05.06.2013 Views

Theoretical study of aminoalkylation in the Mannich reaction of furan ...

Theoretical study of aminoalkylation in the Mannich reaction of furan ...

Theoretical study of aminoalkylation in the Mannich reaction of furan ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction<br />

<strong>Theoretical</strong> Study <strong>of</strong> Am<strong>in</strong>oalkylation <strong>in</strong><br />

<strong>the</strong> <strong>Mannich</strong> Reaction <strong>of</strong> Furan with<br />

Methyleneimm<strong>in</strong>ium Salt<br />

UKO MARAN, 1 ALAN R. KATRITZKY, 2 MATI KARELSON1 1<br />

Department <strong>of</strong> Chemistry, University <strong>of</strong> Tartu, 2 Jakobi Str., Tartu EE2400, Estonia<br />

2<br />

Florida Center for Heterocyclic Compounds, Department <strong>of</strong> Chemistry, University <strong>of</strong> Florida,<br />

Ga<strong>in</strong>esville, Florida 32611-7200<br />

Received 30 July 1997; revised 13 October 1997; accepted 24 October 1997<br />

ABSTRACT: The potential energy surface for <strong>the</strong> <strong>reaction</strong> <strong>of</strong> <strong>furan</strong> and<br />

methyleneimm<strong>in</strong>ium cation with formation <strong>of</strong> a <strong>Mannich</strong> base has been studied us<strong>in</strong>g<br />

AM1 and PM3 semiempirical calculations. Nonspecific solvent effects were taken account<br />

<strong>of</strong> <strong>in</strong> <strong>the</strong> framework <strong>of</strong> <strong>the</strong> multicavity self-consistent <strong>reaction</strong> field approach.<br />

Characteristics <strong>of</strong> <strong>the</strong> <strong>reaction</strong> path elucidated for various media are discussed.<br />

Key words: semiempirical calculations; solvent effects; <strong>Mannich</strong> <strong>reaction</strong>; <strong>reaction</strong><br />

mechanism<br />

T he <strong>Mannich</strong> <strong>reaction</strong> is a three-component<br />

condensation <strong>in</strong> which an active hydrogen<br />

atom conta<strong>in</strong><strong>in</strong>g compound reacts with formaldehyde<br />

and an NH derivative with <strong>the</strong> elim<strong>in</strong>ation<br />

<strong>of</strong> a water molecule 1 .<br />

As shown <strong>in</strong> Scheme 1, <strong>the</strong> <strong>Mannich</strong> <strong>reaction</strong><br />

product Ž <strong>the</strong> <strong>Mannich</strong> base. has <strong>the</strong> N-atom <strong>of</strong> <strong>the</strong><br />

nitrogen functionality l<strong>in</strong>ked to <strong>the</strong> substrate R<br />

through a methylene group. This transformation<br />

was first discovered by Carl <strong>Mannich</strong> <strong>in</strong> 1912 when<br />

Correspondence to: M.Karelson.<br />

he treated a salicylantipyr<strong>in</strong>e pharmaceutical preparation<br />

and urotrop<strong>in</strong>e with acid 2 .<br />

S<strong>in</strong>ce <strong>the</strong>n,<br />

and especially dur<strong>in</strong>g recent decades, <strong>Mannich</strong> <strong>reaction</strong>s<br />

and <strong>the</strong>ir <strong>Mannich</strong> base products have<br />

ga<strong>in</strong>ed significant importance, especially as pharmaceuticals<br />

and pesticides and <strong>in</strong> <strong>the</strong> preparation<br />

<strong>of</strong> natural and syn<strong>the</strong>tic macromolecules. The relatively<br />

mild conditions <strong>of</strong> <strong>the</strong> <strong>Mannich</strong> <strong>reaction</strong> and<br />

its application to <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> a large variety <strong>of</strong><br />

compounds Ž Scheme 1. has been recently reviewed<br />

by Tarmont<strong>in</strong>i and Angiol<strong>in</strong>i 1 .<br />

Two different pathways Ž I and II <strong>in</strong> Scheme 2.<br />

have been proposed for <strong>the</strong> sequence <strong>in</strong> which<br />

three components <strong>in</strong> <strong>the</strong> <strong>Mannich</strong> <strong>reaction</strong> become<br />

l<strong>in</strong>ked Ž Scheme 1. 1 .<br />

Accord<strong>in</strong>g to <strong>the</strong> first path-


SCHEME 1<br />

way I, formaldehyde and <strong>the</strong> am<strong>in</strong>e <strong>in</strong>itially form<br />

an equilibrium with <strong>the</strong> correspond<strong>in</strong>g am<strong>in</strong>omethyl<br />

carbocation or methyleneimm<strong>in</strong>ium salt 3 ,<br />

which fur<strong>the</strong>r reacts with <strong>the</strong> CH substrate. In <strong>the</strong><br />

second pathway II Ž Scheme 2 . , a C-hydroxymethylene<br />

derivative is first generated, and this gives <strong>the</strong><br />

<strong>Mannich</strong> base by <strong>reaction</strong> with am<strong>in</strong>e. Instead <strong>of</strong><br />

us<strong>in</strong>g three-component <strong>reaction</strong> mixtures, <strong>in</strong> an<br />

alternative procedure Ž based on pathway I . , <strong>the</strong><br />

imm<strong>in</strong>ium salt is preformed and mixed <strong>the</strong>reafter<br />

with <strong>the</strong> substrate 3 .<br />

This procedure separates <strong>the</strong><br />

three-component <strong>reaction</strong> <strong>in</strong>to two steps and enables<br />

deeper <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> mechanism <strong>of</strong> <strong>the</strong><br />

formation <strong>of</strong> <strong>Mannich</strong> bases. Accord<strong>in</strong>gly, we restricted<br />

our <strong>the</strong>oretical treatment to a <strong>study</strong> <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>teraction <strong>of</strong> <strong>the</strong> imm<strong>in</strong>ium salt and substrate.<br />

The imm<strong>in</strong>ium salt formed from formaldehyde<br />

and dimethylam<strong>in</strong>e Žlong<br />

considered as an <strong>in</strong>termediate.<br />

4, 5 ,<br />

has been developed as a <strong>Mannich</strong><br />

reagent 69 ,<br />

and extensively used <strong>in</strong> syn<strong>the</strong>tic<br />

work where it shows advantages <strong>in</strong> yield and rate<br />

<strong>of</strong> <strong>reaction</strong> 3 <strong>in</strong> comparison to conventional <strong>Mannich</strong><br />

<strong>reaction</strong>s. The methyleneimm<strong>in</strong>ium salt is<br />

considered to be <strong>the</strong> key <strong>in</strong>termediate <strong>in</strong> <strong>the</strong> <strong>Mannich</strong><br />

<strong>reaction</strong> by <strong>in</strong>itiat<strong>in</strong>g electrophilic attack on<br />

<strong>the</strong> substrate Ž Scheme 2 . . Such <strong>Mannich</strong> <strong>reaction</strong>s<br />

occur under mild conditions, <strong>in</strong> <strong>the</strong> presence <strong>of</strong><br />

anhydrous acetonitrile as a solvent Žo<strong>the</strong>r<br />

aprotic<br />

solvents have also been used. 1 .<br />

The present <strong>study</strong> was directed to <strong>the</strong> second<br />

step <strong>of</strong> pathway I, i.e., to <strong>the</strong> <strong>reaction</strong> between<br />

360<br />

SCHEME 2<br />

SCHEME 3<br />

preformed methyleneimm<strong>in</strong>ium chloride and <strong>furan</strong><br />

as <strong>the</strong> active hydrogen substrate Ž Scheme 3 . .<br />

The relative simplicity <strong>of</strong> <strong>the</strong> species <strong>in</strong>volved allows<br />

direct quantum chemical model<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

<strong>reaction</strong> potential energy surface Ž PES . . Scheme-3type<br />

<strong>reaction</strong>s have been experimentally realized<br />

for imm<strong>in</strong>ium salts with various five-membered<br />

heterocycles <strong>in</strong>clud<strong>in</strong>g <strong>furan</strong> 1017 ,<br />

thiophene<br />

18a , and N-methylpyrrole 18b .<br />

Moreover, N-<br />

Ž 2-am<strong>in</strong>oalkyl. benzotriazoles, which are <strong>in</strong> equilibrium<br />

with imm<strong>in</strong>ium cations, have been widely<br />

used as am<strong>in</strong>oalkylat<strong>in</strong>g reagents 19 .<br />

Previous somewhat fragmented <strong>the</strong>oretical work<br />

on <strong>Mannich</strong> <strong>reaction</strong>s has <strong>in</strong>cluded: Ž. i a <strong>study</strong> <strong>of</strong><br />

<strong>the</strong> stereoselectivity <strong>of</strong> z<strong>in</strong>c halides on <strong>the</strong> <strong>Mannich</strong>-type<br />

cyclization 20 us<strong>in</strong>g AM1 and PM3<br />

parameterizations and frontier orbital analysis; Ž ii.<br />

an <strong>in</strong>vestigation <strong>of</strong> <strong>in</strong>termediates <strong>in</strong> <strong>Mannich</strong> <strong>reaction</strong><br />

between N-hydroxymethylam<strong>in</strong>es and methyleneimm<strong>in</strong>ium<br />

ions us<strong>in</strong>g MNDO parameterization<br />

21 ; Ž iii. frontier-orbital <strong>in</strong>teraction analysis <strong>of</strong><br />

<strong>Mannich</strong> <strong>reaction</strong>s with polynitromethanes us<strong>in</strong>g<br />

<strong>the</strong> CNDO2 method 22, 23 ; Ž iv. a <strong>study</strong> <strong>of</strong><br />

various unstable N-methylolam<strong>in</strong>es and <strong>the</strong>ir imm<strong>in</strong>ium<br />

cations as <strong>in</strong>termediates dur<strong>in</strong>g <strong>the</strong> <strong>Mannich</strong><br />

<strong>reaction</strong> by <strong>the</strong> CNDO2 24 method; and Ž v.<br />

formation <strong>of</strong> <strong>in</strong>tramolecular hydrogen bonds <strong>in</strong><br />

<strong>Mannich</strong> bases us<strong>in</strong>g AM1 parameterization 25 .<br />

To <strong>the</strong> best <strong>of</strong> our knowledge, only two <strong>the</strong>oretical<br />

studies consider <strong>reaction</strong> potential energy surfaces:<br />

<strong>the</strong> <strong>reaction</strong>s <strong>of</strong> imm<strong>in</strong>ium salts with ethylene 26 and with <strong>furan</strong> 27 .<br />

Computational Details<br />

The stationary po<strong>in</strong>ts* on <strong>the</strong> <strong>reaction</strong> PES and<br />

paths connect<strong>in</strong>g <strong>the</strong>m were calculated us<strong>in</strong>g <strong>the</strong><br />

MOPAC semiempirical program package 28 with<br />

AM1 29 and PM3 30 parameterizations. The<br />

stationary po<strong>in</strong>ts were <strong>in</strong>itially located us<strong>in</strong>g<br />

path-follow<strong>in</strong>g grid calculations and <strong>the</strong> SADDLE<br />

* The geometries <strong>of</strong> stationary po<strong>in</strong>ts are available upon<br />

request from Uko Maran: uko@chem.ut.ee.


po<strong>in</strong>t search method, start<strong>in</strong>g from <strong>the</strong> m<strong>in</strong>ima<br />

correspond<strong>in</strong>g to <strong>the</strong> <strong>in</strong>itial and product complexes<br />

<strong>of</strong> <strong>the</strong> <strong>reaction</strong>, respectively. The geometries <strong>of</strong> <strong>the</strong><br />

stationary po<strong>in</strong>ts were subsequently ref<strong>in</strong>ed us<strong>in</strong>g<br />

<strong>the</strong> eigenvector follow<strong>in</strong>g Ž EF. method 31, 32 ,<br />

toge<strong>the</strong>r with <strong>the</strong> requirement that <strong>the</strong> gradient<br />

norm should not be higher than 0.01 kcalA. ˚ The<br />

stationary po<strong>in</strong>ts were verified us<strong>in</strong>g frequency<br />

calculations to confirm a s<strong>in</strong>gle negative element<br />

<strong>in</strong> <strong>the</strong> Hessian matrix for each transition state and<br />

all positive elements for each <strong>of</strong> <strong>the</strong> local energy<br />

m<strong>in</strong>ima. The existence <strong>of</strong> a sole transition state<br />

Ž TS. between each two m<strong>in</strong>ima was verified us<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic <strong>reaction</strong> coord<strong>in</strong>ate Ž IRC. and dynamic<br />

<strong>reaction</strong> coord<strong>in</strong>ate Ž DRC. methods.<br />

The self-consistent <strong>reaction</strong> field method 33 us<strong>in</strong>g <strong>the</strong> multicavity approach Ž MCa SCRF. 34 was applied to model <strong>the</strong> potential energy surface<br />

<strong>of</strong> <strong>the</strong> <strong>reaction</strong> <strong>in</strong> a solvent 35 .<br />

Two different<br />

conditions for <strong>the</strong> <strong>reaction</strong> were considered, with<br />

38.8 and 1.88, which correspond to <strong>the</strong><br />

macroscopic dielectric permittivity <strong>of</strong> acetonitrile<br />

at 20C and n-hexane at 25C, respectively. The<br />

SCRF model assumes that <strong>the</strong> <strong>reaction</strong> complex is<br />

<strong>in</strong> equilibrium with <strong>the</strong> medium at any po<strong>in</strong>t on<br />

<strong>the</strong> <strong>reaction</strong> path.<br />

The chlor<strong>in</strong>e ion was assumed to be dissociated<br />

from <strong>the</strong> cation throughout <strong>the</strong> <strong>reaction</strong> ŽScheme<br />

3 . , and <strong>the</strong> geometries <strong>of</strong> <strong>the</strong> reactant, <strong>in</strong>termediates,<br />

TS, and product complexes were all calculated<br />

without its presence Žunless<br />

<strong>in</strong>dicated to <strong>the</strong><br />

contrary . . The chloride ion is not expected to <strong>in</strong>flu-<br />

ence directly <strong>the</strong> electrophilic attack <strong>of</strong> <strong>the</strong> positively<br />

charged carbon <strong>of</strong> <strong>the</strong> imm<strong>in</strong>ium ion at <strong>the</strong><br />

<strong>furan</strong> -carbon, which is known to be <strong>the</strong> most<br />

<br />

favored for such attack 1, 18, 36, 37 .<br />

Results and Discussion<br />

INTERACTION BETWEEN IMMINIUM CATION<br />

AND FURAN<br />

The PES gas-phase calculations <strong>in</strong>dicate a relatively<br />

low activation energy for <strong>the</strong> <strong>reaction</strong>, 7.0<br />

and 8.4 kcalmol us<strong>in</strong>g <strong>the</strong> AM 1 and PM3 parameterizations,<br />

respectively Ž Table I and Figs. 12 . .<br />

The <strong>reaction</strong> proceeds via transition state TS<br />

Ž Scheme 4. to <strong>the</strong> product m<strong>in</strong>imum P Ž Scheme 4 . .<br />

The shape <strong>of</strong> <strong>the</strong> m<strong>in</strong>imum potential energy<br />

path Ž MPEP. depends somewhat on <strong>the</strong> parameterization<br />

used. The AM1 parameterization produces<br />

an additional transition state ŽTS0<br />

as <strong>in</strong>dicated<br />

<strong>in</strong> Fig. 1. <strong>in</strong> <strong>the</strong> reactant side <strong>of</strong> <strong>the</strong> MPEP,<br />

which is geometrically very similar to <strong>the</strong> local<br />

m<strong>in</strong>imum P0 Žsee<br />

C2C10 bond distance on<br />

Scheme 5 . . Attempts to f<strong>in</strong>d a path to TS without<br />

proceed<strong>in</strong>g through TS0 and P0 were unsuccessful.<br />

The difference <strong>in</strong> <strong>the</strong> energy <strong>of</strong> <strong>the</strong> two abovementioned<br />

stationary po<strong>in</strong>ts Ž TS0 and P0. is small<br />

Ž 0.2kcalmol, cf. Table I. and <strong>in</strong>significant bear<strong>in</strong>g<br />

<strong>in</strong> m<strong>in</strong>d <strong>the</strong> overall precision <strong>of</strong> <strong>the</strong> semiempirical<br />

calculations. Structures TS0 and P0 formally correspond<br />

to a transition state and to a m<strong>in</strong>imum. The<br />

structural characteristics <strong>of</strong> <strong>the</strong> o<strong>the</strong>r stationary<br />

po<strong>in</strong>ts calculated for <strong>the</strong> gas phase us<strong>in</strong>g AM1 are<br />

all similar to those obta<strong>in</strong>ed with <strong>the</strong> PM3 parameterization.<br />

Nonspecific solvent effects on <strong>the</strong> <strong>reaction</strong> were<br />

modeled us<strong>in</strong>g <strong>the</strong> MCa SCRF approach 34 employ<strong>in</strong>g<br />

separate cavities for <strong>the</strong> two reactants<br />

Ž <strong>furan</strong> and imm<strong>in</strong>ium ion . . The AM1 and PM3<br />

calculations each found high activation energies<br />

TABLE I<br />

AM1 and PM3 calculated heats <strong>of</strong> formation for <strong>the</strong> stationary po<strong>in</strong>ts, H ( kcal/mol )<br />

f<br />

, activation energies,<br />

( ) ( ) a<br />

E kcal/mol , and <strong>reaction</strong> energies, E kcal/mol .<br />

a<br />

H H<br />

f f<br />

R TS P E E TS0 P0 E E<br />

a a<br />

AM1 / gas 170.1 177.1 169.8 7.0 0.3 173.5 173.3 3.4 3.2<br />

AM1 / CH3CN AM1 / n-hexane<br />

101.0<br />

137.1<br />

133.9<br />

156.1<br />

125.0<br />

148.9<br />

32.9<br />

19.0<br />

24.0<br />

11.8<br />

PM3 / gas 176.7 185.1 174.4 8.4 2.3<br />

PM3 / CH3CN PM3 / n-hexane<br />

107.0<br />

143.5<br />

142.8<br />

164.5<br />

129.6<br />

154.5<br />

35.8<br />

21.0<br />

22.6<br />

11.0<br />

a ( ) ( )<br />

The follow<strong>in</strong>g notation is used: R stands for reactants complex, TS for transition state, P for products, E = H P H R .<br />

f f<br />

361


FIGURE 1. AM1 calculated m<strong>in</strong>imum potential energy<br />

path <strong>in</strong> different media.<br />

for <strong>the</strong> <strong>reaction</strong> <strong>in</strong> acetonitrile ŽTable<br />

I and Figs.<br />

12: . EŽ AM1. 32 kcalmol and E Ž PM3. a a 35<br />

kcalmol, respectively. Similar stationary po<strong>in</strong>ts<br />

geometries were obta<strong>in</strong>ed by both parameterizations,<br />

but with somewhat greater difference than<br />

those for <strong>the</strong> gas phase. Notably, <strong>the</strong> calculated<br />

bond lengths between <strong>the</strong> C2 atom <strong>of</strong> <strong>furan</strong> and<br />

<strong>the</strong> C10 atom <strong>of</strong> <strong>the</strong> salt are somewhat shorter <strong>in</strong><br />

solution Ž Scheme 4 . . The model<strong>in</strong>g <strong>of</strong> <strong>the</strong> MPEP <strong>in</strong><br />

nonpolar n-hexane gives substantially lower activation<br />

energies E Ž AM1. a 19.0 kcalmol and<br />

E Ž PM3. 21.0 kcalmol a<br />

than <strong>in</strong> acetonitrile. The<br />

geometries <strong>of</strong> stationary po<strong>in</strong>ts calculated <strong>in</strong> two<br />

condensed media rema<strong>in</strong> similar to those <strong>in</strong> <strong>the</strong><br />

gas phase.<br />

Although Mulliken population analysis is <strong>of</strong>ten<br />

not appropriate for quantitative predictions, <strong>the</strong><br />

calculated Mulliken charges <strong>in</strong> <strong>the</strong> reactant com-<br />

362<br />

SCHEME 4<br />

FIGURE 2. PM3 calculated m<strong>in</strong>imum potential energy<br />

path <strong>in</strong> different media.<br />

plex <strong>in</strong>dicate that <strong>the</strong> carbon Ž C10. <strong>in</strong> <strong>the</strong> salt<br />

moiety acquires an excess positive charge, and <strong>the</strong><br />

-carbon Ž C2. <strong>of</strong> <strong>the</strong> <strong>furan</strong> r<strong>in</strong>g an excess negative<br />

charge Ž Table II . . In <strong>the</strong> <strong>reaction</strong> <strong>in</strong>termediate positive<br />

charge is already transferred to <strong>the</strong> <strong>furan</strong> r<strong>in</strong>g<br />

Ž C3 and C5. Ž Scheme 4; P. Ž Table II . . M<strong>in</strong>imum P<br />

corresponds to a stable <strong>in</strong>termediate.<br />

TRANSFER OF THE ACTIVE H FROM THE<br />

REACTION INTERMEDIATE<br />

Additional supermolecular complexes <strong>in</strong> <strong>the</strong> gas<br />

phase were studied to <strong>in</strong>vestigate <strong>the</strong> stability <strong>of</strong><br />

<strong>the</strong> <strong>reaction</strong> <strong>in</strong>termediate and <strong>the</strong> mode <strong>of</strong> cleavage<br />

<strong>of</strong> <strong>the</strong> <strong>furan</strong> r<strong>in</strong>g hydrogen atom. Model<strong>in</strong>g <strong>the</strong><br />

<strong>reaction</strong> paths <strong>in</strong> such complexes is known to be<br />

difficult due to <strong>the</strong> conformational flexibility <strong>of</strong> <strong>the</strong>


TABLE II<br />

Calculated Mulliken atomic partial charges.<br />

SCHEME 5<br />

O1 C2 C3 C4 C5 C10 N11 H6<br />

AM1 / gas / R 0.2345 0.1102 0.1467 0.1466 0.1103 0.1113 0.1364 0.1900<br />

AM1 / gas / TS0 0.1720 0.2072 0.1229 0.1850 0.0700 0.1241 0.1456 0.1889<br />

AM1 / gas / P0 0.1398 0.2332 0.1142 0.2010 0.0495 0.1283 0.1688 0.2004<br />

AM1 / gas / TS 0.0905 0.2616 0.0103 0.2404 0.0940 0.1230 0.3118 0.2207<br />

AM1 / gas / P 0.0937 0.1066 0.0147 0.2470 0.2229 0.0026 0.3725 0.2093<br />

AM1 / CH CN / R 0.2377 0.1204 0.1396 0.1466 0.1056 0.1107 0.1334 0.1852<br />

3<br />

AM1 / CH CN / TS 0.0983 0.2423 0.1000 0.2388 0.1436 0.1154 0.3559 0.2127<br />

3<br />

AM1 / CH CN / P 0.1056 0.0657 0.0143 0.2373 0.2413 0.0657 0.3288 0.2066<br />

3<br />

AM1 / n-hexane / R 0.2354 0.1138 0.1446 0.1474 0.1076 0.1113 0.1355 0.1852<br />

AM1 / n-hexane / TS 0.0933 0.7500 0.0032 0.2414 0.1236 0.1186 0.3385 0.2176<br />

AM1 / n-hexane / P 0.0987 0.0887 0.0134 0.2428 0.2315 0.0304 0.3524 0.2315<br />

PM3 / gas / R 0.1853 0.0747 0.1238 0.1238 0.0747 0.0759 0.6009 0.1443<br />

PM3 / gas / TS 0.0545 0.2441 0.0515 0.2283 0.1755 0.0286 0.2407 0.1726<br />

PM3 / gas / P 0.0431 0.0143 0.0630 0.2383 0.3345 0.0851 0.0156 0.164<br />

PM3 / CH CN / R 0.1842 0.0833 0.1191 0.127 0.0685 0.0895 0.6191 0.1408<br />

3<br />

PM3 / CH CN / TS 0.0796 0.0182 0.0780 0.2319 0.3590 0.1324 0.0118 0.1532<br />

3<br />

PM3 / CH CN / P 0.0647 0.2129 0.0752 0.2279 0.2404 0.0379 0.1449 0.1641<br />

3<br />

PM3 / n-hexane / R 0.1844 0.0788 0.1220 0.1265 0.0703 0.0805 0.6075 0.1427<br />

PM3 / n-hexane / TS 0.0593 0.2231 0.0693 0.2310 0.2170 0.0361 0.1766 0.1689<br />

PM3 / n-hexane / P 0.0734 0.0073 0.0783 0.2356 0.3511 0.1088 0.0204 0.1538<br />

363


system and <strong>the</strong> long-range <strong>in</strong>teractions <strong>in</strong>volved,<br />

and <strong>in</strong> such cases AM1 and PM3 parameterizations<br />

may lead to different results.<br />

By consider<strong>in</strong>g <strong>in</strong>tramolecular proton transfer <strong>in</strong><br />

<strong>the</strong> <strong>in</strong>termediate as one possible mechanism for<br />

<strong>the</strong> hydrogen abstraction from <strong>the</strong> <strong>furan</strong> r<strong>in</strong>g a<br />

well-def<strong>in</strong>ed transition state Ž<br />

Hf 196.17 kcal<br />

mol. TS( H) Ž Scheme 6. with a calculated activation<br />

energy <strong>of</strong> 26 kcalmol was found with AM1<br />

parameterization. Proceed<strong>in</strong>g from TS( H) <strong>the</strong><br />

product PH ( ) Ž Scheme 6. was formed ŽHf<br />

157.37 kcalmol. with <strong>reaction</strong> energy 12.4<br />

kcalmol.<br />

Our recent comparison 38 <strong>of</strong> AM1 and ab<br />

<strong>in</strong>itio quantum chemical calculations suggests that<br />

<strong>the</strong> AM1 parameterization is sufficiently accurate<br />

to predict <strong>the</strong> PES characteristics <strong>of</strong> C—H N<br />

proton transfers and <strong>the</strong>refore should be applicable<br />

for <strong>the</strong> present <strong>reaction</strong>. A similar transition<br />

state was obta<strong>in</strong>ed for <strong>the</strong> same reagents by Y. Li<br />

et al. 27 and discussed as <strong>the</strong> ma<strong>in</strong> barrier <strong>in</strong> <strong>the</strong><br />

<strong>reaction</strong> between <strong>furan</strong> and methylene imm<strong>in</strong>ium<br />

salt. However, our attempts to f<strong>in</strong>d transition state<br />

( )<br />

TS H us<strong>in</strong>g PM3 parameterization failed as no<br />

stationary po<strong>in</strong>ts could be detected <strong>in</strong> this part <strong>of</strong><br />

364<br />

SCHEME 6<br />

SCHEME 8<br />

<strong>the</strong> calculated PES. The calculated <strong>reaction</strong> barriers<br />

<strong>in</strong> solution us<strong>in</strong>g <strong>the</strong> AM1 MCa SCRF model <strong>in</strong>dicate<br />

a much higher activation energy <strong>in</strong> comparison<br />

with <strong>the</strong> results for <strong>the</strong> gas phase. However,<br />

efforts to obta<strong>in</strong> <strong>the</strong> precise location <strong>of</strong> <strong>the</strong> transition<br />

state <strong>in</strong> solution was unsuccessful, possibly<br />

due to <strong>the</strong> complex representation <strong>of</strong> <strong>the</strong> <strong>reaction</strong><br />

field <strong>in</strong> <strong>the</strong> MCa SCRF Hamiltonian.<br />

Plac<strong>in</strong>g a chlor<strong>in</strong>e anion <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>in</strong>termediate<br />

P <strong>in</strong> <strong>the</strong> gas phase causes dissociation <strong>of</strong><br />

<strong>the</strong> active hydrogen from <strong>the</strong> <strong>furan</strong> r<strong>in</strong>g and formation<br />

<strong>of</strong> HCI Ž Scheme 7 . . In solution, a lone pair<br />

SCHEME 7


SCHEME 9<br />

<strong>of</strong> electrons <strong>of</strong> a solvent molecule is more likely to<br />

act as <strong>the</strong> proton acceptor. The <strong>in</strong>fluence <strong>of</strong> such<br />

lone pair was modeled by plac<strong>in</strong>g a NH 3 molecule<br />

<strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>in</strong>termediate P, which is also a<br />

model for <strong>in</strong>termolecular proton transfer <strong>in</strong><br />

N—H N system. The formation <strong>of</strong> a stable com-<br />

plex PNH ( ) between ammonia and P was pre-<br />

3<br />

dicted by us<strong>in</strong>g both AM1 and PM3 parameterizations.<br />

The scission <strong>of</strong> <strong>the</strong> proton from <strong>the</strong> <strong>furan</strong><br />

r<strong>in</strong>g resulted <strong>in</strong> <strong>the</strong> formation <strong>of</strong> <strong>the</strong> NH ion<br />

4<br />

( PNH ) without any activation barrier Ž<br />

4<br />

Scheme<br />

8 . . This <strong>in</strong>dicated that <strong>in</strong>termolecular proton transfer<br />

is a possible pathway to cleave <strong>the</strong> active<br />

hydrogen from <strong>furan</strong>. This observation is still consistent<br />

with <strong>the</strong> overall <strong>reaction</strong> scheme <strong>in</strong>clud<strong>in</strong>g<br />

<strong>the</strong> formation <strong>of</strong> a stable <strong>in</strong>termediate with <strong>the</strong><br />

active H connected to <strong>the</strong> <strong>furan</strong> r<strong>in</strong>g.<br />

Therefore, our results <strong>in</strong>dicate that transfer <strong>of</strong><br />

<strong>the</strong> active H from <strong>the</strong> <strong>furan</strong> r<strong>in</strong>g, ei<strong>the</strong>r to an<br />

adjacent chlor<strong>in</strong>e ion or to a solvent lone pair, are<br />

energetically more favorable than <strong>the</strong> <strong>in</strong>tramolecular<br />

H transfer. Consequently, <strong>the</strong> present results<br />

<strong>in</strong>dicate that <strong>the</strong> stability <strong>of</strong> <strong>the</strong> <strong>in</strong>termediate and<br />

<strong>the</strong> loss <strong>of</strong> <strong>the</strong> active H from <strong>furan</strong> <strong>in</strong> <strong>Mannich</strong><br />

<strong>reaction</strong> can he facilitated by such nucleophiles <strong>in</strong><br />

different media.<br />

Conclusions<br />

On <strong>the</strong> basis <strong>of</strong> <strong>the</strong> present results we suggest<br />

Scheme 9 as <strong>the</strong> detailed mechanism for <strong>the</strong> <strong>Mannich</strong><br />

<strong>reaction</strong> <strong>of</strong> <strong>furan</strong> with an imm<strong>in</strong>ium salt. The<br />

<strong>reaction</strong> <strong>in</strong>volves a stable <strong>in</strong>termediate and is predicted<br />

to occur more easily <strong>in</strong> nonpolar media and<br />

also <strong>in</strong> aprotic basic solvents where an active hydrogen<br />

is easily abstracted from <strong>furan</strong> by <strong>in</strong>teraction<br />

with <strong>the</strong> lone pair <strong>of</strong> electrons <strong>of</strong> <strong>the</strong> solvent.<br />

References<br />

1. M. Tramont<strong>in</strong>i and L. Angiol<strong>in</strong>i, <strong>Mannich</strong> Bases: Chemistry<br />

Ž .<br />

and Uses CRC Press, Boca Raton, 1994 , p. 261.<br />

2. R. Neidle<strong>in</strong>, Historisches zu der nach Carl <strong>Mannich</strong> benannten<br />

‘‘<strong>Mannich</strong>-<strong>reaction</strong>,’’ Dsch. Apoth. Ztg. 117, 1215 Ž 1977 . .<br />

3. N. Holy, R. Fowler, E. Burnett, and R. Lorenz, Tetrahedron<br />

33, 613 Ž 1979 . .<br />

4. B. Reichert, Die <strong>Mannich</strong> Reaction Ž Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1959 . .<br />

5. H. Hellmann and G. Opitz, -Am<strong>in</strong>o Alkylierung ŽChemie<br />

GMBH, We<strong>in</strong>heimBergstr., 1960 . .<br />

6. A. Ahond, A. Care, C. Kan-Fan, H.-P. Husson, J. de Rostolan,<br />

and P. Potier, J. Am. Chem. Soc. 90, 5622 Ž 1968 . .<br />

7. S. J. Benkovic, P. A. Benkovic, and D. R. Comfort, J. Am.<br />

Chem. Soc. 91, 1860 Ž 1969 . .<br />

8. A. Ahond, A. Care, C. Kan-Fan, H.-P. Husson, and P.<br />

Potier, Bull. Soc. Chim. Fr., 2707 Ž 1970 . .<br />

9. G. K<strong>in</strong>ast and L. Tietze, Angew. Chem. Int. Ed. Engl. 15, 239<br />

Ž 1976 . .<br />

10. H. Heaney, G. Papageorgiou, and F. Wilk<strong>in</strong>s, Tetrahedron<br />

Lett. 29, 2377 Ž 1988 . .<br />

11. R. A. Fairhurst, H. Heaney, G. Papgeorgiu, R. F. Wilk<strong>in</strong>s,<br />

and S. C. Eyley, Tetrahedron Lett. 30, 1433 Ž 1989 . .<br />

12. W. Werner and M. Muhlstadt, ¨ ¨ Liebigs Ann. Chem. 693, 197<br />

Ž 1966 . .<br />

13. J. Sam and J. R. Moz<strong>in</strong>go, J. Pharm. Sci. 58, 1030 Ž 1969 . .<br />

14. N. Saldabols, L. L. Zeligman, and L. A. Ritevskaya, Khim.<br />

Geterotsikl. Soed<strong>in</strong>., 1208 Ž 1975 . .<br />

15. R. I. Kruglikova and L. A. Kundryutskova, Zh. Org. Khim.<br />

9, 2477 Ž 1973 . .<br />

16. N. I. Simirskaya, C. H. Nguyen, M. V. Mavrov, and E. P.<br />

Serebryakov, Izv. Akad. Nauk SSSR Ser. Khim., 1198 Ž 1987 . .<br />

17. Y. Nayakawa, H. Takaya, S. Mak<strong>in</strong>o, N. Hayakaw, and R.<br />

Noyori, Bull. Chem. Soc. Jpn. 50, 1990 Ž 1977 . .<br />

18. Ž. a M. D. Dowle, R. Hayes, D. B. Judd, and C. N. Williams,<br />

Syn<strong>the</strong>sis, 73 Ž 1983 . . Ž b. S. C. Eyley, H. Heaney, G. Papageorgiou,<br />

and R. F Wilk<strong>in</strong>s, Tetrahedron Lett. 29, 2997<br />

Ž 1988 . .<br />

19. A. R. Katritzky, S. Rachwal, and G. J. Hitch<strong>in</strong>gs, Tetrahedron<br />

47, 2683 Ž 1991 . . A. R. Katritzky, X. Lan, J. Yang, and O.<br />

Denisko, Chem. Rev., 1997, to appear.<br />

20. T. Matsumoto, T. Aoyama, T. Shioiri, and E. Osawa, Tetrahedron<br />

50, 9775 Ž 1994 . .<br />

21. H. Xiao, Z. Tang, and B. Gao, Huaxue Xuebao 50, 67 Ž 1992 . .<br />

22. H. Xiao and Z. Tang, Huaxue Wuli Xuebao 3, 13 Ž 1990 . .<br />

23. H. Xiao and Z. Tang, Acta Ch<strong>in</strong>. S<strong>in</strong>. 47, 289 Ž 1989 . .<br />

24. Y. Zhang, W. Dong, J. Shi, and W. Li, Proppelants Explos.<br />

Pyrotech. 19, 103 Ž 1994 . .<br />

25. K. Rutkowski and A. Koll, J. Mol. Struct. 322, 195 Ž 1944 . .<br />

26. Y. Li, H. Xiao, and J. Wu, J. Mol. Struct. Ž Theochem. 333,<br />

165 Ž 1995 . .<br />

27. Y. Li and H. Xiao, Int. J. Quant. Chem. 54, 293 Ž 1995 . .<br />

28. J. J. P Stewart, MOPAC Program Package, QCPE, No 455<br />

Ž 1989 . .<br />

29. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. P.<br />

Stewart, J. Am. Chem. Soc. 107, 3902 Ž 1985 . .<br />

365


30. J. J. P. Stewart, J. Comput. Chem. 10, 209 Ž 1989 . .<br />

31. J. Baker, J. Comput. Chem. 7, 385 Ž 1986 . .<br />

32. P. Culot, G. Dive, V. H. Nguyen, and J. M. Ghuysen, Theor.<br />

Chim. Acta 82, 189 Ž 1992 . .<br />

33. M. Karelson, T. Tamm, A. R. Katritzky, S. J. Cato, and M. C.<br />

Zerner, Terahedron Comput. Method 2, 295 Ž 1989 . .<br />

34. M. Karelson, T. Tamm, and M. C. Zerner, J. Phys. Chem. 97,<br />

11901 Ž 1993 . .<br />

366<br />

35. U. Maran, T. A. Pakkanen, and M. Karelson, J. Chem. Soc.,<br />

Perk<strong>in</strong> Trans. 2, 2445 Ž 1994 . .<br />

36. J. M. Bobbitt, C. L. Kulkarni, C. P. Dutta, H. K<strong>of</strong>od, and K.<br />

Ng Chiong, J. Org. Chem. 43, 3541 Ž 1978 . .<br />

37. S. Ra<strong>in</strong>es and C. A. Kovacs, J. Heterocycl. Chem. 7, 223<br />

Ž 1970 . .<br />

38. U. Maran, M. Karelson, and A. R. Katritzky, Int. J. Quant.<br />

Chem.: Quant. Biol. Symp. 23, 1765 Ž 1996 . .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!