05.06.2013 Views

Smooth Muscle Cells in Atherosclerosis Originate - Arteriosclerosis ...

Smooth Muscle Cells in Atherosclerosis Originate - Arteriosclerosis ...

Smooth Muscle Cells in Atherosclerosis Originate - Arteriosclerosis ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2702 Arterioscler Thromb Vasc Biol. December 2006<br />

Sources of Fund<strong>in</strong>g<br />

This study was funded by the Danish Medical Research Council and<br />

the Danish Heart Foundation.<br />

None.<br />

Disclosures<br />

References<br />

1. Mann J, Davies MJ. Mechanisms of progression <strong>in</strong> native coronary artery<br />

disease: role of healed plaque disruption. Heart. 1999;82:265–268.<br />

2. Schwartz SM, Virmani R, Rosenfeld ME. The good smooth muscle cells<br />

<strong>in</strong> atherosclerosis. Curr Atheroscler Rep. 2000;2:422–429.<br />

3. Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell <strong>in</strong><br />

culture. Physiol Rev. 1979;59:1–61.<br />

4. Stemerman MB, Ross R. Experimental arteriosclerosis. I. Fibrous plaque<br />

formation <strong>in</strong> primates, an electron microscope study. J Exp Med. 1972;<br />

136:769–789.<br />

5. Clowes AW, Reidy MA, Clowes MM. K<strong>in</strong>etics of cellular proliferation<br />

after arterial <strong>in</strong>jury. I. <strong>Smooth</strong> muscle growth <strong>in</strong> the absence of endothelium.<br />

Lab Invest. 1983;49:327–333.<br />

6. Feil S, Hofmann F, Feil R. SM22alpha modulates vascular smooth muscle<br />

cell phenotype dur<strong>in</strong>g atherogenesis. Circ Res. 2004;94:863–865.<br />

7. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H,<br />

Makuuchi M, Hirata Y, Nagai R. Hematopoietic stem cells differentiate<br />

<strong>in</strong>to vascular cells that participate <strong>in</strong> the pathogenesis of atherosclerosis.<br />

Nat Med. 2002;8:403–409.<br />

8. Xu Q. The impact of progenitor cells <strong>in</strong> atherosclerosis. Nat Cl<strong>in</strong> Pract<br />

Cardiovasc Med. 2006;3:94–101.<br />

9. Sata M. Role of circulat<strong>in</strong>g vascular progenitors <strong>in</strong> angiogenesis, vascular<br />

heal<strong>in</strong>g, and pulmonary hypertension: lessons from animal models. Arterioscler<br />

Thromb Vasc Biol. 2006;26:1008–1014.<br />

10. Jockusch H, Voigt S, Eberhard D. Localization of GFP <strong>in</strong> frozen sections<br />

from unfixed mouse tissues: immobilization of a highly soluble marker<br />

prote<strong>in</strong> by formaldehyde vapor. J Histochem Cytochem. 2003;51:<br />

401–404.<br />

11. L<strong>in</strong>ton MF, Atk<strong>in</strong>son JB, Fazio S. Prevention of atherosclerosis <strong>in</strong> apolipoprote<strong>in</strong><br />

E-deficient mice by bone marrow transplantation. Science.<br />

1995;267:1034–1037.<br />

12. Hu Y, Davison F, Ludewig B, Erdel M, Mayr M, Url M, Dietrich H, Xu<br />

Q. <strong>Smooth</strong> muscle cells <strong>in</strong> transplant atherosclerotic lesions are orig<strong>in</strong>ated<br />

from recipients, but not bone marrow progenitor cells. Circulation. 2002;<br />

106:1834–1839.<br />

13. Tian C, Bagley J, Kaye J, Iacom<strong>in</strong>i J. Induction of T cell tolerance to a<br />

prote<strong>in</strong> expressed <strong>in</strong> the cytoplasm through retroviral-mediated gene<br />

transfer. J Gene Med. 2003;5:359–365.<br />

14. der Thusen JH, van Berkel TJ, Biessen EA. Induction of rapid atherogenesis<br />

by perivascular carotid collar placement <strong>in</strong> apolipoprote<strong>in</strong><br />

E-deficient and low-density lipoprote<strong>in</strong> receptor-deficient mice. Circulation.<br />

2001;103:1164–1170.<br />

15. Hungerford JE, Owens GK, Argraves WS, Little CD. Development of the<br />

aortic vessel wall as def<strong>in</strong>ed by vascular smooth muscle and extracellular<br />

matrix markers. Dev Biol. 1996;178:375–392.<br />

Downloaded from<br />

http://atvb.ahajournals.org/ by guest on June 4, 2013<br />

16. Caplice NM, Bunch TJ, Stalboerger PG, Wang S, Simper D, Miller DV,<br />

Russell SJ, Litzow MR, Edwards WD. <strong>Smooth</strong> muscle cells <strong>in</strong> human<br />

coronary atherosclerosis can orig<strong>in</strong>ate from cells adm<strong>in</strong>istered at marrow<br />

transplantation. Proc Natl Acad Sci U S A. 2003;100:4754–4759.<br />

17. Morrison SJ, Weissman IL. The long-term repopulat<strong>in</strong>g subset of hematopoietic<br />

stem cells is determ<strong>in</strong>istic and isolatable by phenotype.<br />

Immunity. 1994;1:661–673.<br />

18. Cheng C, van HR, de WM, van Damme LC, Tempel D, Hanemaaijer L,<br />

van Cappellen GW, Bos J, Slager CJ, Duncker DJ, van der Steen AF, de<br />

CR, Krams R. Shear stress affects the <strong>in</strong>tracellular distribution of eNOS:<br />

direct demonstration by a novel <strong>in</strong> vivo technique. Blood. 2005;106:<br />

3691–3698.<br />

19. Tanaka K, Sata M, Hirata Y, Nagai R. Diverse contribution of bone<br />

marrow cells to neo<strong>in</strong>timal hyperplasia after mechanical vascular <strong>in</strong>juries.<br />

Circ Res. 2003;93:783–790.<br />

20. Zernecke A, Schober A, Bot I, von Hundelshausen P, Liehn EA, Mopps<br />

B, Mericskay M, Gierschik P, Biessen EA, Weber C. SDF-1{alpha}/CXCR4<br />

Axis Is Instrumental <strong>in</strong> Mur<strong>in</strong>e Neo<strong>in</strong>timal Hyperplasia and<br />

Recruitment of <strong>Smooth</strong> <strong>Muscle</strong> Progenitor <strong>Cells</strong>. Circ Res. 2005;96:<br />

784–791.<br />

21. Schafer K, Schroeter MR, Dellas C, Puls M, Nitsche M, Weiss E,<br />

Hasenfuss G, Konstant<strong>in</strong>ides SV. Plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-1 from<br />

bone marrow-derived cells suppresses neo<strong>in</strong>timal formation after vascular<br />

<strong>in</strong>jury <strong>in</strong> mice. Arterioscler Thromb Vasc Biol. 2006;26:1254–1259.<br />

22. Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabk<strong>in</strong> E, Libby P,<br />

Mitchell RN. Host bone-marrow cells are a source of donor <strong>in</strong>timal<br />

smooth- muscle-like cells <strong>in</strong> mur<strong>in</strong>e aortic transplant arteriopathy. Nat<br />

Med. 2001;7:738–741.<br />

23. Hu Y, Mayr M, Metzler B, Erdel M, Davison F, Xu Q. Both donor and<br />

recipient orig<strong>in</strong>s of smooth muscle cells <strong>in</strong> ve<strong>in</strong> graft atherosclerotic<br />

lesions. Circ Res. 2002;91:e13–e20.<br />

24. Massberg S, Konrad I, Schurz<strong>in</strong>ger K, Lorenz M, Schneider S,<br />

Zohlnhoefer D, Hoppe K, Schiemann M, Kennerknecht E, Sauer S,<br />

Schulz C, Kerstan S, Rudelius M, Seidl S, Sorge F, Langer H, Peluso M,<br />

Goyal P, Vestweber D, Emambokus NR, Busch DH, Frampton J, Gawaz<br />

M. Platelets secrete stromal cell-derived factor 1alpha and recruit bone<br />

marrow-derived progenitor cells to arterial thrombi <strong>in</strong> vivo. J Exp Med.<br />

2006;203:1221–1233.<br />

25. Hillebrands JL, Klatter FA, Roz<strong>in</strong>g J. Orig<strong>in</strong> of vascular smooth muscle<br />

cells and the role of circulat<strong>in</strong>g stem cells <strong>in</strong> transplant arteriosclerosis.<br />

Arterioscler Thromb Vasc Biol. 2003;23:380–387.<br />

26. Deng DX, Sp<strong>in</strong> JM, Tsalenko A, Vailaya A, Ben-Dor A, Yakh<strong>in</strong>i Z, Tsao<br />

P, Bruhn L, Quertermous T. Molecular signatures determ<strong>in</strong><strong>in</strong>g coronary<br />

artery and saphenous ve<strong>in</strong> smooth muscle cell phenotypes: dist<strong>in</strong>ct<br />

responses to stimuli. Arterioscler Thromb Vasc Biol. 2006;26:<br />

1058–1065.<br />

27. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q.<br />

Abundant progenitor cells <strong>in</strong> the adventitia contribute to atherosclerosis<br />

of ve<strong>in</strong> grafts <strong>in</strong> ApoE-deficient mice. J Cl<strong>in</strong> Invest. 2004;113:<br />

1258–1265.<br />

28. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular<br />

smooth muscle cell differentiation <strong>in</strong> development and disease. Physiol<br />

Rev. 2004;84:767–801.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!