Thermodynamics of separation processes 3.1 ... - Åbo Akademi

Thermodynamics of separation processes 3.1 ... - Åbo Akademi Thermodynamics of separation processes 3.1 ... - Åbo Akademi

05.06.2013 Views

Process EngineeringThermodynamics course # 424304.0 v. 2013 Thermodynamics of separation processes Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering Laboratory / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi Åbo Akademi Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 1/82 3.1 Separation and entropy ÅA 424304 Åbo Akademi Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 2/82

Process Engineering<strong>Thermodynamics</strong><br />

course # 424304.0 v. 2013<br />

<strong>Thermodynamics</strong> <strong>of</strong> <strong>separation</strong><br />

<strong>processes</strong><br />

Ron Zevenhoven<br />

<strong>Åbo</strong> <strong>Akademi</strong> University<br />

Thermal and Flow Engineering Laboratory / Värme- och strömningsteknik<br />

tel. 3223 ; ron.zevenhoven@abo.fi<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 1/82<br />

<strong>3.1</strong> Separation and entropy<br />

ÅA 424304<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 2/82


Separation process and entropy /1<br />

Separation <strong>processes</strong> involve de-mixing <strong>of</strong> species or phases,<br />

in thermodynamic sense resulting in a decrease <strong>of</strong> the total<br />

entropy <strong>of</strong> these<br />

∑ Entropy <strong>of</strong> components or phases < Entropy <strong>of</strong> mix<br />

One way <strong>of</strong> acccomplishing a <strong>separation</strong> is to create more<br />

phases; Gibbs’ phase rule gives for the degrees <strong>of</strong> freedom,<br />

f, for a system <strong>of</strong> p phases and n components: f = n + 2 – p.<br />

f↑ gives ∆S↑; f↓ gives ∆S↓.<br />

A new phase can be created by 1) adding a new component<br />

(absorption/desorption, extraction), or 2) by adding or removing<br />

energy (e.g. heat) (distillation, crystallisation)<br />

Creating an ”un-equilibrium” gives rise to a <strong>separation</strong><br />

(or a chemical reaction) if ∆G = ∆H-T·∆S < 0, or ∆S >∆H/T<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 3/82<br />

Separation process and entropy /2<br />

m mix<br />

s mix<br />

Q out<br />

T out<br />

Q in<br />

T in<br />

m A<br />

s A<br />

m B<br />

s B<br />

Steady - state mass balance, 1st Law, 2nd Law :<br />

mmix<br />

m m A B<br />

m h<br />

mix mix Qin<br />

m h<br />

m h<br />

Q<br />

A A B B out<br />

Qout<br />

m s m s<br />

A A B B<br />

Tout<br />

Qin<br />

m s mix mix<br />

Tin<br />

Q Q<br />

out in m s mix mix<br />

T T<br />

m s m s<br />

A A B B<br />

out<br />

7 feb 13 <strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering<br />

Piispankatu 8, 20500 Turku<br />

in<br />

m mix<br />

s mix<br />

Qout Tout Distillation Crystallisation<br />

m liquid<br />

s liquid<br />

m crystals<br />

s crystals<br />

4/82


Separation process and entropy /3<br />

Clearly, some entropy must be produced to<br />

1) compensate for ∆S < 0 resulting from the <strong>separation</strong>, and<br />

2) create some driving force ∆G < 0, ∆S > ∆H/T.<br />

Proper engineering requires minimisation <strong>of</strong> this entropy<br />

production ∆S and the exergy losses T°·∆S, and balancing<br />

this against economical considerations<br />

It was found that a uniform production <strong>of</strong> entropy is<br />

preferable: the equipartitioning principle (TK87, B97,<br />

SAKS04) – see also macroscopic organisation in natural <strong>processes</strong>!<br />

For example, for a heat exchanger<br />

this implies that the driving force<br />

∆(1/T) = constant.<br />

It can be extended to considering<br />

stable, non-equilibrium states S > Smin, with stability criterion dṠgen/dt < 0.<br />

Stable, unstable,<br />

neutral equilibrium<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 5/82<br />

Separation process and entropy /4<br />

Example taken from<br />

TK87<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 6/82<br />

Pic: http://www.diracdelta.co.uk/science/source/e/q/equilibrium/source.html


Separation process and entropy /5<br />

µ = chemical potential<br />

Examples taken from<br />

TK87<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 7/82<br />

3.2 Binary Distillation I<br />

(the McCabe-Thiele procedure)<br />

ÅA 424304<br />

Assumed pre-knowledge: Continuous distillation<br />

see course 424302 Massöverföring & <strong>separation</strong>steknik, #12<br />

http://users.abo.fi/rzevenho/MOFST12-OH12.pdf<br />

or re-wrap course 424102 Principles <strong>of</strong> process engineering<br />

(which summarises courses 424101, 424302 and 424300)<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 8/82


From MÖF-ST<br />

ÅA 424302<br />

From MÖF-ST<br />

ÅA 424302<br />

Continuous distillation (binary) /1<br />

Separating a mixture <strong>of</strong><br />

2 components A and<br />

B, with A more volatile<br />

Liquid for absorption<br />

section produced by<br />

condensing some top<br />

product<br />

Gas for stripping<br />

section produced by<br />

boiling some bottom<br />

product<br />

Picture: WK92<br />

Top product:<br />

more volatile<br />

component<br />

Top section:<br />

rectifying section<br />

absorbing the less<br />

volatile component<br />

Bottom section:<br />

stripping section<br />

desorbing the more<br />

volatile component<br />

Bottom product:<br />

less volatile<br />

component<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 9/82<br />

Mass balance and equilibrium:<br />

absorption<br />

y in<br />

y out<br />

slope L/V<br />

x in<br />

x out<br />

y i = Kx i<br />

mass balance: V·y i+L·x i= V·y i+1 + L·x i-1<br />

→ working line y i+1 – y i = (L/V)·(x i-1 –x i)<br />

V<br />

y out<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 10/82<br />

y i<br />

y i+1<br />

V<br />

i<br />

x i-1<br />

x i<br />

L<br />

V<br />

y in<br />

L<br />

x in<br />

L<br />

x out


From MÖF-ST<br />

ÅA 424302<br />

From MÖF-ST<br />

ÅA 424302<br />

Mass balance and equilibrium:<br />

desorption / stripping<br />

y out<br />

y in<br />

slope L/V<br />

x out<br />

y i = Kx i<br />

x in<br />

mass balance: V·y i+L·x i= V·y i+1 + L·x i-1<br />

→ working line y i+1 – y i = (L/V)·(x i-1 –x i)<br />

V<br />

y out<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 11/82<br />

y i<br />

y i+1<br />

Continuous distillation (binary) /2<br />

Roughly equimolar<br />

exchange:<br />

1 mol A liquid → gas<br />

«-» 1mol B gas → liquid<br />

As a result: Gas and<br />

liquid streams ~ constant<br />

in each section:<br />

L and V in top section,<br />

L´ and V´ in bottom<br />

section<br />

Feed enters there where<br />

it is similar to the mixture<br />

inside<br />

Picture: WK92<br />

V<br />

i<br />

x i-1<br />

x i<br />

L<br />

V<br />

y in<br />

L<br />

x in<br />

L<br />

x out<br />

Top product:<br />

more volatile<br />

component<br />

Top section:<br />

rectifying section<br />

absorbing the less<br />

volatile component<br />

Bottom section:<br />

stripping section<br />

desorbing the more<br />

volatile component<br />

Bottom product:<br />

less volatile<br />

component<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 12/82


From MÖF-ST<br />

ÅA 424302<br />

From MÖF-ST<br />

ÅA 424302<br />

Continuous distillation /3<br />

Some general considerations and assumptions:<br />

– The equimolar exchange A ↔ B requires balanced energy exchange<br />

as well: vaporisation heats <strong>of</strong> A and B should be roughly the same<br />

– Pressure and the temperature ranges must be chosen:<br />

• Below the critical pressures and temperatures <strong>of</strong> the components<br />

• The components must be thermally stable (for hydrocarbon fractions<br />

!<br />

<strong>of</strong> crude oil: below 300 ~ 350°C)<br />

• The temperature at the top <strong>of</strong> the column should preferably be > 40°C,<br />

allowing for heat transfer with surrounding air or water<br />

– Equilibrium data is needed, + data for feed and products<br />

specifications<br />

→ The necessary gas and liquid streams, the number <strong>of</strong> stages and<br />

heat consumption can be calculated<br />

A simple procedure based on local equilibrium and mass balances<br />

was suggested by McCabe and Thiele<br />

Equilbrium<br />

data<br />

Example:<br />

C 3 –iC 4 /1<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 13/82<br />

pressures < critical<br />

pressures allowable<br />

for C 3 –iC 4 : p < 37 bar<br />

37 bar boiling points<br />

85 - 140°C: stability OK<br />

Raoults law:<br />

y·p total = x·p°<br />

K = y/x = p°/p total<br />

T boil iC 4<br />

at 37 bar<br />

T boil C 3<br />

at 37 bar<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 14/82


From MÖF-ST<br />

ÅA 424302<br />

Equilbrium<br />

data<br />

Example:<br />

C 3 –iC 4 /2<br />

Chose 40°C as the<br />

temperatur at the<br />

condensor.<br />

At T min = 40°C, the<br />

vapour pressure <strong>of</strong><br />

the more volatile<br />

component which is C 3<br />

= 14 bar → p ≥ 14 bar<br />

Then T boil ~ 81°C for iC 4<br />

p° C 3<br />

at 40°C<br />

T boil iC 4<br />

at 14 bar<br />

T boil C 3<br />

at 14 bar<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 15/82<br />

Binary distillation, McCabe-Thiele /1<br />

The McCabe-Thiele x,y diagram<br />

procedure for continuous binary<br />

distillation is limited to cases where the<br />

vapour and liquid mass flows are<br />

≈ constant in both the top and bottom<br />

section <strong>of</strong> the column.<br />

This requires that the vaporisation<br />

/ condensation heats for the two<br />

components are ≈ the same, and that<br />

mixing heat effects are negligible.<br />

For example EtOH/H 2O: ∆ vaph(EtOH) ≈<br />

∆ vaph(H 2O) ≈ 40 kJ/mol<br />

elementary courses (e.g. ÅA424302, Z12)<br />

Pic: WK92<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 16/82


From MÖF-ST<br />

ÅA 424302<br />

Binary distillation, McCabe-Thiele /2<br />

q = fraction <strong>of</strong> feed that<br />

gives liquid on the feeding<br />

tray: L´= L + q· F,<br />

F· q = ∆L and F· (1-q) = ∆V<br />

q is related to the energy<br />

needed to convert the feed<br />

completely into vapour. With<br />

enthalpies H for saturated<br />

liquid and saturated gas it is<br />

found that<br />

q<br />

<br />

H<br />

H<br />

G,<br />

sat<br />

G,<br />

sat<br />

H<br />

H<br />

L,<br />

sat<br />

7 feb 13 <strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering<br />

Piispankatu 8, 20500 Turku<br />

F<br />

q >1<br />

q = 1<br />

0 < q < 1<br />

q = 0<br />

q < 0<br />

Picture:<br />

after T68<br />

Binary distillation, McCabe-Thiele /3<br />

The McCabe-Thiele x,y<br />

diagram procedure is thus<br />

based on mass balances<br />

(giving straight operating<br />

lines) and chemical<br />

equilibrium data<br />

If this method cannot be<br />

used, a graphical method<br />

based on enthalpy –<br />

composition (h,x or h,ξ)<br />

diagrams as given by<br />

Ponchon – de Savarit can<br />

be used, based on local<br />

equilibrium, mass balances<br />

and energy balances<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 18/82<br />

17/82<br />

elementary courses (e.g. ÅA424302, Z12<br />

Pic: http://commons.wikimedia.org/wiki/File:McCabe-Thiele_diagram.png


From MÖF-ST<br />

ÅA 424302<br />

Restrictions McCabe-Thiele method<br />

Molar heats <strong>of</strong> vaporisation should<br />

not differ more than ~10%<br />

Heats <strong>of</strong> dissolution or mixing are<br />

negligible<br />

Relative volatilities should be<br />

1.3 < α < 5<br />

Reflux ratio’s (L/V) should<br />

be R > 1.1· R min<br />

Number <strong>of</strong> trays N


Mixing heat for binary mixtures<br />

ξ kg B<br />

1-ξ kg A<br />

1 kg mix<br />

For this mixing process:<br />

h = ξ·ha + (1-ξ)·hb + qmix with mixing heat qmix to keep temperature<br />

constant<br />

Mixing heat data can be<br />

used to produce h,x or h,ξ<br />

diagrams<br />

ξ = mass fraction for the<br />

most volatile compound<br />

x = molar fraction for the<br />

most volatile compound<br />

With molar masses M a<br />

and M b :<br />

<br />

x <br />

<br />

ξ Mb<br />

<br />

ξ M<br />

<br />

ξ <br />

<br />

x Ma<br />

<br />

x M<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 21/82<br />

Mixing heat, h,ξ diagram /1<br />

NH 3-H 2O<br />

↑ Mixing heat data for NH3-H2O and for EtOH-H2O (liq)<br />

Schematic h,x or h,ξ diagram → for<br />

three temperatures (t1, t2, t3) EtOH-<br />

H 2O<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 22/82<br />

a<br />

b<br />

;<br />

Pics: B01


Mixing heat, h,ξ diagram /2<br />

Determination <strong>of</strong> heat <strong>of</strong> mixing, q mix, versus composition, ξ:<br />

a boiling liquid mixture (mass m, composition ξ f, enthalpy h f) is fed<br />

into a calorimeter; a small amount <strong>of</strong> heat dq gives a small<br />

amount <strong>of</strong> vapour, dm (composition ξ d, enthalpy h d)<br />

Mass balance, heat balance:<br />

gives (eliminate m) q mix= dq/dm =<br />

Pic: B01<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 23/82<br />

Mixing heat, h,ξ diagram /3<br />

liquid<br />

gas<br />

q mix<br />

Construction <strong>of</strong> condensation line from<br />

boiling line, heat <strong>of</strong> vaporisation and heat <strong>of</strong><br />

mixing<br />

For point P, which demixes into liquid F<br />

and gas D, the relative amounts are<br />

G/L = FP / PD (lever rule)<br />

Schematic h,ξ diagram:<br />

- Condensation line c<br />

- Boiling line b<br />

- Isotherms i<br />

Pics: B01<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 24/82<br />

c<br />

i<br />

i<br />

b


s,ξ diagram<br />

For 2nd Law analysis, exergy analysis or for tracking down<br />

irreversibilities in mixture applications (for example<br />

mixtures <strong>of</strong> refrigerants) s,ξ or s,x diagrams may be used.<br />

Note that during adiabatic mixing hmix = ha+ hb, but<br />

smix = sa + sb+ ∆smix s,x and<br />

∆s mix for<br />

two ideal<br />

gases<br />

x<br />

Pics: B01<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 25/82<br />

3.4 Flash vaporisation<br />

x<br />

ÅA 424304<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 26/82


Flash vaporisation, h,x diagram /1<br />

Consider a flash vaporisation process, in which a binary<br />

liquid at temperature T0, pressure p0 is brought to a lower<br />

pressure p1 using a throttling valve. Temperature drops to<br />

T1. Part <strong>of</strong> the liquid vaporises, giving a vapour that is more<br />

rich in the more volatile component.<br />

Mass balance: F = G + L<br />

Mass balance volatile<br />

component:<br />

xF·F = y·G + x· L<br />

Heat balance:<br />

hF· F = hG· G + hL· L, with<br />

heat <strong>of</strong> vaporisation<br />

∆vaph = hG-hL at T0. Pic: Z87<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 27/82<br />

Flash vaporisation, h,x diagram /2<br />

Initially, at p0 the feed<br />

point A with x = xF is<br />

in the liquid region <strong>of</strong><br />

the h,x diagram<br />

After the pressure<br />

reduction point A lies in<br />

the 2-phase region,<br />

giving liquid (L) C + gas<br />

(G) B<br />

Amount ratio G/L<br />

equals = CA /AB, or<br />

G<br />

L<br />

<br />

x x F<br />

y x<br />

F<br />

h<br />

<br />

h<br />

F<br />

G<br />

hL<br />

h<br />

F<br />

G<br />

7 feb 13 <strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering<br />

Piispankatu 8, 20500 Turku<br />

L<br />

Pic: Z87<br />

28/82


Flash vaporisation, example /1<br />

220°F = 104°C<br />

170°F = 77°C<br />

<br />

K71- Fig 2.11<br />

<br />

K71- Fig 2.12<br />

1 BTU = 1055,06 J 100 BTU/lb = 2,326 kJ/kg<br />

Pics: K71<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 29/82<br />

Flash vaporisation, example /2<br />

v<br />

w<br />

<br />

K71- Fig 2.11<br />

<br />

K71- Fig 2.12<br />

v w<br />

Lever rule – see for example:<br />

http://www.doitpoms.ac.uk/tlplib/phase-diagrams/lever.php<br />

Pics: K71<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 30/82


3.5 Binary Distillation II<br />

(the Ponchon-Savarit method)<br />

ÅA 424304<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 31/82<br />

Ponchon-Savarit method /1<br />

Continuous distillation<br />

Feed F(kg/s), xf (kg/kg)<br />

Top product D, xd Bottom product W, xw Upward vapour flows V<br />

(kg/s), downward liquid<br />

flows L (kg/s)<br />

Liquid mass fractions x,<br />

vapour mass fractions y<br />

Reboiler heat input QB (kW), condenser heat<br />

output QC (kW)<br />

Pic: CR83<br />

Top section I, index n (downwards)<br />

Bottom section II, index m (downwards)<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 32/82


Ponchon-Savarit method /2<br />

HL and HV are enthalpies <strong>of</strong><br />

liquid and vapour streams<br />

(kJ/kg)<br />

Mass balances top section<br />

stages (total, and for the most<br />

volatile species <strong>of</strong> the two)<br />

*) Pic: CR83<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 33/82<br />

Ponchon-Savarit method /3<br />

Heat balances (top section)<br />

H L d = H <strong>of</strong> liquid D (x = x d)<br />

Constant H´ d = H L d + Q C/D:<br />

**)<br />

Pic: CR83<br />

”leaving” system via top:<br />

D·HL d + QC <strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 34/82


From the mass balances *)<br />

From mass balance *) and heat<br />

balances **)<br />

<br />

Ponchon-Savarit method /4<br />

x<br />

Pic: CR83<br />

Functions yn(xn-1) are all lines<br />

that go through point (pole) N =<br />

(xd, H´ d ) in the (x,H) plot<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 35/82<br />

Ponchon-Savarit method /5<br />

The lines y n(x n-1) can be put<br />

in the h,x or h,ξ diagram<br />

(see next slide)<br />

Similarly, mass and heat<br />

balances for the bottom<br />

section:<br />

Pic: CR83<br />

Top section I, index n (downwards)<br />

Bottom section II, index m (downwards)<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 36/82


”leaving”<br />

system via<br />

bottom:<br />

W·H L w -Q B<br />

Ponchon-Savarit method /6<br />

HL w = H <strong>of</strong> liquid W<br />

(x = xw) Constant<br />

H´ w = HL w -QB/W This then gives<br />

Note: this implies q = 1<br />

Functions y m(x m-1) , all lines<br />

go through point (pole)<br />

M = (x w, H´ w ) in (x,H) plot<br />

Pic: CR83<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 37/82<br />

Ponchon-Savarit method /7<br />

A stream N can<br />

be visualised with<br />

composition = x d ,<br />

enthalpy = H´ d ,<br />

mass = V n –L n-1<br />

Similarly, M can be<br />

visualised as a<br />

stream with<br />

composition = x w ,<br />

enthalpy = H´ w ,<br />

mass = L m-1 –V m<br />

Then also: F = M + N, and F·x F = M·x w + N·x d<br />

Pic: CR83<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 38/82


Ponchon-Savarit method /8<br />

The necessary<br />

number <strong>of</strong><br />

theoretical<br />

stages can be<br />

determined<br />

graphically as<br />

shown <br />

Feed point F is shown<br />

on the boiling line<br />

(here, q =1)<br />

V1 is vapour from first<br />

plate, L1 is liquid from<br />

first plate to second<br />

plate, et c.<br />

Here, 7 theoretical stages needed.<br />

Pic: CR83<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 39/82<br />

Ponchon-Savarit method /9<br />

The heat removed<br />

in the condenser<br />

per unit mass D is<br />

q c = Q c/D.<br />

Lowering N N´<br />

means that more<br />

stages are needed<br />

At N Nm the<br />

number <strong>of</strong> stages<br />

∞ Here, 7 theoretical stages needed.<br />

Pic: CR83<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 40/82


Ponchon-Savarit method /10<br />

Using q c = Q c/D and<br />

the minimum heat<br />

requirements can be found:<br />

Increasing the reflux ratio<br />

requires more heat to be<br />

removed, point N<br />

upwards, reducing the<br />

number <strong>of</strong> stages<br />

Pic: CR83<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 41/82<br />

Ponchon-Savarit method Example /1<br />

1 kg/s<br />

x f = 0.3<br />

x d = 0.995<br />

R =<br />

1.08·R min<br />

x w = 0.100<br />

Mass balances<br />

Source: CR83<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 42/82


Source:<br />

CR83<br />

Ponchon-<br />

Savarit<br />

method<br />

Example /2<br />

h, ξ diagram<br />

NH 3-H 2O<br />

1.013 MPa =<br />

10 atm<br />

Source: CR83<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 43/82<br />

Ponchon-Savarit method Example /3<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 44/82


3.6 Ideal distillation column<br />

analysis<br />

ÅA 424304<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 45/82<br />

Analysis <strong>of</strong> ideal column /1<br />

Exergy analysis shows that<br />

the minimum work for<br />

<strong>separation</strong> <strong>of</strong> 1 mol <strong>of</strong><br />

mixture equals<br />

wmin = ∆ex = T°·∆s<br />

For distillation with<br />

reboiler heat Qin and<br />

condenser heat Qout, the<br />

exergy loss –∆Ex can be<br />

approximated as<br />

<br />

o <br />

1<br />

Ex<br />

Qin<br />

T <br />

<br />

<br />

Ttop<br />

T<br />

(if H F ≈ H B + H D !)<br />

bottom<br />

7 feb 13 <strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering<br />

Piispankatu 8, 20500 Turku<br />

1<br />

<br />

<br />

<br />

<br />

Thus, the <strong>separation</strong> is<br />

accomplished by<br />

degrading Q in at T in<br />

to Q out (= Q in) at T out < T in<br />

Pic: SAKS04<br />

46/82


Analysis <strong>of</strong> ideal column /2<br />

The Clausius Clapeyron expression<br />

for phase transitions<br />

based on the slope <strong>of</strong> the<br />

two-phase co-existence<br />

curve in a p-T diagram,<br />

dp/dT = ∆S/∆V ~ ∆vapH/(T∆V) gives for ideal gases:<br />

<br />

<br />

<br />

p<br />

<br />

<br />

<br />

<br />

vapH<br />

dT p<br />

ln<br />

2 R T p<br />

sat,<br />

2<br />

<br />

<br />

R<br />

dp sat,<br />

1 vap<br />

sat<br />

H 1<br />

<br />

<br />

T<br />

Also, for an ideal mixture the relative<br />

volatility for two similar* components is<br />

* Chemically similar, boiling points not<br />

too far apart, α ~ O(1)<br />

7 feb 13 <strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering<br />

Piispankatu 8, 20500 Turku<br />

7 feb 13 <strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering<br />

Piispankatu 8, 20500 Turku<br />

1<br />

1 <br />

<br />

<br />

<br />

T2<br />

<br />

12 <br />

Analysis <strong>of</strong> ideal column /3<br />

This then gives, for the distillation<br />

temperature range (T top, T bottom):<br />

ln<br />

12<br />

<br />

<br />

R<br />

vap<br />

H <br />

<br />

1 1<br />

<br />

<br />

<br />

Tbottom<br />

T<br />

top<br />

p<br />

p<br />

sat<br />

1<br />

sat<br />

2<br />

Pic: SAKS04<br />

which if α ~ 1 (and using<br />

ln(1+z) ≈ z if z «1) simplifies to: Pic: SAKS04<br />

<br />

12<br />

<br />

1<br />

<br />

R<br />

vap<br />

H <br />

<br />

1 1<br />

<br />

<br />

<br />

Tbottom<br />

T<br />

top<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

47/82<br />

This requires that<br />

- heat Q in is supplied using<br />

an Carnot heat pump<br />

-heat Q out is converted into<br />

work in a Carnot process,<br />

- minimum reflux is used<br />

48/82


Analysis <strong>of</strong> ideal column /4<br />

Assume a propane C3, propene C =<br />

3<br />

distillation with xF = ½, q = 1,<br />

B/F = D/F = ½ (mol/s)/(mol/s)<br />

Note: for this equimolar mix,<br />

∆smix is at its maximum (if ideal)<br />

Then per mole <strong>of</strong> feed, L/F = r· D/F<br />

= ½·r, (r = reflux ratio* = L/D) above the<br />

feed, L/F = (½·r + 1) below the feed, and<br />

V/F = ½·(r + 1) in the whole column.<br />

Then the heat input at the reboiler is equal<br />

to<br />

Qin/F = V/F·∆vapH = ½· (r+1)·∆vapH ≈ Qout/F 7 feb 13 <strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering<br />

Piispankatu 8, 20500 Turku<br />

Analysis <strong>of</strong> ideal column /5<br />

The minimum work required<br />

to separate the mixture can be<br />

found by considering a heat<br />

pump between T out and T in<br />

– see Figure – and exergy<br />

analysis gives (per mole feed):<br />

w<br />

R T<br />

ln2<br />

for an equimolar mixture<br />

This can be used to define the<br />

minimum reflux ratio rmin: W<br />

sep<br />

sep<br />

F<br />

min<br />

in<br />

Q<br />

<br />

F<br />

o<br />

R<br />

T<br />

<br />

x<br />

o<br />

o<br />

R<br />

T<br />

<br />

x<br />

½ <br />

ln x<br />

2ln2<br />

ln<br />

<br />

<br />

1<br />

<br />

<br />

T<br />

r1Hr 1<br />

min<br />

i<br />

i<br />

i<br />

i<br />

ln x<br />

i<br />

vap<br />

i<br />

W<br />

<br />

F<br />

min<br />

min<br />

min<br />

in<br />

Q<br />

<br />

F<br />

T<br />

7 feb 13 <strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering<br />

Piispankatu 8, 20500 Turku<br />

12<br />

o<br />

top<br />

<br />

T<br />

1<br />

bottom<br />

<br />

<br />

<br />

<br />

(α < 4 !)<br />

Pic: SAKS04<br />

* Using ” r ” to<br />

distinguish it<br />

from gas<br />

constant R.<br />

49/82<br />

Pic:<br />

SAKS04<br />

100%<br />

efficient!<br />

(reversible)<br />

50/82


3.7 Real distillation column<br />

analysis I: efficiency<br />

ÅA 424304<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 51/82<br />

Analysis <strong>of</strong> real column /1<br />

What will be the efficiency <strong>of</strong><br />

a real column for this case?<br />

Heat transfer requires<br />

temperature differences!<br />

Qin is supplied at 377K,<br />

Qout goes out at 298K<br />

The minimum heat<br />

input for the <strong>separation</strong> is<br />

Q min in / F = ½·(r min+1)·∆ vapH with<br />

r min = 9.64 (α 12 ≈ 1.14), per mole feed<br />

Deviations from ideal thermodynamics<br />

r real = 15.9 (α 12 ≈ 1.09)<br />

Q real in / F = ½ ·(r real+1) · ∆ vapH<br />

r real/r min = 1.65 Pic: SAKS04<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 52/82


Analysis <strong>of</strong> real column /2<br />

Bottom section ∆T = 46 K, top section ∆T = 22 K<br />

The total thermodyn. eff. <strong>of</strong> the column is calculated as:<br />

which gives η overall = 0.093 = 9.3%<br />

The main sources <strong>of</strong> the<br />

inefficiency are the driving forces<br />

Δ(1/T) in reboiler and condenser<br />

The ratio Q min<br />

in /Qin<br />

real = 0.63 reflects<br />

exergy losses inside the column<br />

Pic: SAKS04<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 53/82<br />

Analysis <strong>of</strong> real column /3<br />

The amount <strong>of</strong> exergy (work) lost in the column + the<br />

exergy used for the <strong>separation</strong> = the difference between the<br />

exergies <strong>of</strong> the reboiler heat and the condenser heat<br />

For the minimum work (exergy) needed it was shown that<br />

so that the work (exergy) lost<br />

in the column is equal to<br />

see Table on next slide<br />

Pic: SAKS04<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 54/82


Analysis <strong>of</strong> real column /4<br />

Efficiency <strong>of</strong> the distillation column: summary<br />

Pic: SAKS04<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 55/82<br />

Analysis <strong>of</strong> real column /5<br />

Efficiency <strong>of</strong> the distillation column: summary<br />

Reboiler<br />

Column<br />

Condenser<br />

Previous table, rated by normalising<br />

with<br />

real<br />

in<br />

7 feb 13 <strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering<br />

Piispankatu 8, 20500 Turku<br />

Q<br />

<br />

<br />

T<br />

1<br />

<br />

T<br />

0<br />

R<br />

<br />

<br />

<br />

<br />

Pic: SAKS04<br />

56/82


Binary distillation<br />

efficiency: overview<br />

Source: OFRGJ03<br />

Maximum efficiency:<br />

where x = mole fraction <strong>of</strong><br />

the more volatile component<br />

Reboiler heat duty:<br />

where r = reflux ratio, D<br />

= distillate product flow<br />

For Q REB ≈ Q COND:<br />

Reboiler duty exergy:<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 57/82<br />

3.8 Real distillation column<br />

analysis II: exergy analysis<br />

ÅA 424304<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 58/82


Exergy analysis /1<br />

An analysis can also be made based on exergy flows:<br />

Note that still no enthalpy<br />

<strong>of</strong> mixing is considered,<br />

and ideal mixing<br />

entropy -R·∑x·lnx.<br />

Flowsheeting<br />

programs (should)<br />

give values for H’s, S’s,<br />

and Q’s, making it easy to<br />

calculate exergy streams<br />

No chemistry physical exergy is sufficient !<br />

Pic: SAKS04<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 59/82<br />

Exergy analysis /2<br />

Exergy balance for the equimolar C 3/C 3 = distillation<br />

* reversible case:<br />

* real case<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 60/82


Exergy analysis /3<br />

Exergy streams for ideal and real case: summary<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 61/82<br />

Exergy analysis /4<br />

The main difference between ideal and real<br />

performances are Ex(Q1) and Ex(Q2); note that Ex(Q2) = 0 in the real case.<br />

The difference between the two cases as given on the<br />

previous two slides is<br />

+<br />

or, normalised per unit input<br />

exergy:<br />

(gives again value 0.907 efficiency 0.093)<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 62/82<br />

= 0<br />

Pic: SAKS04


Exergy analysis /5<br />

The analysis showed that the main losses were at the<br />

reboiler and the condenser, due to heat transfer over<br />

large temperature differences ∆T<br />

Instead <strong>of</strong> trying to<br />

reduce these ∆T’s,<br />

waste heat from<br />

another process unit<br />

may be available<br />

Heat integration,<br />

which at the same<br />

time saves steam<br />

(for example)<br />

Pic: SAKS04<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 63/82<br />

Example: H 2O/EtOH distillation /1<br />

A 5%/95% (w/w) EtOH/H2O mix is to be distilled into a 90% EtOH<br />

top product and pure water bottom product<br />

Feed (18 kg/s) and bottom product (17 kg/s) exchange heat: feed is<br />

heated 20 70°C; bottom product cools 100 48.3°C; the heat<br />

exchanged is 3690 kJ/kg top product (1 kg/s)<br />

The reflux cooling heat qr = 2640 kJ/kg top product; the heat<br />

reboiler qb = 5620 kJ/kg top product<br />

Tempertures q r = 79°C; q b = 104°C<br />

m·c p (top) = 1·2.6 kJ/K, m·∆ vapH (top) = 980<br />

kJ<br />

m·c p (bottom) = 17·4.2 kJ/K<br />

Source: B01, H84<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 64/82


Example: H 2O/EtOH distillation /2<br />

The minimum work needed for making a 90% EtOH mix from a<br />

5% EtOH mix: see the mass balance in moles.<br />

The mole fractions for water are 0.9798 for the feed, 0.2212 for<br />

the distillate and 1.00 for the bottom product; this then gives with<br />

the molar amounts as indicated:<br />

See section 1.6 <strong>of</strong><br />

Exergy analysis<br />

for the minimum work per kg top product.<br />

Source: B01, H84<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 65/82<br />

Example: H 2O/EtOH distillation /3<br />

Assuming surroundings temperature T° = 293K an exergy analysis<br />

can be made (exergy flows per kg top product):<br />

Reflux cooler<br />

Boiling top product<br />

Top product heat-up<br />

Bottom product<br />

Bottom product after heat exchange<br />

Source: B01, H84<br />

.<br />

.<br />

.<br />

980 kJ/kg for<br />

10% H 2O + 90%<br />

EtOH<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 66/82


Example: H 2O/EtOH distillation /4<br />

Assume that the bottom heat q b is delivered by an ideal (Carnot)<br />

heat pump: 5620· (1-293/377) = 1252 kJ/kg top product exergy<br />

(Note the difference 5620 1252!)<br />

This goes to the cold bottom product (7%), top product (14%),<br />

reflux cooler (35%) and <strong>separation</strong> work (4%), total 60%.<br />

Thus, 1252 - 896 = 356 kJ is lost as irreversibilities.<br />

For the heat exchanger, the losses per kg top product are<br />

which means that 70 kJ/kg top product is lost in the column itself;<br />

which is ~ 40% <strong>of</strong> the minimum <strong>separation</strong> work<br />

(186 kJ/kg top product.) Source: B01, H84<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 67/82<br />

3.9 Distillation + heat pump and<br />

other improvements<br />

ÅA 424304<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 68/82


One option: feed stream splitting<br />

Also known as hybrid distillation<br />

A membrane is used to split the feed into two<br />

streams, fed into the column at different locations<br />

Part <strong>of</strong> the <strong>separation</strong> is done (less irreversible) by the<br />

membrane lower reflux ratio and/or less stages<br />

Pics: SAKS04<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 69/82<br />

A few other options<br />

Some GENERAL considerations for improving<br />

distillation column efficiency:<br />

Process control<br />

Feed pre-heat<br />

Reduce pressure<br />

drop by optimising<br />

the trays (or packing)<br />

Separate to lower<br />

purity and combine<br />

Pic, Source: SAKS04<br />

with another <strong>separation</strong> process<br />

Use intermediate reboilers and condensers, bringing<br />

operating lines closer to the equilibrium line<br />

(but this may require more stages or trays)<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 70/82


Double columns<br />

Pic, Source: SAKS0<br />

Paraffin /olefin <strong>separation</strong>s are very energy intensive.<br />

One example is propane / propylene, or C3 (atm. b.p. - 42.1°C)<br />

/ C =<br />

3 (atm. b.p. - 47.7°C). For a single-column tray column<br />

distillation process<br />

150-200 trays would be<br />

needed, giving a very<br />

high (> 100 m)<br />

column, with reflux<br />

condensing using air or water<br />

A double-column process<br />

is preferred, with smaller (shorter)<br />

columns, using hot and cold<br />

water for condensing (column 2) and reboiling (column 1).<br />

Note that reboiler for column 2 = condenser for column 1.<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 71/82<br />

Distillation column + heat pump /1<br />

Improved efficiency can be obtained by using a heat<br />

pump: the condenser is removed and the reflux is<br />

obtained after heat exchange in the reboiler and with<br />

the feed, and throttling<br />

Drawback: complexity costs...<br />

Source: B01, H84<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 72/82


Distillation column + heat pump /2<br />

Returning to the EtOH/water distillation (see the end <strong>of</strong> the<br />

previous section): the top product is compressed so that its<br />

temperature rises from 79 to 104°C (which implies p2 = 2 bar)<br />

It can then give <strong>of</strong>f heat to the water in the bottom <strong>of</strong> the column<br />

at 100°C. See points 1,2,3,4 in the h,ξ diagram below.<br />

The h, ξ diagram gives masses δ:φ:1 = (*-4):(*-1):(1-4) = 3.7:2.7:1<br />

a.k.a.<br />

Mechanical<br />

Vapour<br />

Recompression<br />

(MVR)<br />

Source: B01, H84<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 73/82<br />

*<br />

pole<br />

point<br />

Distillation column + heat pump /3<br />

For the compressor work wc = δ·(h2-h1), and for the bottom heat<br />

exchanger ∆qb = δ·(h3-h2) which is then found to be 3580 kJ per<br />

kg top product. This is 64% <strong>of</strong> the conventional process value as<br />

in the previous section.<br />

Note compressor losses; and that stream 3 may be used to<br />

preheat the top product before the compressor.<br />

Source: B01, H84<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 74/82<br />

*<br />

pole<br />

point


Two-feed distillation<br />

Two-feed, or two-enthalpy feed can<br />

Allow for lowering the number <strong>of</strong> stages, N (same L/D, x D, x B)<br />

Improve the <strong>separation</strong>, better XD, XB (same L/D, N)<br />

Allow for lowering reflux ratio r = L/D (same N, xD, xB) 50% energy savings possible, but modifications are needed<br />

Source: D04, WP93<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 75/82<br />

Adiabatic versus diabatic distillation<br />

In conventional distillation, heat is only<br />

added/removed at reboiler/condensor;<br />

no heat is added/removed on the trays:<br />

adiabatic operation<br />

In diabatic operation, heat can<br />

be added/removed by heat<br />

exchange, in principle on each tray<br />

Heat is removed from each tray above<br />

feed, added to each tray below feed.<br />

Reboiler much smaller or not needed.<br />

More complicated (‹-› process control),<br />

but more efficient: lower entropy<br />

production (decreases with increasing<br />

heat exchange area)<br />

Source: KBJG10, J10<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 76/82


HIDiC Heat integrated distillation column<br />

Rectification (”top”) section is operated at a higher<br />

pressure (= pressure <strong>of</strong> conventional column) than the<br />

stripping (”bottom”) section<br />

Heat is transferred from rectification to stripping section<br />

Comparison for C 3 / C 3 = splitter<br />

Source:<br />

J10, OFRGJ03<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 77/82<br />

Final remarks<br />

Distillation accounts for ~3% <strong>of</strong> world energy consumption<br />

Heat integration can give significant energy efficiency<br />

improvements (but increased costs, more process control)<br />

Fully diabatic operation <strong>of</strong> a distillation column won’t be<br />

practically, not all temperature levels will be available<br />

Most important are the heat exchanger at the lowest<br />

and highest trays, these can be integrated using for<br />

example a heat pump.<br />

Maybe integration with other columns is possible<br />

Further improvement can be obtained by<br />

varying column cross sectional area:<br />

in a diabatic column rectifier section the<br />

vapour flow decreases upwards, in the<br />

stripper section it is the opposite<br />

Source: KBJG10, J10<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 78/82


Sources<br />

B01: Bart, G.C.J. Advanced thermodynamics (in Dutch) course compendium Delft Univ. <strong>of</strong><br />

Technol., Delft (2001)<br />

B97: Bejan, A. Advanced engineering thermodynamics John Wiley & Sons (1997) Chapter 3<br />

CRBH83 J.M. Coulson, J.F. Richardson , J.R. Blackhurst, J.H. Harker ”Chemical engineering”,<br />

vol. 2, 3rd ed. Pergamon Press (1983) Chapter 11<br />

D04: Demirel, D. ”Thermodynamic analysis <strong>of</strong> <strong>separation</strong> systems” Separation Sci. &<br />

Technol. 39 (16) 3897-3942 (2004)<br />

H84: Hoogendoorn, C.J. Advanced thermodynamics (in Dutch) course compendium Delft<br />

Univ. <strong>of</strong> Technol., Delft (1984)<br />

HS92: Humphrey, J.L, Siebert, A.F. ”Separation technologies: an opportunity for energy<br />

savings” Chem Eng Prog 88 (March 1992) 32-41 (1992)<br />

J10: Jana, A.K., ”Heat integrated distillation operation” Appl. Energy 87, 1477-1494 (2010)<br />

K71 King, C.J. ”Separation <strong>processes</strong>” McGraw-Hill (1971)<br />

KBJG10: Kjelstrup, S., Bedeaux, D., Johanessen, E., Gross, J. ”Non-equilibrium<br />

thermodynamics for engineers”, World Scientific (2010)<br />

OFRGJ03: Olujic, Z, Fakhri, F., de Graauw, J., Jansens, P.J. ”Internal heat integration – the<br />

key to an energy conserving distillation column” J. Chem Technol Biotechnol 78, 241-248<br />

(2004)<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 79/82<br />

Sources cont’d<br />

SAKS04: de Swaan Arons, J., van der Kooi, H., Sankaranarayanan, K. ”Efficiency and<br />

sustainability in the efficiency and chemical industries.” Marcel Dekker, New York (NY)<br />

2004<br />

SH06 J.D. Seader, E.J Henley ”Separation process principles” John Wiley, 2nd edition (2006)<br />

chapter 17<br />

TK87: Tondeur, D., Kvaalen, E. ”Equipartition <strong>of</strong> entropy production. An optimality<br />

criterion for transfer and <strong>separation</strong> <strong>processes</strong>” Ind. Eng. Chem. Res. 87 (26) 50-56 (1987)<br />

T68 R.E. Treybal ”Mass transfer operations” McGraw-Hill 2nd edition (1968)<br />

WK92 J.A. Wesselingh, H.H. Kleizen ”Separation <strong>processes</strong>” (in Dutch: Scheidingsprocessen)<br />

Delft University Press (1992)<br />

WP93: Wankat, P.C., Kessler, D.P. ”Two-feed distillation: same composition feeds with<br />

different enthalpies” Ind. Eng. Chem. Res. 32, 3061-3067 (1993)<br />

Z87 F. Zuiderweg ”Physical <strong>separation</strong> methods” (in Dutch: Fysische Scheidingsmethoden) TU<br />

Delft (1987) (vol. 1)<br />

Z12: Zevenhoven, R. ”Massöverföring & <strong>separation</strong>steknik” / ”Mass transfer & <strong>separation</strong><br />

technology” course material 424302 (in English !) <strong>Åbo</strong> <strong>Akademi</strong> Univ. (2012) Chapter 12<br />

ÖS97 G. Öhman, H. Saxén ”Transportprocesser” (in Swedish) <strong>Åbo</strong> <strong>Akademi</strong> Värmeteknik<br />

(1997) 3rd ed., Chapter 3<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7 feb 13 80/82


100 PSIA =<br />

6.8 atm<br />

1 BTU/lb<br />

mole =<br />

2.326 J/mol<br />

HL, HG kJ/mol<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Appendix:<br />

h,ξ & x,y<br />

diagram<br />

NH 3 –H 2O<br />

6.8 atm<br />

ÅA 424304<br />

Source:<br />

http://www.chbmeng.ohio-state.edu/~koelling/523/Appendix_d17.pdf<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7.2.2013 81<br />

Appendix: h,ξ diagram n-C 6 / n-C 8<br />

n-C 6 - n-C 8 101.3 kPa<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

x,y, -<br />

1<br />

HL, HG kJ/mol<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

n-C 6 - n-C 8 101.3 kPa<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

x,y, -<br />

ÅA 424304<br />

T °C x - HL kJ/mol y - HG kJ/mol<br />

68.7 1 12.98 1 41.87<br />

69.35 0.9772 13.22 0.9963 42.03<br />

70 0.9546 13.45 0.9923 42.18<br />

75 0.8017 15.19 0.9609 43.39<br />

80 0.6684 16.94 0.9237 44.7<br />

85 0.5566 18.65 0.8788 46.14<br />

90 0.4566 20.36 0.8235 47.74<br />

95 0.3705 22.05 0.7572 49.53<br />

100 0.2917 23.75 0.6756 51.57<br />

105 0.2221 25.44 0.5842 53.8<br />

110 0.1591 27.13 0.4754 56.33<br />

115 0.1035 28.8 0.3525 59.14<br />

120 0.0538 30.46 0.2088 62.33<br />

122.9 0.0262 31.43 0.1096 64.46<br />

125.8 0 32.39 0 66.78<br />

<strong>Åbo</strong> <strong>Akademi</strong> Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 7.2.2013 82

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!