05.06.2013 Views

Photonic Hydrophones Based on Coated Fiber Bragg Gratings.

Photonic Hydrophones Based on Coated Fiber Bragg Gratings.

Photonic Hydrophones Based on Coated Fiber Bragg Gratings.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

<str<strong>on</strong>g>Phot<strong>on</strong>ic</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroph<strong>on</strong>es</str<strong>on</strong>g><br />

based <strong>on</strong> <strong>Coated</strong> <strong>Fiber</strong> <strong>Bragg</strong> <strong>Gratings</strong><br />

M. Pisco, M. Moccia, M. C<strong>on</strong>sales, V. Galdi,<br />

A. Cutolo, A. Cusano<br />

Optoelectr<strong>on</strong>ics Divisi<strong>on</strong>, Engineering Department,<br />

University of Sannio, Benevento, Italy.<br />

A. Iadicicco<br />

Department for Technologies, University Parthenope, Napoli, Italy<br />

S. Passaro, E. Marsella, S. Mazzola<br />

Istituto per l'Ambiente Marino Costiero, CNR, Napoli, Italy


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

Research Project “ASSO”<br />

Supported by Italian Ministry of University and Research<br />

Funding : 7 M€<br />

Durati<strong>on</strong>: 3 years<br />

In collaborati<strong>on</strong> with:<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

Aim: To get high-performance opto-acustic antennas, based <strong>on</strong> <strong>Fiber</strong> <strong>Bragg</strong> Grating (FBG)<br />

technology, for military, envir<strong>on</strong>mental and industrial underwater applicati<strong>on</strong>s


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

Traditi<strong>on</strong>al hydroph<strong>on</strong>es<br />

Electromagnetic sensitivity<br />

Water seepages<br />

Heavy and bulky<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

Comparis<strong>on</strong> with Traditi<strong>on</strong>al <str<strong>on</strong>g>Hydroph<strong>on</strong>es</str<strong>on</strong>g><br />

<strong>Fiber</strong> optic hydroph<strong>on</strong>es<br />

Immunity to Electromagnetic Interferences<br />

Light and small<br />

No electric c<strong>on</strong>necti<strong>on</strong>s<br />

Remote m<strong>on</strong>itoring<br />

Multiplexing capability<br />

Marine envir<strong>on</strong>mental m<strong>on</strong>itoring<br />

Medical<br />

Military applicati<strong>on</strong>s


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

Interferometric detecti<strong>on</strong><br />

J.A. Bucaro et al.(1977)<br />

Intensity modulati<strong>on</strong><br />

W.B. Spillman et al.(1980)<br />

University of Sannio, Benevento (Italy)<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

<str<strong>on</strong>g>Phot<strong>on</strong>ic</str<strong>on</strong>g> hydroph<strong>on</strong>es: State of the art<br />

DFB Laser<br />

S.Goodman et al.(2009)<br />

Very high sensitivities<br />

Complex c<strong>on</strong>figurati<strong>on</strong><br />

• Acoustic detectors based <strong>on</strong> bare FBGs<br />

Cheap and well assessed technology<br />

Limited by the high Young’s modulus of glass<br />

LOD ~ MPa<br />

<str<strong>on</strong>g>Phot<strong>on</strong>ic</str<strong>on</strong>g> crystal mirror<br />

O.Kilic et al.(2007)<br />

N.Takahashi et al., Opt. Rev. 4, 691-694 (1997)


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

<strong>Fiber</strong> <strong>Bragg</strong> Grating (FBG)<br />

The maximum reflectivity occurs at the wavelength that matches the <strong>Bragg</strong> c<strong>on</strong>diti<strong>on</strong>:<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

A <strong>Fiber</strong> <strong>Bragg</strong> Grating is a l<strong>on</strong>gitudinal periodic variati<strong>on</strong> of the refractive index in the core of an optical fiber<br />

where n eff0 is the effective refractive index of the guided mode and Λ 0 is the FBG period<br />

Any effect able to modify the physical and geometrical features of the grating can lead to a shift in the <strong>Bragg</strong> wavelength<br />

A strain variati<strong>on</strong> shifts the <strong>Bragg</strong> wavelength through dilating or compressing the grating and changing<br />

the effective index (via the elasto-optic effect)<br />

2<br />

<br />

neff<br />

z p11xp12zy, 2 <br />

0


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

ACOUSTICAL PLANE<br />

WAVE<br />

University of Sannio, Benevento (Italy)<br />

WATER<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1546 1546.5 1547 1547.5 1548 1548.5 1549 1549.5 1550<br />

-0.05<br />

1546.5 1547 1547.5 1548 1548.5 1549 1549.5 1550 1550.5 1551 1551.5<br />

FBG<br />

COATING<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

1546.5 1547 1547.5 1548 1548.5 1549 1549.5 1550 1550.5 1551 1551.5<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

Dynamic Analysis (Acoustic Wave Detecti<strong>on</strong>)<br />

• COMSOL Multiphysics is used as FEM solver<br />

The 3D geometry is composed by an inner cylinder<br />

(fiber), an outer cylinder (coating) and a sphere<br />

(truncated water domain)<br />

• The acoustical frequency range is 0.5 – 30 kHz<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

The Project Idea<br />

Acoustic wave detecti<strong>on</strong> using coated FBGs<br />

The optical hydroph<strong>on</strong>e is based <strong>on</strong> standard FBG<br />

coated by a ring shaped overlay<br />

y<br />

z<br />

x<br />

h<br />

2*R w<br />

FEM geometry<br />

y<br />

z<br />

x<br />

2*R f<br />

2*R C


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

2<br />

<br />

1 neff<br />

S <br />

z 11 x 12 z y<br />

P0<br />

P0<br />

<br />

2<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Numerical Results: Res<strong>on</strong>ant Behavior<br />

p p <br />

<br />

Pressure distributi<strong>on</strong> in water and<br />

z-strain distributi<strong>on</strong> <strong>on</strong> the cylinder surface<br />

(i.e. @ 20kHz)<br />

Sensitivity Gain [dB]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

<br />

<br />

<br />

Sensitivity Gain 20*<br />

log<br />

<br />

<br />

E= 78 MPa<br />

n=0.3<br />

Sensitivity gain<br />

h= 4 cm ; R C /R f = 20<br />

20<br />

0 3 6 9 12 15 18 21 24 27 30<br />

Frequency [kHz]<br />

Napoli, 17-21 Settembre 2012<br />

The coated FBG resp<strong>on</strong>ds to the impinging acoustic plane wave through a mechanical deformati<strong>on</strong>.<br />

The resulting strain at the FBG locati<strong>on</strong> determines a <strong>Bragg</strong> wavelength shift<br />

Res<strong>on</strong>ances are associated to res<strong>on</strong>ant l<strong>on</strong>gitudinal modes of the cylindrical hydroph<strong>on</strong>es<br />

S<br />

SBARE<br />

<br />

<br />

<br />

<br />

5.7 kHz<br />

SBARE<br />

10.8 kHz 18.7 kHz<br />

15 kHz<br />

-6 -1<br />

-2.7610<br />

MPa<br />

Res<strong>on</strong>ant modes<br />

AWARD: Optical <strong>Fiber</strong> Sensors 21, Ottawa (Canada) M.Moccia et al., Opt. Express 19 (20), 2011<br />

21.9 kHz<br />

25 kHz<br />

27.9 kHz


Sensitivity Gain [dB]<br />

Sensitivity Gain [dB]<br />

120<br />

100<br />

120<br />

100<br />

80<br />

60<br />

40<br />

80<br />

60<br />

Sensitivity Gain [dB]<br />

120<br />

100<br />

80<br />

60<br />

Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

R /R<br />

C R = 20<br />

C f /R = 20<br />

f<br />

40<br />

0 3 6 9 12 15 18 21 24 27 30 100<br />

40<br />

0 3 6 9<br />

Frequency [kHz]<br />

12 15 18 21 24 27 30<br />

Frequency [kHz]<br />

80<br />

E=78 MPa<br />

20<br />

0 3 6<br />

E=970 MPa<br />

data3<br />

9 12 15 18 21<br />

Frequency data4 [kHz]<br />

data5<br />

24 27 30<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Numerical Results: Parametric Analysis<br />

Cylinder height Cylinder data6 radius<br />

Napoli, 17-21 Settembre 2012<br />

20<br />

0 3 6 9 12 15 18 21 24 27 30<br />

Frequency [kHz]<br />

Elastic data6 modulus Poiss<strong>on</strong> ratio Damping<br />

data7<br />

h= 4cm<br />

h= 1cm<br />

data3<br />

data4<br />

data5<br />

Sensitivity Gain [dB]<br />

120<br />

60<br />

40<br />

110<br />

20<br />

0 3<br />

100<br />

100<br />

6 9 12 15 18 21 24 27 30<br />

90 Frequency [kHz]<br />

Sensitivity Gain [dB]<br />

Sensitivity Gain [dB]<br />

Sensitivity Gain [dB]<br />

120<br />

100<br />

80<br />

80<br />

70<br />

60<br />

60<br />

50<br />

80<br />

60<br />

40<br />

h= 4 cm<br />

R C /R f =10<br />

R C /R f =20<br />

h= 4 cm<br />

20<br />

data3<br />

0 3 6 9 12 15 18 21 24 27 30<br />

data4<br />

Frequency [kHz]<br />

data5<br />

data7 h= 4cm ; R /R =20<br />

C f<br />

n = 0.3<br />

n = 0.4<br />

data3<br />

data4<br />

data5<br />

data6<br />

data7<br />

40<br />

40 0 3 6 9 12 15 18 21 24 27 30<br />

12 15 18 21 24 27 30<br />

Frequency [kHz]<br />

Frequency [kHz]<br />

Sensitivity Gain [dB]<br />

By acting <strong>on</strong> the geometrical size and<br />

elastic properties, it is possible to<br />

design and tailor the sensor<br />

performance for a specific applicati<strong>on</strong><br />

120<br />

100<br />

80<br />

60<br />

40<br />

h= 4cm ; R C /R f =20<br />

undamped<br />

=0.1


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

DAMIVAL 13650<br />

Thermosetting polyurethane resin<br />

E= 200 MPa<br />

n=0.4<br />

r=1180 kg/m 3<br />

=0.1<br />

Sensor Design<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

Project “ASSO” defines am<strong>on</strong>g the needs and requirements two operating frequency ranges for the underwater<br />

acoustic sensors: a “low” frequency range 0-15 kHz and a “high” frequency range 15-30 kHz<br />

Sensitivity Gain [dB]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

h=4cm; h = 4 cm D; RC=5mm = 5 mm<br />

C<br />

0<br />

0 5 10 15 20 25 30 35<br />

Frequency [kHz]<br />

Sensitivity Gain [dB]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

ARALDITE DBF<br />

Epoxy adhesive resin<br />

h=4cm; h = 4 cm D; C=5mm<br />

R = 5 mm<br />

C<br />

E= 2.9 GPa<br />

n=0.345<br />

r=1100 kg/m 3<br />

=0.02<br />

0<br />

0 5 10 15 20 25 30 35<br />

Frequency [kHz]


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

FBG Hydroph<strong>on</strong>e Fabricati<strong>on</strong><br />

Optical <strong>Fiber</strong><br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

A TEFLON® modular holder was properly designed to fabricate DAMIVAL cylindrical coatings with different sizes.<br />

Assembled<br />

holder<br />

Optical fiber<br />

Screw<br />

Perfored plate<br />

DAMIVAL FBGs<br />

A cylindrical holder was properly designed to fabricate ARALDITE coatings.<br />

Plastic mould<br />

TEFLON modulus<br />

Araldite Coating<br />

D-5 :<br />

D C = 5mm ; h = 4 cm<br />

D-10 :<br />

D C = 10 mm ; h = 4 cm<br />

A-5 :<br />

D C = 5mm ; h = 4 cm


Vac [V]<br />

CONDITIONING<br />

CIRCUIT<br />

TUNABLE LASER<br />

Vac [V]<br />

Vac [V]<br />

2<br />

0<br />

-2<br />

1<br />

0<br />

-1<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

2x1<br />

University of Sannio, Benevento (Italy)<br />

3 m<br />

coated<br />

FBG<br />

1 m<br />

11 m<br />

GAIN<br />

PZT<br />

2 m<br />

Experimental Setup<br />

SIGNAL<br />

GENERATOR<br />

Acoustic<br />

source<br />

5 m<br />

DATA ACQUISITION<br />

1<br />

1<br />

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

PZT<br />

FBG<br />

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6<br />

1 2 3 Time [ms] 4 5 6<br />

Time [ms]<br />

7 m<br />

PZT reference<br />

hydroph<strong>on</strong>e<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

Telescopic<br />

pole<br />

Optical fiber<br />

<strong>Fiber</strong> optic<br />

hydroph<strong>on</strong>e<br />

weight


Sensitivity Gain [dB]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

Numerical predicti<strong>on</strong><br />

0<br />

Experimental data<br />

Elaborated<br />

-10<br />

0 5 10 15 20<br />

Frequency [kHz]<br />

University of Sannio, Benevento (Italy)<br />

Sensitivity Gain [dB]<br />

Experimental Validati<strong>on</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Numerical predicti<strong>on</strong><br />

0<br />

Experimental data<br />

Elaborated<br />

-10<br />

0 5 10 15 20<br />

Frequency [kHz]<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

D-5 sensor D-10 sensor A-5 sensor<br />

Sensitivity Gain [dB]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Numerical predicti<strong>on</strong><br />

Experimental data<br />

Elaborated<br />

-10<br />

0 5 10 15 20 25 30 35<br />

Frequency [kHz]<br />

• Experimental data c<strong>on</strong>firm the res<strong>on</strong>ant behavior of the underwater acoustic sensor outlined by the numerical analysis<br />

• Acceptable predicti<strong>on</strong> capabilities both in terms of res<strong>on</strong>ant frequencies and sensitivity values have been obtained<br />

• The slight disagreements between experimental and numerical data can be attributed to sec<strong>on</strong>d order effects (i.e.<br />

fabricati<strong>on</strong> imperfecti<strong>on</strong>s), which have not been taken into account in the simulati<strong>on</strong>s


Sensitivity Gain [dB]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

Sensor Performances<br />

D-5<br />

D-10<br />

A-5<br />

5 10 15 20 25 30 35<br />

Frequency [kHz]<br />

Sensitivity [dB re Volt/ Pa]<br />

-180<br />

-190<br />

-200<br />

-210<br />

-220<br />

-230<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

D-5<br />

D-10<br />

A-5<br />

PZT<br />

5 10 15 20 25 30 35<br />

Frequency [kHz]<br />

• Sensors with Damival coating are more sensitive than PZT in the frequency range 4-20kHz<br />

• Sensors with Araldite coating are more sensitive than PZT in the frequency range 15-35kHz<br />

• Sensitivity improvement with respect to bare FBG of 2-3 order of magnitude<br />

• Sensitivity comparable or higher than traditi<strong>on</strong>al PZT and other phot<strong>on</strong>ic technologies at the state of the art<br />

• Resoluti<strong>on</strong>: about 10mPa/(Hz) 1/2 at the res<strong>on</strong>ances -It depends also <strong>on</strong> the interrogati<strong>on</strong> strategy. It can be improved-<br />

• Frequency selectivity is desired in active sensing applicati<strong>on</strong>s<br />

whereas flatness is typically required in passive sensing applicati<strong>on</strong>s


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

PHONO-ABSORBER SPACERS<br />

FBG SENSORS<br />

Sensor Array: Fabricati<strong>on</strong><br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

Flexible array : Material : Damival Array : 4x1 Sensors : D-5<br />

Ph<strong>on</strong>o-absorber spacers keep FBG sensors mechanically and acoustically separated<br />

Rigid array : Material : Araldite Array : 4x4 Sensors : A-5<br />

STEEL HOLDER<br />

SENSORS


PZT<br />

Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

Offshore Preliminary Test<br />

Vac (V)<br />

Vac (V)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

0,3<br />

0,0<br />

-0,3<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

• Port of Baia, Napoli<br />

• FBG Sensor: D-5<br />

• Sea envir<strong>on</strong>ment with high noise<br />

Sensor time resp<strong>on</strong>se<br />

0 2 4 6 8 10<br />

0,6<br />

Time (ms)<br />

-0,6<br />

0 2 4 6 8 10<br />

Time (ms)<br />

FBG Sensor<br />

Reference Sensor


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012<br />

A full 3-D numerical analysis of an FBG coated by a ring-shaped material in the frequency range 0.5-30 kHz<br />

The res<strong>on</strong>ant behavior of such underwater acoustic sensor has been reported for the first time<br />

Numerical analysis dem<strong>on</strong>strated that the sensing performances can be tailored for a specific applicati<strong>on</strong> by<br />

a proper selecti<strong>on</strong> of the coating features<br />

Experimental analysis of fabricated optical hydroph<strong>on</strong>es<br />

A good agreement between the experimental characterizati<strong>on</strong>s and the numerically predicted sensitivity gains<br />

has been obtained, c<strong>on</strong>firming the correct modeling of the hydroph<strong>on</strong>e as well as its predicti<strong>on</strong> capability<br />

Excellent capability to detect acoustic waves in the frequency range 4–35 kHz, extremely high sensitivity,<br />

resoluti<strong>on</strong>s of the order of a few Pascal, and good linearity without using active c<strong>on</strong>figurati<strong>on</strong>s.<br />

Sensor array and offshore preliminary testing highlighted the str<strong>on</strong>g potential of FBG hydroph<strong>on</strong>es to be<br />

employed for in-field trials and industrial applicati<strong>on</strong>s


Optoelectr<strong>on</strong>ic Divisi<strong>on</strong>, Engineering Department<br />

University of Sannio, Benevento (Italy)<br />

Thanks<br />

SOCIETÀ ITALIANA DI FISICA<br />

XCVIII CONGRESSO NAZIONALE<br />

Napoli, 17-21 Settembre 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!