSSUM OR LITOMEGACHILE OR MEGACHILE OR MELANOSARUS OR<br />

MELANOSMIA OR MELISSODES OR ODONTALICTUS OR OSMIA OR PARAUGOC-<br />

HLOROPSIS OR SAYAPIS OR SCHONNHERRIA OR XENOGLOSSA OR XYLOCOPA<br />

OR XYLOCOPOIDES<br />

S12 243429 S10 OR S11<br />

S13 1313 S9 AND S12<br />

S14 4268882 SUBLETHAL? OR SUB-LETHAL? OR CHRONIC? OR SUBCHRONIC? OR SU-<br />

B-CHRONIC? OR MULTIPLE()EXPOSUR? OR REPEATED()EXPOSUR? OR INC-<br />

REMENT?OR CUMMULATIV?<br />

S15 479 RD S13 (unique items)<br />

SearchSave "SG960077717" stored<br />

? t15/4/406-479 (records 1-405 are in databases previously interrogated on the WoK <strong>and</strong><br />

OVID hosts)<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 130 of 133<br />

Report to Syngenta Ltd


<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 131 of 133<br />

Report to Syngenta Ltd


DEFRA hereby excludes all liability for any claim, loss, dem<strong>and</strong>s or damages of any kind whatsoever (whether such claims, loss, dem<strong>and</strong>s or damages were<br />

foreseeable, known or otherwise) arising out of or in connection with the preparation of any technical or scientific report , including without limitation, indirect<br />

or consequential loss or damage; loss of actual or anticipated profits (including loss of profits on contracts); loss of revenue; loss of business; loss of<br />

opportunity; loss of anticipated savings; loss of goodwill; loss of reputation; loss of damage to or corruption of data; loss of use of money or otherwise, <strong>and</strong><br />

whether or not advised of the possibility of such claim, loss dem<strong>and</strong> or damages <strong>and</strong> whether arising in tort (including negligence), contract or otherwise. This<br />

statement does not affect your statutory rights.<br />

Nothing in this disclaimer excludes or limits DEFRA’s liability for: (a) death or personal injury caused by DEFRA’s negligence (or that of its employees, agents<br />

or directors); or (b) the tort of deceit; [or (c) any breach of the obligations implied by Sale of Goods Act 1979 or Supply of Goods <strong>and</strong> Services Act 1982<br />

(including those relating to the title, fitness for purpose <strong>and</strong> satisfactory quality of goods);] or (d) any liability which may not be limited or excluded by law (e)<br />

fraud or fraudulent misrepresentation.<br />

<strong>The</strong> parties agree that any matters are governed by English law <strong>and</strong> irrevocably submit to the non-exclusive jurisdiction of the English courts.<br />

© Crown copyright 2012<br />

All printed publications <strong>and</strong> literature produced by Fera are subject to Crown copyright protection unless otherwise<br />

indicated.<br />

<strong>Neonicotinoid</strong> pesticides <strong>and</strong> bees Page 132 of 133<br />

Report to Syngenta Ltd

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!