05.06.2013 Views

Full text in PDF - Geological Society of India

Full text in PDF - Geological Society of India

Full text in PDF - Geological Society of India

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL GEOLOGICAL SOCIETY OF INDIA<br />

Vol.76, August 2010, pp.155-163<br />

Petrography and Geochemistry <strong>of</strong> St. Mary Islands, near<br />

Malpe, Daksh<strong>in</strong>a Kannada District, Karnataka<br />

S. K. BHUSHAN 1 , K. N. RAO 2 and K. T. VIDYADHARAN 3<br />

1 MSPL Limited, Baldota Enclave, Abheraj Baldota Road, Hospet – 583 203<br />

2 F-2, Sree Essen Residency, 186/3 RT Vijay Nagar Colony, Hyderabad<br />

3 310/Block-B, Maharaja Residency, Mangalore<br />

Email: shibbanb@yahoo.co.<strong>in</strong><br />

Abstract: The present paper documents the petrography, m<strong>in</strong>eral chemistry and petrochemistry <strong>of</strong> the acid volcanics <strong>of</strong><br />

St.Mary group <strong>of</strong> islands. These are essentially characterized by pyroxene bear<strong>in</strong>g rhyolites with average 73.49 wt.%<br />

SiO 2 . All the rhyolites from these islands are acmite normative, hence peralkal<strong>in</strong>e with phenocrysts <strong>of</strong> zoned plagioclase<br />

and sometimes hypersthene/augite. There is depletion <strong>of</strong> LREE with moderate negative Eu anomaly. The enhancement<br />

<strong>of</strong> HFSE elements <strong>in</strong>dicates their compatibility with cont<strong>in</strong>ental crust. These rhyolites have high equilibrium temperature<br />

(915°C) at relatively lower oxygen fugacity (10 -16 ). The acidic lava flows are anorogenic, with<strong>in</strong> plate rhyolites, generated<br />

dur<strong>in</strong>g northern migration <strong>of</strong> <strong>India</strong>n plate over Marion hotspot.<br />

Keywords: Acid volcanics, Petrography, Geochemistry, St. Mary Islands, Karnataka.<br />

INTRODUCTION<br />

The western <strong>India</strong>n cont<strong>in</strong>ental marg<strong>in</strong> is passive rift<br />

related, with its southern half comprised <strong>of</strong> Archaean<br />

and Proterozoic crystall<strong>in</strong>e rocks and the northern<br />

borders covered by the ~65 Ma Deccan flood basalt<br />

prov<strong>in</strong>ce. The shallow <strong>in</strong>ner shelf areas between Kaup<br />

and Hangarkatta <strong>in</strong> Karnataka are dotted with a number <strong>of</strong><br />

small islands and islets. The prom<strong>in</strong>ent among them are the<br />

St. Mary islands (SMI) a group <strong>of</strong> four islands: Coconut<br />

island, Northern island, Darya Bahadurgarh island and<br />

South island, <strong>of</strong>f the fish<strong>in</strong>g hamlet <strong>of</strong> Malpe on the<br />

west coast (Fig.1).The islands consist entirely <strong>of</strong> flatly<strong>in</strong>g,<br />

undeformed high silica rhyolites. The geochronological<br />

studies (Pande et al. 2001; Torsvik et al. 2000)<br />

l<strong>in</strong>k the SMI to Madagascar flood basalt prov<strong>in</strong>ce (88.1±<br />

1.2 Ma) and hence, could represent volcanic activity<br />

associated with the break-up <strong>of</strong> Greater <strong>India</strong> (<strong>India</strong> and<br />

Seychelles) and Madagascar.<br />

Based on petrographic studies, the acid volcanics<br />

identified <strong>in</strong> SMI are variously described as rhyodacite,<br />

dacite rhyolite and granophyre (Naganna, 1964, 1966;<br />

Balasubrahmanyam, 1975; Valsangkar et al. 1981; Subbarao<br />

et al. 1993). The present study <strong>in</strong>dicates that these are<br />

pyroxene rhyolites with spectacular development <strong>of</strong><br />

columnar jo<strong>in</strong>ts (Fig.2) as noticed <strong>in</strong> the Coconut<br />

island.<br />

0016-7622/2010-76-2-155/$ 1.00 © GEOL. SOC. INDIA<br />

GEOLOGY<br />

The acid volcanic rocks exposed <strong>in</strong> SMI are mostly f<strong>in</strong>e<br />

gra<strong>in</strong>ed, and on the surface appear <strong>in</strong> different shades <strong>of</strong><br />

light p<strong>in</strong>kish red/brown, while on the fresh broken surface,<br />

they vary <strong>in</strong> colour from light to dark grey. Randomly<br />

distributed dirty white to greyish microphenocrysts <strong>of</strong><br />

feldspar and ferromagnesian m<strong>in</strong>erals can be noticed by<br />

hand lens, <strong>in</strong> an essentially aphanetic groundmass. Brown<br />

to black, irregular to oval shaped xenoliths <strong>of</strong> varied<br />

sizes rang<strong>in</strong>g from millimeter to centimeter scale are<br />

<strong>of</strong>ten seen irregularly distributed and are more abundant <strong>in</strong><br />

ST. MARY ISLES<br />

(Arabian sea)<br />

Fig.1. Location map <strong>of</strong> St. Mary islands.


156 S. K. BHUSHAN AND OTHERS<br />

Fig.2. Columnar jo<strong>in</strong>ts <strong>in</strong> rhyolites <strong>of</strong> Coconut island.<br />

the rhyolites <strong>of</strong> Northern island and Darya Bahadurgarh<br />

island.<br />

PETROGRAPHY AND MINERAL CHEMISTRY<br />

In th<strong>in</strong> section, almost all the rocks exposed <strong>in</strong> SMI<br />

exhibit microporphyritic <strong>text</strong>ure with phenocrysts <strong>of</strong><br />

plagioclase, augite and hypersthene set <strong>in</strong> f<strong>in</strong>e to very<br />

f<strong>in</strong>e groundmass consist<strong>in</strong>g <strong>of</strong> plagioclase, opaques,<br />

m<strong>in</strong>or chloritised biotite and cryptocrystall<strong>in</strong>e, <strong>of</strong>ten turbid<br />

look<strong>in</strong>g felsic material conta<strong>in</strong><strong>in</strong>g quartz, K-feldspar and<br />

plagioclase.<br />

All the phenocrysts, <strong>in</strong> particular pyroxenes, frequently<br />

exhibit m<strong>in</strong>or alteration to secondary m<strong>in</strong>erals along gra<strong>in</strong><br />

boundaries and cleavage planes. Augite and hypersthene,<br />

the common ferromagnesian microphenocrysts are euhedral<br />

to subhedral <strong>in</strong> nature, the later (reported for the first time),<br />

exhibit<strong>in</strong>g p<strong>in</strong>k pleochroism and basal section <strong>of</strong> hypersthene<br />

show symmetrical ext<strong>in</strong>ction with respect to the two cleavage<br />

directions (Fig.3).<br />

Plagioclases commonly exhibit tw<strong>in</strong>n<strong>in</strong>g on Albite law<br />

but some gra<strong>in</strong>s exhibit tw<strong>in</strong>n<strong>in</strong>g and comb<strong>in</strong>ed Albite-<br />

Fig.3. Photomicrograph <strong>of</strong> rhyolite <strong>of</strong> Northern islands exhibit<strong>in</strong>g<br />

glomeroporphyritic <strong>text</strong>ure. The phenocrysts are<br />

hypersthene (SW and northern part), augite (middle and<br />

south) and plagioclase (east and west <strong>of</strong> centre) (Xed.<br />

Nicols).<br />

Carlsbad and Albite-Pericl<strong>in</strong>e laws. Plagioclase phenocrysts<br />

<strong>of</strong>ten exhibit conspicuous concentric zon<strong>in</strong>g.<br />

Petrographic studies <strong>of</strong> the samples collected from all<br />

the islands <strong>in</strong>dicate that the groundmass is made up <strong>of</strong> f<strong>in</strong>e<br />

to very f<strong>in</strong>e quartz, plagioclase and also K-feldspar and<br />

appear pale brownish <strong>in</strong> colour. Under higher magnification,<br />

f<strong>in</strong>e gra<strong>in</strong>ed graphic <strong>in</strong>tergrowth between quartz and<br />

feldspars can be seen <strong>in</strong> most <strong>of</strong> the specimens. EPMA data<br />

<strong>of</strong> plagioclases, pyroxenes and ground mass <strong>of</strong> rhyolites from<br />

Coconut island, North island and Darya Bahadurgarh island<br />

are presented <strong>in</strong> Table 3 and 4.<br />

The m<strong>in</strong>eral chemistry (Table 4) <strong>in</strong>dicates that the<br />

plagioclase phenocrysts are essentially <strong>of</strong> andes<strong>in</strong>e<br />

composition.<br />

The groundmass (Na 2 O 8.08%) and micro phenocrysts<br />

(Na 2 O 7.72%) are more sodic than the core portion <strong>of</strong><br />

phenocryst plagioclase as is to be expected <strong>in</strong> normal course<br />

<strong>of</strong> crystal fractionation.<br />

In the diopsite-hedenbergite-enstatite-ferrosilitequadrilateral<br />

(Fig.4), the ortho and cl<strong>in</strong>opyroxenes<br />

(Table 4) plot dist<strong>in</strong>ctly <strong>in</strong> the enstatite and augite fields<br />

respectively. Their temperature <strong>of</strong> crystallization is around<br />

1000°C as shown <strong>in</strong> Fig.5.<br />

GEOCHEMISTRY<br />

The major element analysis (Table 1) has been carried<br />

out by XRF us<strong>in</strong>g fusion beads at PPOD laboratory, GSI,<br />

AMSE, Bangalore, whereas trace and REE data (Table 2),<br />

has been generated by ICPMS at Chemical Lab, GSI,<br />

Hyderabad. The precision and accuracy <strong>of</strong> the analysis is<br />

with<strong>in</strong> the standard permissible limits as detailed by Reimold<br />

Wo<br />

Diopside Hedenbergite<br />

Augite<br />

Pigeonite<br />

Enstatite Ferrosillite<br />

En Fs<br />

Fig.4. Plots <strong>of</strong> ortho and cl<strong>in</strong>opyroxenes from rhyolites <strong>in</strong> the<br />

pyroxene quadrilateral diagram.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,AUG.2010


PETROGRAPHY AND GEOCHEMISTRY OF ST. MARY ISLANDS, NEAR MALPE, KARNATAKA 157<br />

JOUR.GEOL.SOC.INDIA, VOL.76,AUG.2010<br />

Table 1. Chemical composition (major oxides Wt.%) and CIPW norms <strong>of</strong> rhyolites<br />

Oxide STM-1 STM-2 STM-3 STM-4 STM-5 STM-6 STM-7 STM-8 Mean (8) SD<br />

SiO 2 73.5 73.56 73.11 73.72 73.74 75.73 73.98 70.57 73.49 1.33<br />

TiO 2 0.81 0.81 0.81 0.78 0.79 0.34 0.76 1.21 0.79 0.22<br />

Al 2 O 3 10.74 10.72 10.74 10.7 10.78 10.54 10.71 10.35 10.66 0.13<br />

Fe 2 O 3 3.21 3.37 3.38 3.05 3.05 1.94 2.88 4.46 3.17 0.65<br />

MnO 0.13 0.14 0.16 0.12 0.13 0.04 0.11 0.11 0.12 0.03<br />

MgO 1.06 0.85 0.98 0.92 0.97 0.81 0.87 1.55 1 0.22<br />

CaO 1.43 1.58 1.38 1.51 1.5 0.63 1.37 1.81 1.4 0.32<br />

Na 2 O 5.84 5.91 6.08 6.04 6.05 5.56 5.98 6.11 5.95 0.17<br />

K 2 O 2.43 2.43 2.44 2.45 2.43 3.66 2.54 2.12 2.56 0.43<br />

P 2 O 5 0.16 0.17 0.17 0.15 0.15 0.09 0.14 0.25 0.16 0.04<br />

S 0.11 0.12 0.16 0.18 0.06 0.1 0.17 0.34 0.16 0.08<br />

BaO 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0<br />

LOI 0.54 0.29 0.55 0.34 0.32 0.52 0.46 1.09 0.51 0.24<br />

Total 99.99 99.98 99.99 99.99 100 99.99 99.98 99.99 99.99 0.01<br />

CIPW NORM (wt%)<br />

q 29.11 29.21 28.56 29.46 29.14 33.15 29.92 25.69 29.28 1.9<br />

or 14.43 14.43 14.49 14.55 14.43 21.7 15.08 12.58 15.21 2.55<br />

ab 41.61 41.51 41.56 41.29 41.82 33.73 40.84 41.37 40.47 2.56<br />

di 4.74 5.34 4.54 4.79 5.04 1.11 3.97 5.78 4.41 1.35<br />

hy 0.59 0.01 0.69 0.07 0.13 1.5 0.33 1.54 0.61 0.57<br />

ac 6.68 6.68 6.68 6.6 6.63 5.32 6.54 7.84 6.62 0.63<br />

il 1.54 1.54 1.54 1.29 1.5 0.04 1.02 2.3 1.35 0.6<br />

ap 0.37 0.39 0.39 0.35 0.35 0.21 0.32 0.58 0.37 0.1<br />

tn 0.25 0.78 0.55 0.53 0.22<br />

pr 0.21 0.22 0.3 0.34 0.11 0.19 0.32 0.64 0.29 0.15<br />

NaS 0.05 0.21 0.54 0.43 1.69 0.54 0.33 0.54 0.5<br />

Sample locations: STM-1 to STM-4 from Coconut Islands; STM-5, 6 from Northern Island and STM-7, 8 from<br />

Darya Bahadur Garh Island. (6) = number <strong>of</strong> samples, SD = Standard Deviation LOI = loss <strong>of</strong> ignition<br />

Table 2. REE and trace element data (<strong>in</strong> ppm) <strong>of</strong> rhyolites<br />

STM-1 STM-2 STM-3 STM-4 STM-5 STM-6 STM-7 STM-8 Mean (8) SD<br />

La 70.19 20.29 71.23 69.75 68.98 40.08 66.9 64.16 59 17.45<br />

Ce 154.6 156.52 158.96 154.64 152.99 82.26 148.79 140.69 144 23.8<br />

Pr 21.24 21.26 21.43 20.9 20.39 9.23 20.28 18.23 19 3.86<br />

Nd 90.59 89.62 90.19 89.32 87.02 33.3 85.58 76.84 80 18.25<br />

Eu 6.24 5.99 5.99 5.9 5.81 1.21 5.74 4.6 5 1.57<br />

Sm 20.17 20.17 20.4 20.55 19.95 6.63 19.71 17.41 18 4.44<br />

Tb 2.91 2.86 2.89 2.85 2.8 0.9 2.81 2.43 3 0.64<br />

Gd 18.74 18.36 18.71 18.23 17.95 5.72 17.72 15.55 16 4.14<br />

Dy 15.21 14.77 15.28 15.3 14.82 4.84 14.79 13.03 14 3.35<br />

Ho 2.94 2.89 2.98 2.94 2.84 0.98 2.9 2.5 3 0.64<br />

Er 7.25 7.01 7.14 7.05 6.92 2.48 7.05 5.99 6 1.51<br />

Tm 1.11 1.09 1.11 1.1 1.08 0.4 1.09 0.94 1 0.23<br />

Yb 6.21 6.26 6.35 6.36 6.18 2.38 6.33 5.43 6 1.28<br />

Lu 0.91 0.89 0.91 0.92 0.87 0.36 0.92 0.77 1 0.18<br />

Be 3.8 4.16 4.5 4.24 4.11 2.76 4.26 3.33 4 0.54<br />

Co 33.16 58.75 49.67 56.79 88.96 31.92 52.72 34.57 51 17.65<br />

Ga 26 25.92 26.6 26.19 26.35 18.31 26.46 23.23 25 2.68<br />

Ge 2.09 1.99 2.05 2.08 2.06 1.1 2.12 1.72 2 0.33<br />

Y 69.97 66.92 69.27 68.67 67.91 25.15 68.97 58.43 62 14.31<br />

Zr 1292 1239 1252 1243 1207 258 1242 564 1037 370.1<br />

Nb 48.72 53.57 50.62 49.59 49.24 18.05 47.36 37.99 44 10.82<br />

Cs 0.53 0.62 0.57 0.71 0.69 0.88 0.95 0.72 1 0.14<br />

Hf 19.65 19.49 19.29 19.49 18.75 6.56 19.54 15.04 17 4.28<br />

Ta 3.49 5.36 3.86 3.83 3.63 1.6 3.9 2.9 4 0.99<br />

Bi 0.15 0.12 0.14 0.14 0.13 0.12 0.15 0.12 0 0.01<br />

Th 8.17 8.05 8.26 8.48 8.18 13.66 8.44 8.5 9 1.78<br />

U 1.6 1.64 1.77 1.72 1.67 2.27 1.77 1.64 2 0.2<br />

LREE 342.86 293.68 347.8 340.51 335.19 166.08 327.29 304.52<br />

HREE 75.45 74.3 75.77 75.3 73.41 24.69 73.32 64.05<br />

LR/HR 4.544 3.952 4.59 4.522 4.565 6.726 4.463 4.754<br />

La/Lu 77.13 22.79 78.27 75.81 79.28 111.33 72.71 83.32<br />

Eu/Eu* 0.98 1.04 1.06 1.07 1.12 1.65 1.05 1.16


158 S. K. BHUSHAN AND OTHERS<br />

Table 3. Chemical composition <strong>of</strong> plagioclases (phenocryst and groundmass) <strong>of</strong> rhyolites<br />

Sample No. STM-1 STM-2 STM-3 STM-4 STM-7<br />

Description Phenocrysts Small Phenocrysts Small Ground mass Phenocrysts Phenocrysts Small Ground mass Ground mass<br />

phenocryst phenocrysts plagioclases phenocrysts plagioclases plagioclases<br />

Oxides mean SD S<strong>in</strong>gle mean SD mean SD Mean SD mean SD mean SD mean SD mean SD mean SD<br />

(7) po<strong>in</strong>t (7) (4) (6) (9) (15) (6) (6) (5)<br />

SiO 2 58.72 0.7 59.67 58.23 0.4 58.5 1.9 59.04 3 58.49 1.1 59.45 1.1 60.01 1.6 60.71 0.9 56.22 0.5<br />

TiO 2 0.06 0 0.05 0.07 0 0.08 0 0.1 0 0.05 0 0.05 0 0.05 0 0.05 0 0.09 0<br />

Al 2 O 3 25.53 0.9 24.1 24.78 0.9 24.62 1.3 24.18 1.4 24.81 0.6 24.53 0.5 24.29 0.3 23.22 0.7 25.99 0.5<br />

Cr 2 O 3 0.02 0 0.05 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0 0 0.01 0 0.01 0<br />

FeO T 0.61 0.1 0.84 0.62 0.1 0.3 0.4 0.68 0.1 0.62 0.1 0.25 0.3 0.1 0.2 0.29 0.3 0.89 0.1<br />

MnO 0.01 0 0 0.02 0 0.02 0 0.01 0 0.03 0 0 0 0.01 0 0.01 0 0.02 0<br />

MgO 0.03 0 0.02 0.05 0 0.03 0 0.03 0 0.03 0 0.04 0 0.03 0 0.02 0 0.04 0<br />

CaO 7.8 0.7 6.41 7.68 0.4 7.23 1.5 6.72 1.8 7.4 0.8 6.87 0.7 6.58 0.5 5.39 0.8 8.73 0.5<br />

Na 2 O 7.3 0.5 7.79 7.47 0.3 7.52 0.9 7.68 1 7.56 0.5 7.7 0.3 7.21 1.4 8.32 0.3 6.61 0.3<br />

K 2 O 0.5 0.1 0.71 0.47 0.1 0.52 0.2 0.55 0.2 0.46 0.1 0.56 0.1 0.68 0.2 0.91 0.5 0.42 0<br />

NiO 0 0 0 0.01 0 0 0 0.01 0 0.01 0 0 0 0.01 0 0 0 0 0<br />

Total 100.59 0.6 99.64 99.39 0.8 98.81 0.5 98.97 1 99.47 0.4 99.46 1 98.97 0.8 98.94 0.4 99.01 1.1<br />

Cations 8(O) 8(O) 8(O) 8(O) 8(O) 8(O) 8(O) 8(O) 8(O) 8(O)<br />

Si 2.6215 0 2.6828 2.6329 0 2.653 0.1 2.67 0.1 2.64 0 2.6736 0 2.7015 0.1 2.7386 0 2.5607 0<br />

Ti 0.0022 0 0.0017 0.0023 0 0.003 0 0.0033 0 0.002 0 0.0016 0 0.0017 0 0.0018 0 0.0032 0<br />

Al 1.3435 0 1.2771 1.3204 0 1.316 0.1 1.2914 0.1 1.32 0 1.3005 0 1.2893 0 1.2343 0 1.3951 0<br />

Cr 0.0006 0 0.0018 0.0005 0 2E-04 0 0.0004 0 3E-04 0 0.0003 0 0 0 0.0003 0 0.0003 0<br />

Fe +3<br />

0.0205 0 0.0284 0.021 0 0.01 0 0.0187 0 0.021 0 0.0083 0 0.0032 0 0.0098 0 0.0305 0<br />

Fe +2<br />

0 0 0 0 0 0 0 0.005 0 0 0 0 0 0 0 0 0 0 0<br />

Mn 0.0004 0 0 0.0008 0 8E-04 0 0.0005 0 0.001 0 0.0001 0 0.0005 0 0.0004 0 0.0008 0<br />

Mg 0.0021 0 0.0013 0.0031 0 0.002 0 0.002 0 0.002 0 0.0024 0 0.0019 0 0.0015 0 0.0024 0<br />

Ca 0.3732 0 0.3088 0.372 0 0.351 0.1 0.3273 0.1 0.358 0 0.3313 0 0.3177 0 0.2603 0 0.4261 0<br />

Na 0.632 0 0.6791 0.6548 0 0.661 0.1 0.6735 0.1 0.661 0 0.6719 0 0.6304 0.1 0.7277 0 0.5835 0<br />

K 0.0283 0 0.0407 0.0269 0 0.03 0 0.0317 0 0.027 0 0.0322 0 0.0389 0 0.0526 0 0.0245 0<br />

Ni 0 0 0 0.0002 0 0 0 0.0003 0 3E-04 0 0.0001 0 0.0004 0 0.0001 0 0.0002 0<br />

Table 4. Chemical composition <strong>of</strong> pyroxenes <strong>of</strong> rhyolites<br />

Sample No. STM-1 STM-2 STM-3 STM-4<br />

Augite Augite Augite Augite Hypersthene<br />

Oxides Mean SD Mean SD Mean SD Mean SD Mean SD<br />

wt%. (4) (19) (8) (3) (7)<br />

SiO 2 51.28 0.13 51.01 0.4 51.36 0.41 50.67 0.54 52.06 0.54<br />

TiO 2 0.58 0.12 0.59 0.07 0.58 0.04 0.57 0.16 0.29 0.03<br />

Al 2 O 3 1.23 0.2 1.25 0.22 1.26 0.14 1.38 0.24 0.53 0.04<br />

Cr 2 O 3 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0 0.01<br />

FeO T 10.12 0.23 10.38 0.46 10.44 0.37 10.33 0.4 19.78 0.45<br />

MnO 1.3 0.14 1.24 0.21 1.18 0.2 1.33 0.08 2.66 0.08<br />

MgO 14.72 0.22 14.75 0.36 14.9 0.28 15.16 0.12 22.46 0.48<br />

CaO 19.33 0.22 19.49 0.47 19.73 0.41 20.06 0.16 1.59 0.1<br />

Na 2 O 0.46 0.03 0.49 0.12 0.43 0.05 0.46 0.03 0.05 0.01<br />

K 2 O 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0 0.01<br />

NiO 0.01 0.01 0 0.01 0 0 0 0 0 0<br />

Total 99.04 0.3 99.23 0.68 99.91 0.38 100 1.03 99.44 1<br />

Cations 6(O) 6(O) 6(O) 6(O) 6(O)<br />

Si 1.93 0 1.9159 0.01 1.9158 0.01 1.8851 0.01 196 0.01<br />

Ti 0.016 0 0.0166 0 0.0164 0 0.016 0 0.0083 0<br />

Al 0.055 0.01 0.0553 0.01 0.0556 0.01 0.0606 0.01 0.0232 0<br />

Cr 2E-04 0 0.0003 0 0.0007 0 0.0008 0 0.0001 0<br />

Fe +3 0.087 0.02 0.1154 0.02 0.1112 0.02 0.1703 0.03 0.072 0.03<br />

Fe +2 0.232 0.03 0.2106 0.03 0.2145 0.03 0.1511 0.03 0.5465 0.03<br />

Mn 0.042 0 0.0396 0.01 0.0373 0.01 0.0418 0 0.0844 0<br />

Mg 0.826 0.01 0.8259 0.02 0.8283 0.01 0.8409 0.01 1.2516 0.02<br />

Ca 0.779 0.01 0.7842 0.02 0.7885 0.01 0.7998 0.01 0.0636 0<br />

Na 0.034 0 0.0356 0.01 0.0314 0 0.0333 0 0.0039 0<br />

K 4E-04 0 0.0005 0 0.0005 0 0.0005 0 0.0002 0<br />

Ni 2E-04 0 0.0001 0 0 0 0 0 0 0<br />

JOUR.GEOL.SOC.INDIA, VOL.76,AUG.2010


1200C<br />

PETROGRAPHY AND GEOCHEMISTRY OF ST. MARY ISLANDS, NEAR MALPE, KARNATAKA 159<br />

Wo<br />

1000c<br />

En Fs<br />

Fig.5. Enstatite-ferrosilite-hedenbergite-diopside show<strong>in</strong>g position<br />

<strong>of</strong> pyroxenes.<br />

et al. (1994). The XRF and ICPMS analyses <strong>of</strong> the samples<br />

<strong>of</strong> all the four islands clearly <strong>in</strong>dicate them to be rhyolites<br />

with SiO 2 between 70.57 to 75.73 wt%. Peccerillo and Taylor<br />

(1976) def<strong>in</strong>ed rhyolites hav<strong>in</strong>g >70% SiO 2 , whereas Ewart<br />

(1979) classified rhyolite with >69% SiO 2 . Bhushan (2000)<br />

also considered rhyolites <strong>of</strong> Malani Igneous Suite with >69%<br />

SiO 2. Therefore based on silica abundances, all the felsic<br />

volcanics <strong>of</strong> four SMI can be termed as rhyolites with<br />

average SiO 2 <strong>of</strong> 73.49% (Table 1). Except the rhyolites from<br />

Northern island (STM-6) and Darya Bahadurgarh (STM-<br />

8), all the rema<strong>in</strong><strong>in</strong>g six samples have nearly uniform<br />

chemical composition. With the modest <strong>in</strong>crease <strong>in</strong> silica<br />

(STM-6), there is decrease <strong>in</strong> TiO 2 , Fe 2 O 3 , MnO, MgO, CaO<br />

and even Na 2 O with visible enhancement <strong>of</strong> K 2 O. STM-8,<br />

which has lowest SiO 2 when compared to other samples,<br />

reflects <strong>in</strong>crease <strong>of</strong> TiO 2 , Fe 2 O 3 , MgO, CaO and also Na 2 O.<br />

STM-6 has the highest and STM-8, the lowest SiO 2<br />

percentage. STM-6 has also least LREE, Be, Co, Ga, Ge, Y,<br />

Zr, Hf, Th and U concentration. STM-8 has highest<br />

abundance <strong>of</strong> TiO 2 , Fe 2 O 3 , MgO, CaO, Na 2 O, P 2 O 5 and<br />

lowest K 2 O percentage, when compared to STM-6.<br />

The CIPW normative values have been calculated by<br />

us<strong>in</strong>g Igpet s<strong>of</strong>tware (Table 1). All samples are quartz<br />

normative reflect<strong>in</strong>g their silica oversaturated nature but as<br />

they are deficient <strong>in</strong> Al 2 O 3 , there is no anorthite <strong>in</strong> the<br />

normative classification. All rhyolites conta<strong>in</strong> normative<br />

diopside, hypersthene and are conspicuous by be<strong>in</strong>g acmite<br />

normative due to abundance <strong>of</strong> Na 2 O. S<strong>in</strong>ce normative<br />

anorthite is absent, a chemical classification has been<br />

adopted to def<strong>in</strong>e these acid volcanics. The criteria for the<br />

alkal<strong>in</strong>ity <strong>of</strong> rhyolites has been A/CNK ratio, Agpaitic <strong>in</strong>dex<br />

AI, (Fersmann, 1929; mol. Na 2 O + K 2 O / Al 2 O 3 ) and<br />

presence <strong>of</strong> normative acmite. All the samples have 1 and as mentioned previously are acmite<br />

normative therefore can be def<strong>in</strong>ed as peralkal<strong>in</strong>e rhyolites.<br />

S<strong>in</strong>ce the samples conta<strong>in</strong> >69% SiO 2 , all <strong>of</strong> them plot <strong>in</strong><br />

the rhyolite field (LeBas et al. 1986, Fig.6).<br />

JOUR.GEOL.SOC.INDIA, VOL.76,AUG.2010<br />

Fig.6. Plot <strong>of</strong> total alkali vs silica (after Le Bas et al. 1986).<br />

The chondrite normalized REE (Table 2) pattern (after<br />

Nakamura, 1974) is shown <strong>in</strong> Fig.7 There is gradual<br />

depletion <strong>of</strong> LREE with less pronounced negative Eu<br />

anomaly, suggest<strong>in</strong>g moderate fractionation <strong>of</strong> feldspars due<br />

to paucity <strong>of</strong> time <strong>in</strong> the magma chamber or abrupt eruption<br />

( Storey, 1981). The Eu/Eu* values range from 0.98 to 1.65,<br />

<strong>in</strong>dicat<strong>in</strong>g the presence <strong>of</strong> cumulus feldspar <strong>in</strong> the melt. This<br />

ratio has also positive relation with LREE/HREE and La/<br />

Lu ratios. The Eu/Eu* ratio however exhibit moderate<br />

negative correlation with REE. The higher abundance <strong>of</strong><br />

LREE is due to excessive presence <strong>of</strong> zirconium and titanium<br />

<strong>in</strong> the melt which accommodate these elements (Taylor<br />

et al. 1981). The gradual depletion <strong>of</strong> HREE also speaks<br />

presence <strong>of</strong> ortho- and cl<strong>in</strong>opyroxene <strong>in</strong> the system which<br />

eventually partition these elements. The LREE/HREE ratios<br />

are between 3.9 to 6.7, mostly around four times.<br />

Figure 8 exhibits primordial mantle normalized trace<br />

element variation spider diagram (normalization data from<br />

Pearce et al. 1984) for these rhyolites. The relative<br />

enrichment <strong>of</strong> Ta, K, Zr and Gd <strong>in</strong> <strong>in</strong>dicative <strong>of</strong> their<br />

compatibility with the crustal component <strong>of</strong> the melt. A<br />

Fig.7. Chondrite normalised REE diagram (after Nakamura, 1974)


160 S. K. BHUSHAN AND OTHERS<br />

Table 5. Chemical analyses <strong>of</strong> ulvosp<strong>in</strong>els <strong>of</strong> rhyolites<br />

Oxide STM-4 STM-4 STM-4 STM-2 STM-2 STM-2 STM-3 STM-3 STM-5 STM-7 STM-7 STM-8 Mean SD<br />

(wt%) (12)<br />

SiO2 0.24 0.26 0.1 0.09 0.05 0 0.22 0.14 0.17 0.08 0.13 0.04 0.13 0.1<br />

TiO2 36.63 36.41 36.4 36.47 36.2 38.21 38.55 37.98 36.3 38.74 37.76 40.51 37.51 1.3<br />

Al O 2 3 0.01 0.01 0.24 0.03 0.08 0.09 0.06 0.03 0.01 0.01 0.02 0.02 0.05 0.1<br />

Cr O 2 3 0.02 0 0 0.01 0 0.03 0 0 0 0 0.02 0.03 0.01 0<br />

FeO T<br />

57.45 56.62 58.53 62.14 61.39 57.04 56.84 58.24 59.97 59.73 58.27 55.92 58.51 1.9<br />

MnO 2.27 3.48 1.58 2.39 1.57 2.81 1.21 3.15 2.51 1.28 1.3 1.89 2.12 0.7<br />

MgO 0.21 0.21 0.45 0.13 0.12 0.13 0.1 0.12 0.03 0.12 0.11 0.1 0.15 0.1<br />

CaO 0.02 0.04 0 0 0 0 0.16 0.02 0 0 0 0 0.02 0<br />

Na O 2 0 0 0.07 0 0 0 0 0 0.06 0.04 0 0 0.01 0<br />

K O 2 0.02 0 0 0.01 0.01 0 0 0.01 0.02 0.01 0.01 0.01 0.01 0<br />

NiO 0 0 0 0 0.01 0 0 0.01 0.02 0 0 0.03 0.01 0<br />

Total 96.87 97.03 97.37 101.27 99.43 98.31 97.14 99.7 99.09 100.01 97.62 98.55 98.53 1.3<br />

Cations 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O)<br />

Si 0.0091 0.0098 0.004 0.0033 0.0019 0 0.008 0.0051 0.0063 0.0029 0.0049 0.0015 0.0047<br />

Ti 1.0402 1.0337 1.029 1.0038 1.0125 1.0648 1.08 1.0477 1.017 1.0623 1.0604 1.1116 1.0469<br />

Al 0.0004 0.0004 0.011 0.0013 0.0035 0.0039 0.003 0.0013 0.0004 0.0004 0.0009 0.0009 0.0022<br />

Cr 0.0006 0 0 0.0003 0 0.0009 0 0 0 0 0.0006 0.0009 0.0003<br />

Fe +3 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Fe +2<br />

1.8142 1.7876 1.84 1.902 1.9094 1.7677 1.77 1.7866 1.8685 1.8213 1.8198 1.7064 1.8162<br />

Mn 0.0726 0.1113 0.05 0.0741 0.0495 0.0882 0.038 0.0979 0.0792 0.0395 0.0411 0.0584 0.0667<br />

Mg 0.0118 0.0118 0.025 0.0071 0.0067 0.0072 0.005 0.0066 0.0017 0.0065 0.0061 0.0054 0.0085<br />

Ca 0.0008 0.0016 0 0 0 0 0.006 0.0008 0 0 0 0 0.0008<br />

Na 0 0 0.005 0 0 0 0 0 0.0043 0.0028 0 0 0.001<br />

K 0.001 0 0 0.0005 0.0005 0 0 0.0005 0.001 0.0005 0.0005 0.0005 0.0004<br />

Ni 0 0 0 0 0.0003 0 0 0.0003 0.0006 0 0 0.0009 0.0002<br />

Table 6. Chemical composition <strong>of</strong> titanomagnetites <strong>of</strong> rhyolites<br />

Serial STM-4 STM-4 STM-2 STM-3 STM-3 STM-8 STM-8 STM-5 STM-7 Mean SD<br />

No. (9)<br />

SiO 2 0.06 0.03 0.12 0.06 0.04 0.13 0.14 0.2 0.11 0.1 0.1<br />

TiO 2 9.76 8.01 7.9 12.56 7.99 8.73 9.25 7.95 8.03 8.91 1.4<br />

Al 2 O 3 1.09 1.21 1.32 1.32 1.79 1.07 0.97 0.93 0.39 1.12 0.4<br />

Cr 2 O 3 0 0 0 0.01 0 0.01 0.02 0 0.04 0.01 0<br />

FeO T 80.49 82.29 81.58 76.08 78.67 80.85 80.88 80.86 83.79 80.61 2.1<br />

MnO 1.85 1.53 0.75 1.66 1.41 1.41 1.31 1.03 1 1.33 0.3<br />

MgO 0.15 0.22 0.19 0.6 0.54 0.19 0.15 0.12 0.04 0.24 0.2<br />

CaO 0 0 0 0 0 0 0 0 0 0 0<br />

Na 2 O 0.02 0 0.08 0 0.05 0.03 0.05 0.06 0.06 0.04 0<br />

K 2 O 0.02 0 0 0 0 0 0.01 0.02 0 0.01 0<br />

NiO 0 0 0 0 0 0 0 0 0 0 0<br />

Total 93.44 93.29 91.94 92.29 90.49 92.42 92.78 91.17 93.46 92.36 1<br />

Cations 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O) 4(O)<br />

Si 0.0023 0.0012 0.0047 0.0023 0.0016 0.0051 0.0054 0.0078 0.0042 0.0038<br />

Ti 0.2828 0.2319 0.2317 0.368 0.237 0.2554 0.2698 0.2357 0.2331 0.2606<br />

Al 0.0495 0.0549 0.0607 0.0606 0.0832 0.0491 0.0444 0.0432 0.0177 0.0515<br />

Cr 0 0 0 0.0003 0 0.0003 0.0006 0 0.0012 0.0003<br />

Fe +3 1.3826 1.4789 1.4725 1.1983 1.4433 1.4319 1.4087 1.4754 1.5109 1.4225<br />

Fe +2 1.2112 1.1706 1.1885 1.2808 1.1521 1.1985 1.2151 1.1909 1.1934 1.2001<br />

Mn 0.0604 0.0499 0.0248 0.0548 0.0471 0.0465 0.043 0.0344 0.0327 0.0437<br />

Mg 0.0086 0.0126 0.011 0.0348 0.0318 0.011 0.0087 0.0071 0.0023 0.0142<br />

Ca 0 0 0 0 0 0 0 0 0 0<br />

Na 0.0015 0 0.0061 0 0.0038 0.0023 0.0038 0.0046 0.0045 0.003<br />

K 0.001 0 0 0 0 0 0.0005 0.001 0 0.0003<br />

Ni 0 0 0 0 0 0 0 0 0 0<br />

JOUR.GEOL.SOC.INDIA, VOL.76,AUG.2010


Rock/MORB<br />

PETROGRAPHY AND GEOCHEMISTRY OF ST. MARY ISLANDS, NEAR MALPE, KARNATAKA 161<br />

Fig.8. Primordial mantle normalized trace element spider diagram<br />

(after Pearce et al. 1983).<br />

pronounced negative Ti anomaly is characteristic <strong>of</strong> its<br />

compatible nature with titanomagnetite and ulvosp<strong>in</strong>el. The<br />

higher concentration <strong>of</strong> Y, Zr, Nb, Hf and Th lithophile<br />

elements is observed <strong>in</strong> all the rhyolite samples, whereas<br />

enrichment <strong>of</strong> HFSE is treated as diagnostic feature <strong>of</strong><br />

alkal<strong>in</strong>e magma (Salvi and Jones, 1990). There is<br />

exceptionally high concentration <strong>of</strong> Zr (Table 1) <strong>in</strong> the<br />

melt, which suggest alkal<strong>in</strong>e nature <strong>of</strong> the source material.<br />

Bowden (1974) considered all rocks exceed<strong>in</strong>g 500 ppm <strong>of</strong><br />

Zr as oversaturated alkal<strong>in</strong>e rocks. The m<strong>in</strong>eral chemistry<br />

<strong>of</strong> ulvosp<strong>in</strong>el and titanomagnetite is presented <strong>in</strong> Table 5<br />

and 6 respectively. There is greater abundance <strong>of</strong> FeO(T)<br />

and less TiO 2 than average titaniferous magnetite,<br />

whereas ulvosp<strong>in</strong>el has higher concentration <strong>of</strong> TiO 2 and<br />

Fe 2 O (T) and moderate <strong>in</strong>crease <strong>of</strong> MnO. Us<strong>in</strong>g Budd<strong>in</strong>gton<br />

and L<strong>in</strong>dsley’s (1964) titanomagnetites-ulvosp<strong>in</strong>el<br />

geothermometre, <strong>in</strong>dicates crystallization at 915°C<br />

temperature with fO 2 (oxygen fugacity) <strong>of</strong> 10 –16 . This<br />

corresponds to crystallization under QFM (Quartz + Fayalite<br />

+Magnetite) and WM (Wustite + Magnetite) buffer<br />

conditions. Ewart (1981) <strong>in</strong>dicated similar equilibrium<br />

temperature <strong>of</strong> 885-980°C and oxygen fugacity between<br />

QFM and WM buffers from hypersthene rhyolites <strong>of</strong> SE<br />

Queensland. In Ta vs Yb (Fig.9) the SMI rhyolites plot <strong>in</strong><br />

the ‘with<strong>in</strong> plate granite’ field <strong>of</strong> Pearce et al. (1984),<br />

<strong>in</strong>dicat<strong>in</strong>g possible anorogenic magmatism.<br />

DISCUSSION<br />

Plate tectonic reconstructions propose a close l<strong>in</strong>k<br />

between Madagascar and Greater <strong>India</strong> from Late<br />

Precambrian to Cretaceous times and the separation is<br />

believed to have begun dur<strong>in</strong>g or immediately after a period<br />

<strong>of</strong> late Cretaceous basic and felsic magmatism that is well<br />

known from Madagascar (83.6-91.6 Ma; Storey et al. 1995,<br />

Torsvik et al. 1998). Dur<strong>in</strong>g this late Cretaceous break up,<br />

JOUR.GEOL.SOC.INDIA, VOL.76,AUG.2010<br />

Fig.9. Ta-Yb diagram (after Pearce et al. 1984). Syn-COLG -<br />

Collision granite; ORG - Ocean ridge granite; VAG -<br />

Volcanic arc granite; WPG - With<strong>in</strong> plate granite.<br />

the western marg<strong>in</strong> <strong>of</strong> <strong>India</strong> presumably rifted <strong>of</strong>f the eastern<br />

marg<strong>in</strong> <strong>of</strong> Madagascar. However, equivalent Cretaceous<br />

magmatism is not well documented from western <strong>India</strong>.<br />

Possible exceptions <strong>in</strong>clude mafic dykes <strong>in</strong> the ma<strong>in</strong>land<br />

south-west <strong>India</strong> (Radhakrishna and Vaidyanadhan, 1994;<br />

Radhakrishna et al. 1999) and the acid volcanic rocks <strong>of</strong> the<br />

SMI (Valsangkar et al. 1981). Spectacular columnar jo<strong>in</strong>ts<br />

<strong>in</strong> rhyolites are noticed <strong>in</strong> the Coconut island (Fig.2). The<br />

vertical orientation <strong>of</strong> these columnar jo<strong>in</strong>ts testifies the<br />

absence <strong>of</strong> post magmatic structural tilt<strong>in</strong>g. The acid<br />

volcanics <strong>of</strong> SMI were considered by Naganna (1966) to<br />

represent an early phase <strong>of</strong> Deccan Flood Basalt Prov<strong>in</strong>ce<br />

<strong>of</strong> 65 ma, but whole rock K-Ar ages rang<strong>in</strong>g from 80.3±1.7<br />

Ma to 97.6±2.3 Ma (Valsankgar et al. 1981) suggest that<br />

this volcanism can be better correlated with an older event<br />

related to <strong>India</strong>-Madagascar break-up. The geochronology<br />

and palaeomagnetism <strong>of</strong> SMI were re<strong>in</strong>vestigated by<br />

Torsvik, et al. (2000) and Pande et al. (2001). A U-Pb zircon<br />

age <strong>of</strong> 91.2±0.2 Ma from western <strong>India</strong> (St .Mary’s islands)<br />

confidently l<strong>in</strong>ks <strong>India</strong> with the late Cretaceous magmatic<br />

Prov<strong>in</strong>ce <strong>in</strong> Madagascar (84-92 Ma) and the U-Pb age is<br />

with<strong>in</strong> analytical error <strong>of</strong> the U-Pb age <strong>of</strong> the Analalava<br />

gabbro pluton (91.6±0.3 Ma) <strong>in</strong> northeastern Madagascar<br />

(Torsvik et al. 1998). St.Mary volcanism is l<strong>in</strong>ked to the<br />

<strong>in</strong>itial break-up <strong>of</strong> <strong>India</strong> and Madagascar, and the volcanism<br />

probably resulted from rift- related extensional processes<br />

<strong>in</strong>itially <strong>in</strong>duced by the Marion hotspot underly<strong>in</strong>g southern<br />

Madagascar dur<strong>in</strong>g the late Cretaceous period (Torsvik et<br />

al. 2000).


162 S. K. BHUSHAN AND OTHERS<br />

The cha<strong>in</strong> <strong>of</strong> St. Mary’s four islands cont<strong>in</strong>ues up to<br />

6 km <strong>in</strong> NW-SE direction and extend further south for<br />

another 7 km, about 2.5 km west <strong>of</strong> Udiyavarh, where two<br />

t<strong>in</strong>y islands outcropp<strong>in</strong>g 12m above sea level have been<br />

recorded by Nambiar et al. (2006a, b). This reflects the<br />

northern movement <strong>of</strong> plate. These felsic volcanics erupted<br />

around 88 Ma and are attributed to the ‘hotspot’ activity<br />

(Torsvik et al. 1998). Accord<strong>in</strong>g to Crecraft et al. (1981),<br />

the high heat flow zone (hotspot) is provided by <strong>in</strong>trusion<br />

<strong>of</strong> mantle derived basalt <strong>in</strong>to the crust, which results <strong>in</strong> partial<br />

melt<strong>in</strong>g and generation <strong>of</strong> felsic magma. The accumulated<br />

silicic magma ascends <strong>in</strong>to the upper crust, thus enhanc<strong>in</strong>g<br />

the extensional stress field, result<strong>in</strong>g <strong>in</strong> further rift<strong>in</strong>g.<br />

The ma<strong>in</strong> burst <strong>of</strong> flood basalt has been recorded <strong>in</strong><br />

Madagascar and St. Mary islands perhaps represent the<br />

tail through long cha<strong>in</strong> below sea, related to Marion ‘hotspot’<br />

(Lat. 47°S, Long. 38°E). Lack <strong>of</strong> any mar<strong>in</strong>e volcanic<br />

landforms and characteristic pentagonal or hexagonal<br />

BALASUBRAHMANYAN, M.N. (1975) The age <strong>of</strong> South Kanara dykes,<br />

Mysore District. Geol. Surv. <strong>India</strong>, Misc. Publ., v. 23(1),<br />

pp.236-239.<br />

BHUSHAN, S.K. (2000) Malani Rhyolites – A Review. Gondwana<br />

Research, v.3, No.1, pp.65-77.<br />

BOWDEN, P. (1974) Oversaturated alkal<strong>in</strong>e rocks, Pantellerites and<br />

comendites. In: H. Sorensen (Ed.), The Alkal<strong>in</strong>e rocks John<br />

Wiley & Sons, N.Y.<br />

BUDDINGTON, A.F. and LINDSLEY, D.H. (1964) Iron-titanium oxide<br />

m<strong>in</strong>erals and synthetic equivalents. Jour. Petrol., v.5(11),<br />

pp.310-357.<br />

CRECRAFT, H.R., NASH, W.P. and EVANS, S.H. (1981) Late Cenozoic<br />

volcanism <strong>of</strong> Tw<strong>in</strong> peaks, Utah, Geology and Petrology. Jour.<br />

Geophysics. Res., v.86, pp.10320.<br />

EWART, A. (1979) A review <strong>of</strong> the m<strong>in</strong>eralogy and chemistry <strong>of</strong><br />

Tertiary Recent dacitic, rhyolitic and related volcanic sodic<br />

rocks. In: F. Barker (Ed.), Trondhjemites, Dacites and Related<br />

Rocks. Elsevier.<br />

EWART, A. (1981) The M<strong>in</strong>eralogy and Chemistry <strong>of</strong> the Anorogenic<br />

Tertiary Silicic Volcanics <strong>of</strong> S.E. Queensland and N.E. New<br />

South Wales, Austraila. Jour. Geophys. Res., v. 86, pp.10242-<br />

10256.<br />

FERSMANN, A.E. (1929)The alkal<strong>in</strong>e rocks. In: H. Sorenson (Ed.),<br />

John Wiley and Co., pp 15-49.<br />

LEBAS, M.J., LE MAITRE, R.W., STRECKIESEN, A. and ZANETTIN,<br />

B.(1986) A chemical classification <strong>of</strong> volcanic rocks based on<br />

the total alkali-silica diagram. Jour. Petrol., v.27, pp.745-750.<br />

NAGANNA, C. (1964) Occurrence <strong>of</strong> volcanic rocks <strong>in</strong> St.Mary<br />

islands <strong>of</strong>f the west coast, near Malpe, South Kanara District,<br />

Mysore State, Bull. Geol. Soc. <strong>India</strong>, pp.20-22.<br />

NAGANNA, C. (1966) Petrology <strong>of</strong> rocks <strong>of</strong> St.Mary islands <strong>of</strong>f the<br />

west coast, near Malpe, South Kanara District, Mysore State.<br />

Jour. Geol. Soc. <strong>India</strong>, v.7, pp.110-117.<br />

References<br />

columnar jo<strong>in</strong>t<strong>in</strong>g (Fig.2) suggests a terrestrial volcanism.<br />

The source rock is perhaps the Pen<strong>in</strong>sular gneiss as seen<br />

near Malpe, which also serves as basement for these felsic<br />

volcanic islands. The mantle plume, which caused rise <strong>in</strong><br />

geotherm and melt<strong>in</strong>g <strong>of</strong> basaltic crust, must have emplaced<br />

<strong>in</strong>discrim<strong>in</strong>ately through the Pen<strong>in</strong>sular gneissic upper<br />

crustal material, result<strong>in</strong>g <strong>in</strong> partial melt<strong>in</strong>g and generation<br />

<strong>of</strong> this high temperature (Fig.5) felsic magma.<br />

Acknowledgement: The authors are thankful to Chemical<br />

lab, GSI, Hyderabad and PPOD Laboratory <strong>of</strong> AMSE,<br />

Bangalore for analysis. The authors are also grateful to<br />

S/Shri G. Ramarao, GJS Prasad and Ad<strong>in</strong>arayanan Reddy<br />

for their assistance to process the EPMA data. The first<br />

author expresses thanks to Mr. Siddu Kalagudi for draw<strong>in</strong>g<br />

the figures via AutoCAD and Miss Roopa, B.R. for typ<strong>in</strong>g<br />

the manuscript.<br />

NAKAMURA, H. (1974) Determ<strong>in</strong>ation <strong>of</strong> REE, Ba, Mg, Na and K<br />

<strong>in</strong> carbonaceous and ord<strong>in</strong>ary chondrites: Geochim.<br />

Cosmochim. Acta, v.38, pp.757-775.<br />

NAMBIAR, A.R., UNNIKRISHNAN, E., DINESH, A.C. and JAYAPRAKASH,<br />

C. (2006a) Relative Sea Level Fall <strong>in</strong> St. Mary islands, Western<br />

Cont<strong>in</strong>ental Shelf <strong>of</strong> <strong>India</strong>. Geol. Surv. <strong>India</strong>, v.1 & 2, pp.8-10.<br />

NAMBIAR, A.R., UNNIKRISHNAN, E., DINESH, A.C. and JAYAPRAKASH,<br />

C. (2006b) Occurrence <strong>of</strong> felsic volcanic rocks <strong>in</strong> ‘Black<br />

Rocks’ and ‘Outer Rocks’ <strong>in</strong> the <strong>in</strong>ner cont<strong>in</strong>ental shelf <strong>of</strong>f<br />

Udiyavara, Karnataka. Geol. Surv. <strong>India</strong>, v.1&2, pp.8-10.<br />

PANDE, K., SHETH, H.C. and BHUTANI, R.(2001). 40 Ar- 39 Ar age <strong>of</strong><br />

the St.Mary islands volcanics, southern <strong>India</strong>: record <strong>of</strong> <strong>India</strong>-<br />

Madagascar break-up on the <strong>India</strong>n subcont<strong>in</strong>ent. Earth Planet.<br />

Sci. Lett., v.193, pp.39-46.<br />

PEARCE, J.A., HARRIS, N.B.W. and TINDLE, A.G. (1984) Trace<br />

elements discrim<strong>in</strong>ation diagrams for the tectonic <strong>in</strong>terpretation<br />

<strong>of</strong> granitic rocks. Jour. Petrol., v.25, pp.956-983.<br />

PECCERILLO, A. and TAYLOR, S.R. (1976) Geochemistry <strong>of</strong> some<br />

calc-alkal<strong>in</strong>e volcanic rocks from the Kastamonu area, northern<br />

Turkey. Contrib. M<strong>in</strong>eral. Petrol., v.58, pp.63-81.<br />

RADHAKRISHNA, B.P. and VAIDYANADHAN, R. (1994) Morphology<br />

and Evolution. Geology <strong>of</strong> Karnataka. <strong>Geological</strong> <strong>Society</strong> <strong>of</strong><br />

<strong>India</strong>, Bangalore, p. 260.<br />

RADHAKRISHNA, T., MALUSKI, H., MITCHELL, J.G. and JOSEPH, M.<br />

(1999) 40 Ar/ 39 Ar and K-Ar geochronology <strong>of</strong> the dykes from<br />

the south <strong>India</strong>n granulite terra<strong>in</strong>. Tectonophysics, v.304,<br />

pp.109-129.<br />

REIMOLD, W.U., KOEBERI, C. and BISHOP, J.(1994) Roter Kamm<br />

impact crater, Nambia: Geochemistry <strong>of</strong> basement rocks and<br />

breccias. Geochem. Cosmochim. Acta, v.58, pp.2689-2710.<br />

SALVI, S. and JONES, A.E.W (1990) The role <strong>of</strong> hydrothermal<br />

process <strong>in</strong> granite hosted Zr, Y, REE deposit at strange lake,<br />

Quebec, Labrador. Evidence from fluid <strong>in</strong>clusions. Geochem.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,AUG.2010


PETROGRAPHY AND GEOCHEMISTRY OF ST. MARY ISLANDS, NEAR MALPE, KARNATAKA 163<br />

Cosmochem. Acta, v.54(a), pp.2403-2418.<br />

STOREY, M. (1981) Trachytic pyroclastics from Agua de volcano,<br />

Saomiquel Azores; Evolution <strong>of</strong> a magma body over 4000<br />

year. Contrib. M<strong>in</strong>eral. Petrol., v.78, pp.423-432.<br />

STOREY, M., MAHONEY, J.J., SAUNDERS, A.D., DUNCAN, R. A., KELLEY,<br />

S.K. and COFFIN, M.F. (1995) Tim<strong>in</strong>g <strong>of</strong> hotspot related<br />

volcanism and the break-up <strong>of</strong> Madagascar and <strong>India</strong>, Science,<br />

v.267, pp.852-855.<br />

SUBBARAO, K.V., VALSANGKAR, A.B. and VISWANATHAN, S. (1993)<br />

M<strong>in</strong>eralogy <strong>of</strong> the acid volcanics <strong>of</strong> St.Mary islands, Proc.<br />

Natl. Acad. Sci. <strong>India</strong>, v.63, pp.97-117.<br />

TAYLOR, R.P, STRONG, D.F. and FRYER, B.J. (1981) Volatile control<br />

<strong>of</strong> contrast<strong>in</strong>g trace element distribution <strong>in</strong> peralkal<strong>in</strong>e granitic<br />

and volcanic rocks. Contrib. M<strong>in</strong>eral. Petrol., v.77, pp.267-<br />

271.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,AUG.2010<br />

(Received: 9 March 2009; Revised form accepted: 1 March 2010)<br />

TORSVIK, T.H., TUCKER, R.D., ASHWAL, L.D., EIDE, E.A.,<br />

RAKOTOSOLOFO, N.A. and DE WIT, M.J. (1998) Late<br />

Creataceous magmatism <strong>in</strong> Madagascar. Palaeomagnetic<br />

evidence for a stationary Marion hotspot. Earth Planet. Sci.<br />

Lett., v.164, pp.221-232.<br />

TORSVIK, T.H., TUCKER, R.D., ASHWAL, L.D., CARTER, L. M.,<br />

JAMTVEIT, B., VIDYADHARAN, K.T. and VENKATARAMANA, P.<br />

(2000) Late Cretaceous <strong>India</strong>- Madagascar fit and tim<strong>in</strong>g<br />

<strong>of</strong> break-up related magmatism. Terra Nova, v.12, pp.220-<br />

224.<br />

VALSANGKAR, A. B., RADHAKRISHNAMURTHY, C., SUBBARAO, K.V. and<br />

BECKINSALE, R.D. (1981) Palaeomagnetism and potassium –<br />

argon age studies <strong>of</strong> acid igneous rocks from the St.Mary<br />

islands. In: K.V. Subbarao and R.N. Sukeshwala (Eds.),<br />

Deccan Volcanism. Mem. Geol. Soc. <strong>India</strong>, No.3, pp.265-276.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!