04.06.2013 Views

Detailed visual seabed survey at drilling site 7218/11-1

Detailed visual seabed survey at drilling site 7218/11-1

Detailed visual seabed survey at drilling site 7218/11-1

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Detailed</strong> <strong>visual</strong> <strong>seabed</strong> <strong>survey</strong> <strong>at</strong> <strong>drilling</strong><br />

<strong>site</strong> <strong>7218</strong>/<strong>11</strong>-1, Darwin PL 531 in the<br />

Barents Sea<br />

- with special focus on sponge assemblages<br />

Akvaplan-niva AS Report: 6051 - 1


Cover picture: sponges <strong>at</strong> the sediment surface <strong>at</strong> Darwin, PL531, August, 2012. White: Geodia<br />

and yellow: Apl ysilla . Photo: Oceaneering AS/ Akvaplan -niva.


Akvaplan -niva AS<br />

Rådgivning og forskning innen miljø og akvakultur<br />

Org.nr: NO 937 375 158 MVA<br />

Framsenteret<br />

9296 Tromsø<br />

Tlf: 77 75 03 00, Fax: 77 75 03 01<br />

www.akvaplan.niva.no<br />

Report title<br />

<strong>Detailed</strong><strong>visual</strong><strong>seabed</strong><strong>survey</strong><strong>at</strong> <strong>drilling</strong> <strong>site</strong> <strong>7218</strong>/<strong>11</strong>-1, Darwin PL 531 in<br />

the BarentsSea- with specialfocuson spongeassemblages .<br />

Author(s)<br />

SabineCochrane<br />

RunePalerud<br />

JesperHansen<br />

AnnaHelenaFalk<br />

Client<br />

RepsolExplor<strong>at</strong>ionNorwayAS(RENAS)<br />

Akvaplan -niva report no.<br />

6051– 1<br />

D<strong>at</strong>e<br />

25.09.2012<br />

No. of pages<br />

64<br />

Distribution<br />

Restricted<br />

Client’s reference<br />

SigurdHellem<br />

Summary<br />

On commissionto RENASNorway, Akvaplan-niva provided biological assistanceduring ROVsediment<br />

mappingaround the planned<strong>drilling</strong><strong>site</strong> <strong>at</strong> the Darwinprospect(PL531)in the BarentsSea, August2012.<br />

ROVfilming along a transect length of approxim<strong>at</strong>ely27 200 m was carried out, over approxim<strong>at</strong>ely17<br />

hours.Thisreport documentsthe distributionanddensitiesof the spongepopul<strong>at</strong>ionsin the area,together<br />

with other biologicalandsedimentcharacteristics.In general,the seafloorcloseto the planned<strong>drilling</strong> <strong>site</strong><br />

<strong>at</strong> the Darwinprospectcanbe characterizedasmainlycomprisedof mud, with somesc<strong>at</strong>teredstones. The<br />

area is visibly rich in bottom currents, and the visible sea-floor communitiesare domin<strong>at</strong>ed by sponges<br />

suchasGeodia,Aplysilla,Farreaoccaandassoci<strong>at</strong>edorganismssuchassqu<strong>at</strong>lobsters(Munida).<br />

Themain challengesfor spongeassessmentsare outlined, and the approachappliedduring the <strong>survey</strong>is<br />

describedin detail. Further,a summaryof st<strong>at</strong>eof knowledgeregardingspongesandmethodsof assessing<br />

spongeassemblagesisoutlined.<br />

Project manager Quality control ler<br />

SabineCochrane LarsHenrikLarsen<br />

© 2012 Akvaplan -niva AS. This report may only be copied as a whole. Copying of part of this<br />

report (sections of text, illustr<strong>at</strong>ions, tables, conclusions, etc.) and/or reproduction in other<br />

ways, is only permitted with written consent from Akvaplan -niva AS.


Table of Contents<br />

PREFACE ................................ ................................ ................................ ................................ ..........................4<br />

1 INTRODUCTION ................................ ................................ ................................ ................................ .............5<br />

1.1BACKGROUND................................ ................................ ................................ ................................ ...................5<br />

1.2SUMMARYOFPREVIOUSURVEYSATDARWIN................................ ................................ ................................ .........5<br />

1.2.1Baseline<strong>survey</strong>20<strong>11</strong>................................ ................................ ................................ ............................. 5<br />

1.2.2Additionalstudies2012................................ ................................ ................................ .........................6<br />

1.3AIMSANDCHALLENGES FORPRESENTSURVEY................................ ................................ ................................ ..........7<br />

2 MATERIALSANDMETHODS................................ ................................ ................................ ..........................8<br />

2.1VESSELANDNAVIGATION................................ ................................ ................................ ................................ .....8<br />

2.2ROV,VIDEOANDSTILLIMAGES................................ ................................ ................................ ............................. 8<br />

2.3SURVEYTRACKANDWAYPOINTS................................ ................................ ................................ ..........................10<br />

2.4OBSERVATIONLOGSANDEVENTLOGGING................................ ................................ ................................ .............<strong>11</strong><br />

2.4.1Stepstakento addresschallenges................................ ................................ ................................ .......<strong>11</strong><br />

2.4.2Eventlogging................................ ................................ ................................ ................................ .......12<br />

3 ABOUTSPONGESANDCHALLENGES FORASSESMENT................................ ................................ ...............13<br />

3.1OSPARHABITATCLASSIFICATI ONOFSPONGES ................................ ................................ ................................ .......13<br />

3.2SPONGESIN THESOUTH-WESTERNBARENTSEA................................ ................................ ................................ ....13<br />

3.3ABOUTSPONGES IN GENERAL................................ ................................ ................................ .............................. 16<br />

3.4RED-LISTEDSPONGES ................................ ................................ ................................ ................................ ........18<br />

3.5SPONGESASECOSYSTEMENGINEERS ................................ ................................ ................................ ....................19<br />

4 ABUNDANCEQUANTIFICATIONCHALLENGES - CASESTUDYSALINA,JUKSAANDDARWIN.........................21<br />

4.1GENERAL................................ ................................ ................................ ................................ ........................21<br />

4.2CURRENTAPPROACHES – ASSESSINGCOVERAGE ................................ ................................ ................................ .....22<br />

5 RESULTSANDDISCUSION................................ ................................ ................................ ...........................25<br />

5.1GENERALOBSERVATIONS ................................ ................................ ................................ ................................ ...25<br />

5.2SEAFLOORCONDITIONS................................ ................................ ................................ ................................ .....26<br />

5.2.1Sedimentcomposition................................ ................................ ................................ .........................26<br />

5.2.2Litter andotherhumanimpacts................................ ................................ ................................ ..........26<br />

5.2.3Seashorealgaeandfishfalls................................ ................................ ................................ ................27<br />

5.3DISTRIBUTIONMAPSANDSELECTED IMAGES................................ ................................ ................................ ..........27<br />

5.3.1Generaloverview................................ ................................ ................................ ................................ . 27<br />

5.3.2Plotsof spongedistributionanddensity................................ ................................ .............................. 28<br />

5.3.3Overallassessmentof spongedensities<strong>at</strong> the Darwin<strong>site</strong>................................ ................................ . 36<br />

5.3.4Integr<strong>at</strong>edassessment – baseline<strong>survey</strong>anddetailed<strong>site</strong><strong>survey</strong>................................ ......................37<br />

5.3.5Dominantspongespeciesrecordedin the current<strong>survey</strong>................................ ................................ ...38<br />

5.3.6Trawltracks................................ ................................ ................................ ................................ .........44<br />

5.3.7Generalimpressions(images)................................ ................................ ................................ ..............45<br />

5.4ENVIRONMENTALCOSTSANDBENEFITSFORDISCHARGESCENARIOS ................................ ................................ ............48<br />

5.4.1Dischargescenarios................................ ................................ ................................ ............................. 48<br />

5.4.2Depositionscenariosrel<strong>at</strong>edto areaof impactto sponges................................ ................................ . 50<br />

5.4.3Compar<strong>at</strong>iveassessment ................................ ................................ ................................ .....................56<br />

5.5ASSESSINGVULNERABILI TYOFSPONGEASSEMBL AGESTODRILLINGDISCHARGES ................................ ............................ 56<br />

5.5.1Wh<strong>at</strong> do sensitivityandvulnerabilitymean?................................ ................................ .......................56<br />

5.5.2Ongoingandplannedexperimentalandin situ workon assessingsensitivityof spongesto <strong>drilling</strong><br />

cuttings................................. ................................ ................................ ................................ ........................57<br />

6 REFERENCES ................................ ................................ ................................ ................................ .................58<br />

APPENDICES ................................ ................................ ................................ ................................ ....................60<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1


List of figures and tables<br />

FIGURE1.EXPLORATIONWELL<strong>7218</strong>/<strong>11</strong>-1 (DARWIN) LOCATIONINTHEBARENTSEA(SOURCE<br />

: RENAS) ................................ ...5<br />

FIGURE2.ROVTRANSECTS ANDRECORDSOFSPONGESFOUNDATDARWINDURINGTHEBASELINESURVEYIN20<strong>11</strong>.THERELATIVE<br />

AMOUNTSOFTHEVARIOUSCATEGORIES OFSPONGEDENSITIESARESHOWNINTHEPIECHART. SEDIMENTSAMPLESWERETAKEN<br />

ATTHEREDDOTS(AXESCROSSES ).THESPUDLOCATIONISMARKEDWITHA BLUETRIANGLE(SEEARROW).FIGUREFROMDNV<br />

(20<strong>11</strong>)................................. ................................ ................................ ................................ ............................. 6<br />

FIGURE3.MSNJORDVIKING................................. ................................ ................................ ................................ ........8<br />

FIGURE4.MAGNUMROVSYSTEMUNDERDEPLOYMENTFROMNJORDVIKING. THEBLUECYLINDERATTHEBASEOFTHEROVISTHE<br />

HDSTILLCAMERA. PHOTOSABINECOCHRANE . ................................ ................................ ................................ .........9<br />

FIGURE5.INSTALLINGHDCAMERAONTHEMAGNUMROV.INCLUDEDTOGIVESCALETOTHEFIGUREABOVE. PHOTOSABINE<br />

COCHRANE . ................................ ................................ ................................ ................................ ........................9<br />

FIGURE6.PLANNEDSURVEYROUTEFORDETAILEDSITESURVEYATDARWIN, AUGUST2012................................. ....................<strong>11</strong><br />

FIGURE7.OVER4 TONNESOFSPONGES(PRESUMABLY ACCIDENTA LLY) COLLECTED INA TRAWLDURINGA RESEARCH EXPEDITIONTO<br />

THETROMSØFLAKET , NORTHERNORWAYIN2007.IMAGE: NORWEGIANRESEARCHINSTITUTE<br />

(HTTP:// WWW.IMR.NO/ TOKT/ TOKTOMTALER/ OKOSYSTEMTOKTET /TOKTDAGBOK _2007/DEKKET_FULLT_AV_SVAMP/ NB-NO).<br />

................................ ................................ ................................ ................................ ................................ ......14<br />

FIGURE8.GEODIASPONGEASSEMBL AGEIN THENORTHWESTATLANTIC. IMAGE: NORTHWESTATLANTICFISHERIESORGANISATION ).<br />

................................ ................................ ................................ ................................ ................................ ......14<br />

FIGURE9.GENERALDISTRIBUTIONOFHABITAT-FORMINGSPONGES INTHENEATLANTICANDNORDICSEASASINDICATEDBYRECORDS<br />

IN THEOSPAR[…]DATABASE . CONCENTRATION OFSPONGESVARYCONSIDERABL YWITHINTHESEAREAS........................... 15<br />

FIGURE10.BARENTSEA. SPONGEBYCATCHIN RESEARCHBOTTOMTRAWLING1982-97SUPERIMPOSED ONFISHING..................16<br />

FIGURE<strong>11</strong>.GENERALSTRUCTURE OFA HYPOTHETICAL SPONGE. FIGUREFROMUNIVERSITYOFBERKELEY<br />

(HTTP:// WWW.UCMP.BERKELEY .EDU/ PORIFERA / PORIFERAMM .HTML)................................. ................................ ........17<br />

FIGURE12.SCANNINGELECTRONMICROSCOPE (SEM)IMAGEOFSPONGESPICULES. IMAGEFROM<br />

HTTP:// WWW.UCMP.BERKELEY .EDU/ PORIFERA / PORSKEL .HTML................................. ................................ .................17<br />

FIGURE13.LEFT: UNIDENTIFIEDSPONGEFROMTHEDEEP-WATERLICENSEBØNNA, HOMETOAPOPULATIONOFGAMMARID<br />

CRUSTACEANS ANDRIGHT: AGEODIACOLONY, OFFERINGSUBSTRATE ANDSHELTERFOROTHERORGANISMS . PHOTOLEFT:<br />

AKVAPLAN-NIVA/OCEANEERING /ENIRIGHT: ILLUSTRATION PHOTOGRA PH, UNKNOWNLOCATION................................. .....18<br />

FIGURE14.PHOTOSFROMMERCIER(2012)SHOWING(LEFT) A SEA-PENFIELDAND(RIGHT) DEVELOPINGLARVAEOFTHEREDFISH<br />

SEBASTESTUCKEDAMONGTHEPOLYPSOFTHESEAPENS . SIZEOFTHESEAPENS ISNOTGIVEN, BUTTHESCALEBARS ONTHERIGHT<br />

AREBOTH1 MM. ................................ ................................ ................................ ................................ ...............20<br />

FIGURE15.ABUNDANCESCALEDEFINEDBYDNV,2008.UPPERLEFTRARE, UPPE RIGHT, SCATTERED , LOWERLEFT, REGULARAND<br />

LOWERRIGHT, HIGHDENSITY ................................. ................................ ................................ ............................... 21<br />

FIGURE16.IMAGEFROMSALINA, 2010,CLASSIFIED ASHAVINGA HIGHDENSITYOFSPONGES . THEGENERALSEAFLOORPICTUREIS<br />

SIMILARALSOFORBOTHDARWINANDJUKSA. ................................ ................................ ................................ .........22<br />

FIGURE17.IMPROVISEDCONCEPTUAL VISUALISATIONOFSPONGECOVERAGE , USEDINJULY, 2012................................ ...........23<br />

FIGURE18.MATHEMATICALLY CALCULATED%COVERSCHEMEADOPTEDBYPALERUDANDHANSENDURINGTHEPRESENTVISUAL<br />

SURVEYATDARWIN, AUGUST, 2012................................. ................................ ................................ ....................24<br />

FIGURE19.VISUALREPRESENTATION OFDEPTHSRECORDEDDURINGTHESURVEY , BASEDONTHESURVEYLOG. THEPLANNE DRILLING<br />

LOCATIONATDARWINISSHOWNBYA YELLOWSTAR................................. ................................ ................................ 25<br />

FIGURE20.ILLUSTRATIVE IMAGE SHOWINGTYPICALSEDIMENTCONDITIONSATTHEDARWINFIELD, AUGUST, 2012.PHOTOS:<br />

OCEANEERINGAS................................ ................................ ................................ ................................ .............26<br />

FIGURE21.OBSERVATIONOFMARINELITTER. PIECEOFSHAPEDMETALOFUNKNOWNORIGIN................................. .................26<br />

FIGURE22.VISUALOBSERVATIONS OFESTIMATEDSPONGEDENSITIES , DARWIN, AUGUST2012................................ ...............28<br />

FIGURE23.MAPILLUSTRATING THEDENSITYESTIMATION(%COVERAGESPONGES ) ONTHESEDIMENTSURFACE. SEEMETHODS<br />

SECTIONFORQUANTIFI CATIONMETHOD. BLACKCROSSES INDICATEOBSERVATIONS ; DATAAREINTERPOLATE DBETWEENPOINTS<br />

BYTHEKRIGINGMETHODINSURFERPROGRAMME . ................................ ................................ ................................ 29<br />

FIGURE24.LOCATIONOFTHE30IMAGE SELECTED FORFURTHERANALYSIS ................................. ................................ .........30<br />

FIGURE25.PHOTOSFROMSELECTED POSITIONS , ILLUSTRATING THECATEGORY0-1 %COVERAGE . DARWINFIELD, AUGUST2012..31<br />

FIGURE26.PHOTOSFROMSELECTED POSITIONSWITH0-1 %COVERAGEOFSPONGESATDARWINAUGUST2012.THESEIMAGES<br />

TAKENEARLYMORNING, WHENFISHBECAMEABUNDANT................................. ................................ .......................... 32<br />

FIGURE27.PHOTOSFROMSELECTED POSITIONS(SEEMAPINFIGUREX) WITH1-5 %COVERAGEOFSPONGESATDARWINAUGUST<br />

2012................................. ................................ ................................ ................................ ............................. 33<br />

FIGURE28.PHOTOSFROMSELECTED POSITIONSWITH1-5 %COVERAGEOFSPONGESATDARWINAUGUST2012.......................34<br />

FIGURE29.PHOTOSFROMSELECTEDPOSITIONSWITH5-10%COVERAGEOFSPONGESATDARWINAUGUST2012.....................35<br />

FIGURE30.VISUALREPRESENTATION OFFREQUENCIES OFSPONGEABUNDANCECLASSESACROSSTHESTUDYAREA. UPPER:<br />

HISTOGRAMSHOWINGACTUALNUMBERSOFOBSERVATIONSANDLOWER: PIECHARTEXPRESSING RELATIVEFREQUENCIES AS<br />

Akvaplan-niva AS, 9296 Tromsø<br />

2 www.akvaplan.niva.no


PERCENTAGES . NOTETHAT0 %ABUNDANCE(NOTPRESENT ) SHOULDBECONSIDERED AS0-1 %.SEEIMAGESABOVE. THEREARE<br />

SELDOMNOSPONGESOVERMANYMETRESOFSEABED, THUS0 %ISA MATTEROFSCALEANDTIMING(TOTHEMILLISECOND ) OF<br />

WHENTHEOBSERVATIONWASMADE................................. ................................ ................................ ....................36<br />

FIGURE31.MAPOFOBSERVATIONS OFSPONGEDENSITIESCARRIEDOUTDURINGTHE20<strong>11</strong>BASELINESURVEYANDTHECURRENT<br />

2012DETAILEDVISUALSITESURVEY ................................. ................................ ................................ .....................37<br />

FIGURE32.IMAGESOFTHEMOSTDOMINANTSPONGESPECIES/ GROUPSOBSERVEDATTHEDARWINFIELD. ILLUSTRATION IMAGES<br />

FROMAKVAPLAN-NIVAARCHIVES ................................. ................................ ................................ .........................40<br />

FIGURE33.OBSERVATIONS OFTHEPOTATOSPONGEGEODIAATDARWIN, AUGUST, 2012................................. .....................41<br />

FIGURE34.OBSERVATIONS OFTHEYELLOWSPONGE , APLYSILLA , ATDARWIN, AUGUST2012................................. .................42<br />

FIGURE35.OBSERVATIONS OFTHEGLASS-SPONGEFARREAOCCAATDARWIN, AUGUST, 2012................................. ...............43<br />

FIGURE36.OBSERVATIONS FORTHEBLUESPONGEHYMEDESMA , DARWIN, AUGUST2012................................. ....................44<br />

FIGURE37.OBSERVATIONS OFTRAWLTRACKSATTHEDARWINFIELD, AUGUST, 2012................................ ........................... 45<br />

FIGURE38.UPPER: SPOTTEDWOLFISHRESTINGONTHESEDIMENT , AMONGTHEGLASS-SPONGEFARREAOCCA. LOWER:SAITHE,<br />

ATTRACTEDTOTHELIGHTSOFTHEROV................................ ................................ ................................ ...............46<br />

FIGURE39.UPPER: FISH(SAITHE) ANDPOSSIBLYA CORRODEDMETALFISHINGFLOATWITHSOMEBIOLOGICALGROWTHAND(LOWER)<br />

SPONGESONMUDDYSEDIMENT; GEODIAANDAPLYSILLA IN THEFOREGROUND , ANDFARREAOCCAFARTHERBACK(TOTHE<br />

RIGHT)................................. ................................ ................................ ................................ ............................ 47<br />

FIGURE40.LARGESTONEINFOREGROUND, WITHGROWTHOFWHATAPPEARSTOBEHYDROI DS. IN THEBACKGROUNDMUDDY<br />

SEDIMENTSANDERECTSPONGECOLONIES , FREQUENTED BYFISH................................. ................................ ................48<br />

FIGURE41.ILLUSTRATIONOFDEPOSITIONCASE1: DISCHARGE ATTHEORIGINALSPUDLOCATION. UPPER: OBSERVATIONS AND<br />

(LOWER) INTERPOLATED DISTRIBUTIONOFSPONGEABUNDANCES, WITHOVERLAYEDMODELEDSPATIALEXTENTOFDEPOSITED<br />

DRILLINGCUTTINGS(ASPROVIDEDBYSINTEF). ................................ ................................ ................................ .......51<br />

FIGURE42.ILLUSTRATIONOFDEPOSITIONCASE2: DISCHARGE FROMBOTHTHEORIGINALSPUDLOCATIONANDFROMRIG. UPPER:<br />

OBSERVA TIONSAND(LOWER) INTERPOLATED DISTRIBUTIONOFSPONGEABUNDANCES, WITHOVERLAYEDMODELEDSPATIAL<br />

EXTENTOFDEPOSITEDRILLINGMUD/ CUTTINGS(ASPROVIDEDBYSINTEF)................................ ................................ . 52<br />

FIGURE43.ILLUSTRATIONOFDEPOSITIONCASE6: DISCHARGE300M NORTHOFTHEORIGINALSPUDLOCATION. UPPER:<br />

OBSERVATIONS AND(LOWER) ESTIMATIONSOFSPONGEABUNDANCES , WITHOVERLAYEDMODELEDSPATIALEXTENTOF<br />

DEPOSITEDRILLINGMUD/ CUTTINGS(ASPROVIDEDBYSINTEF)................................ ................................ ...............53<br />

FIGURE44.ILLUSTRATIONOFDEPOSITIONCASE7: DISCHARGE ATTHENEWSPUDLOCATION(UPDATE21.09.2012).UPPER:<br />

OBSERVATIONS AND(LOWER). INTERPOLATED ESTIMATI ONSOFSPONGEABUNDANCES, WITHOVERLAYEDMODELEDSPATIAL<br />

EXTENTOFDEPOSITEDRILLINGMUD/ CUTTINGS(ASPROVIDEDBYSINTEF)................................ ................................ 54<br />

FIGURE45.ILLUSTRATIONOFDEPOSITIONCASE6A: DISCHARGENORTH-EASTOFTHESPUDLOCATION. UPPER: OBSERVATIONS AND<br />

(LOWER) INTERPOLATED ESTIMATIONSOFSPONGEABUNDANCES, WITHOVERLAYEDMODELEDSPATIALEXTENTOFDEPOSITED<br />

DRILLINGMUD/ CUTTINGS(ASPROVIDEDBYSINTEF). ................................ ................................ ............................... 55<br />

TABLE1.DESIGNATEDWAYPOINTSFORTHEPRESENTSURVEY. POSITIONSFROMRENAS................................ ........................10<br />

TABLE2.EXTRACTFROMTABLE8 INKÅLÅSETAL., 2010.COUNTYDISTRIBUTIONOFTHENUMBEROFTHREATENEDANDNEAR<br />

THREATENED SPECIESBASEDONDATAFROMTHERØDLISTEDATABASE , ANDCONCERNSKNOWNCURRENTOCCURRENCES OR<br />

ASSUMEDCURRENTOCCURRENCESBASEDONEARLIEROBSERVATIONS ................................. ................................ .........18<br />

TABLE3.EXTRACTFROMEUROPEANSTANDARDCEN/TC230/WG2/TG7"WATERQUALITY—VISUALSEABEDSURVEYSUSING<br />

REMOTELYOPERATEDANDTOWEDOBSERVATIONGEARFORCOLLECTIONOFENVIRONMENTAL DATA". ............................... 23<br />

TABLE4.LISTOFTHEMOSTFREQUENTLYRECORDEDSPONGESPECIES / GROUPSATTHEDARWINFIELD, AUGUST, 2012.SIMPLIFIED<br />

IDENTIFICATION CHARACTERISTICS AREPROVIDEDTOASSISTNON-SPECIALISTS ................................. ............................... 38<br />

TABLE5.EXTRACTFROMOSPAR2010,LISTINGTHEMAINPRESSURESWHICHMAYAFFECTSPONGEPOPULATIONS......................49<br />

TABLE6.SUMMARYOFENVIRONMENTALCOSTSANDBENEFI TSASSOCIATEDWITHTHETHREEMAINTYPESOFDISCHARGESCENARI OS.<br />

................................ ................................ ................................ ................................ ................................ ......50<br />

TABLE7.COMPARISONOFTHEEXTENTOFIMPACTSTOTHESEAFLOORANDSPONGEASSEMBLAGES , UNDER5 DIFFERENTDISCHARGE<br />

SCENARIOS . NOTECASE7 ISCALCULATED FORTHENEWSPUDLOCATION(UPDATED21.09.2012)WHEREASTHEOTHER<br />

SCENARIOS AREBASEDONTHEORIGINALSPUDLOCATION. ................................ ................................ .......................56<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 3


Preface<br />

In August,2012,Akvaplan-niva wascontractedby RepsolExplor<strong>at</strong>ionNorwayAS(RENAS) to conduct<br />

a detailed<strong>visual</strong>seafloor<strong>survey</strong><strong>at</strong> the Darwinprospectin the south-westernBarentsSea(PL531).<br />

The backgroundfor the <strong>survey</strong> is the presenceof deep-sea spongeassemblages(a habit<strong>at</strong> type<br />

definedassensitiveby OSPAR) . A detailedmappingis requiredin order for both the industryandthe<br />

regul<strong>at</strong>ory authorities to plan the most appropri<strong>at</strong>e str<strong>at</strong>egy for handlingof drill cuttings in areas<br />

with sponges. The main aim of the <strong>survey</strong>therefore was to map the distribution and densitiesof<br />

spongeassemblages,andgeneralseafloorconditionsin the vicinityof the planned<strong>drilling</strong> <strong>site</strong>.<br />

We thank the master, Paul Aasen,and crew of MS Njord Viking for excelent cooper<strong>at</strong>ion. ROV<br />

supervisorsand pilots from OceaneeringASare gr<strong>at</strong>efully acknowledgedfor their skill and cheerful<br />

<strong>at</strong>titude to unfamiliartasksregardingbiological<strong>survey</strong>ing.We thank the <strong>survey</strong>orsfrom iSURVEYAS,<br />

for enablinggeo-referencedbiologicalrecordings.Finally,specialthanksto SigurdHellem,RENAS, for<br />

<strong>survey</strong>planningand necessarydiscussions.Other RENASand Proactimastaff alsoare acknowledged<br />

for their contributions.<br />

Surveyparticipantswere:<br />

Akvaplan-niva (biologicalservices) OceaneeringAS(ROVservices)<br />

SabineCochrane(landcontact,reporting) RuneAustvoll(supervisor)<br />

JesperHansen(fieldwork) HansM. Dahle<br />

RunePalerud(fieldwork,maps,analyses) StianJacobsen<br />

HelenaFalk(imagecompil<strong>at</strong>ion) EmmaSletten<br />

KjetilRisnes<br />

iSURVEYAS(<strong>survey</strong>ors) HåvardFredheim<br />

BjørnEdvardsen, senioroffshore<strong>survey</strong>or<br />

DagAtle Skår, offshore<strong>survey</strong>or<br />

Akvaplan-niva AS, 9296 Tromsø<br />

4 www.akvaplan.niva.no


1 Introduction<br />

1.1 Background<br />

RepsolExplor<strong>at</strong>ionNorway AS(RENAS)is planningthe Darwin explor<strong>at</strong>ion well, <strong>7218</strong>/<strong>11</strong>-1, (ED50<br />

UTM34N 8.001.215,E4<strong>11</strong>.870)in PL531.Thewell is loc<strong>at</strong>edapproxim<strong>at</strong>ely133nauticalmiles(246<br />

km) North Westof Hammerfestand177nauticalmiles(327km)North Westof Banakairport.<br />

Drilling<strong>at</strong> the well is plannedto be carriedout in in December2012.Duringthe planning, a needfor<br />

a detailed baseline<strong>survey</strong> to map spongedensitiesin the vicinity of the well loc<strong>at</strong>ion has been<br />

identified. Thepurposeof the Surveywasto identify potentialareasnearthe <strong>drilling</strong>loc<strong>at</strong>ionsuitable<br />

for depositingdrill cuttings..<br />

Figure1.Explor<strong>at</strong>ionWell<strong>7218</strong>/<strong>11</strong>-1 (Darwin) loc<strong>at</strong>ionin the BarentsSea(source:RENAS)<br />

Thew<strong>at</strong>er depth <strong>at</strong> the loc<strong>at</strong>ion is approxim<strong>at</strong>ely320 metres., and the w<strong>at</strong>er movementalongthe<br />

<strong>seabed</strong>during the previous <strong>survey</strong> periods and assessmentscarried out in 20<strong>11</strong> and 2012 (DNV<br />

20<strong>11</strong>a; 20<strong>11</strong>b,2012) indic<strong>at</strong>eda strongnorth-eastwarddirection.<br />

1.2 Summary of previous <strong>survey</strong> s <strong>at</strong> Darwin<br />

1.2.1 Baseline <strong>survey</strong> 20<strong>11</strong><br />

Duringthe baseline<strong>survey</strong><strong>at</strong> Darwin in 20<strong>11</strong>(DNV20<strong>11</strong>)areaswith high density areasof sponges<br />

wereidentified(text insertedfrom DNV20<strong>11</strong>a/b):<br />

“Darwin is regardedas a speciesrich habit<strong>at</strong> with 49 taxa of benthic mega fauna recorded. The<br />

<strong>seabed</strong><strong>at</strong> Darwinhadhighdensitiesof soft bottom sponges.Spongecoverin c<strong>at</strong>egory“high density”<br />

constituted<strong>11</strong>.8%of the benthichabit<strong>at</strong>. ThismakesDarwinthe most spongerich field in the 20<strong>11</strong><br />

<strong>survey</strong>.Figure2 (note: Figure5-14 in original report) showsthe distribution of sponges<strong>at</strong> Darwin.<br />

Therewere no recordingsof coralsor red-listed speciesduringthe <strong>visual</strong>monitoring.Squ<strong>at</strong>lobsters<br />

were the most abundantmobile macro fauna and occurredin high numbersbetween spongesand<br />

pebbles.Rel<strong>at</strong>ivelyfew echinodermspecieswereobservedcomparedto other fields."<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 5


Figure2. ROVtransectsandrecordsof spongesfound<strong>at</strong> Darwinduringthe baseline<strong>survey</strong>in 20<strong>11</strong>. Therel<strong>at</strong>ive<br />

amountsof the variousc<strong>at</strong>egoriesof spongedensitiesare shownin the pie chart.Sedimentsamplesweretaken<br />

<strong>at</strong> the red dots (axescrosses).TheSPUDloc<strong>at</strong>ion is markedwith a blue triangle (seearrow). Figurefrom DNV<br />

(20<strong>11</strong>).<br />

The baseline <strong>survey</strong> did not reveal the presenceof soft or hard corals <strong>at</strong> the Darwin field.<br />

Furthermore,no red-list specieswere identified. The specieswith the highestregistereddensities<br />

were the squ<strong>at</strong> lobster Munida spp. as well as spongespeciessuch as Geodia. Rel<strong>at</strong>ively high<br />

densitiesof soft bottom spongespecieswererecordedin the area, with 85.2%of the benthichabit<strong>at</strong><br />

containing "sc<strong>at</strong>tered" to "high densities"of sponges.Darwinhad the highestrecordingsof sponge<br />

densities,rel<strong>at</strong>iveto other nearbyfields<strong>survey</strong>edin 20<strong>11</strong>. (text modifiedfrom DNV20<strong>11</strong>).<br />

Qualit<strong>at</strong>iveabundanceclassesappliedby DNVare: 1. Singlespecimen/rare, 2. Sc<strong>at</strong>tered,3. Common<br />

and4. Highdensity.Illustr<strong>at</strong>ionsof thesedensityclassific<strong>at</strong>ionsare givenin Section2, M<strong>at</strong>erialsand<br />

methods.<br />

1.2.2 Additional studies 2012<br />

Basedon the resultsfrom the BaselineSurvey,duringthe planningof the well RENASaskedDNVto<br />

go deeperinto the d<strong>at</strong>a and try to identify areaswith low densityof spongeswere a CTSsolution<br />

could be deployedfor cuttingsdeposition.In addition SINTEFwas askedto model the spreadingof<br />

cuttingsby different cuttingshandlingsolutions.<br />

DNV(2012) summarizetheir findings:"Thescopeof work wasto assessthe distribution of deepsea<br />

sponges<strong>at</strong> Darwinby d<strong>at</strong>a interpol<strong>at</strong>ions.Byusingspongedensityd<strong>at</strong>a from the BarentsSea<strong>visual</strong><br />

<strong>survey</strong>20<strong>11</strong>, interpol<strong>at</strong>ed maps were made, showingcalcul<strong>at</strong>edvaluesof spongedensitiesin the<br />

<strong>drilling</strong> area.Backgroundd<strong>at</strong>a like spongedensitiesfrom other fields and sedimentsamplingd<strong>at</strong>a<br />

was included in the evalu<strong>at</strong>ion of the sponge situ<strong>at</strong>ion <strong>at</strong> the Darwin field". DNV have made<br />

recommend<strong>at</strong>ionsfor loc<strong>at</strong>ionsfor drill cutting depositionth<strong>at</strong> were estim<strong>at</strong>edto havethe lowest<br />

impacton the spongeassemblages .<br />

Akvaplan-niva AS, 9296 Tromsø<br />

6 www.akvaplan.niva.no


1.3 Aims and challenges for present <strong>survey</strong><br />

RENAScommissioneda new and more detailed <strong>visual</strong> sea bed <strong>survey</strong>in the vicinity of the SPUD<br />

loc<strong>at</strong>ion (ED50UTM34N 8.001.215,E 4<strong>11</strong>.870)for the well <strong>at</strong> Darwin (PL531). The <strong>survey</strong> was<br />

performed with parallel ROVlines 25 m apart, coveringa square of 800 times 800m within the<br />

coordin<strong>at</strong>es(ED50UTM34)E 4<strong>11</strong>.600to E 412.400,and N8.000.800 to N 8.001.600,around the<br />

plannedDarwin explor<strong>at</strong>ionwell, <strong>7218</strong>/<strong>11</strong>-1. The estim<strong>at</strong>edtotal <strong>survey</strong>distancefor the proposed<br />

programis28 km (15nm).<br />

Theprimaryaimsof the environmental<strong>survey</strong>,asgivenby RENASare:<br />

Map the presenceof spongesand other vulnerable specieson the sea bed around the<br />

planned spud loc<strong>at</strong>ion with a higher resolution than during the 20<strong>11</strong> <strong>visual</strong> <strong>survey</strong> (DNV<br />

20<strong>11</strong>).If possible,the extentof areaswith sponge aggreg<strong>at</strong>ionsis to be defined;<br />

Distinguishbetweensoft benthosandhardbenthosspeciesandcommunities;<br />

Identify asmuchaspossibleof the observedfaun<strong>at</strong>o specieslevel;<br />

Givea descriptionof the generalvulnerabilityof the area.<br />

Secondaryaims:<br />

Map areaaccordingto coverage,accordingto table in NS9435:2009,and identify speciesor<br />

subgroupsin the area;<br />

Adviseand report on suitable cuttings deposition <strong>site</strong>s for a CTSsolution basedon fauna<br />

observ<strong>at</strong>ions(spongedensities).<br />

RENASfurther specified:"The mappingshall have the highest sp<strong>at</strong>ial resolution closeto the well<br />

loc<strong>at</strong>ions(combin<strong>at</strong>ionof 20<strong>11</strong>and2012<strong>survey</strong>).Themappingshallfollow the proposedp<strong>at</strong>h, but it<br />

shall also take actual observ<strong>at</strong>ionsinto accountduring ROV<strong>survey</strong>ing.The onboard biologistsare<br />

responsiblefor the p<strong>at</strong>h optimiz<strong>at</strong>ion.<br />

The<strong>survey</strong> will be conductedwith an ROVth<strong>at</strong> asa minimum havea video camerawith sufficient<br />

lights and subseapositioningsystem.It is preferableto haveHDstill picture camerawith flashlight,<br />

HD video camera and laser for distance measurements(two laser beams with a set distance<br />

between). HD still and camerashould be connected. The <strong>survey</strong>log shall provide geo-referenced<br />

biologicalregistr<strong>at</strong>ions.".<br />

Note:in practiceit is not alwayspossibleto provideall thesespecific<strong>at</strong>ionsunderthe time restrictions<br />

whichapply, but theseshallbethe aim.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 7


2 M<strong>at</strong>erials and methods<br />

2.1 Vessel and navig<strong>at</strong>ion<br />

Fieldworkwascarriedout usingthe Danish-registered85m vesselMS Njord Viking(Figure3). Total<br />

expedition period was from 17.08.2012 - 19.08.2012. Mobilis<strong>at</strong>ion and demobilis<strong>at</strong>ion was <strong>at</strong><br />

HammerfestPolarbase.<br />

Figure3. MSNjordViking.<br />

Vesselpositioningwascarriedout in cooper<strong>at</strong>ionbetweenthe ship'scaptainandthe <strong>survey</strong>orsfrom<br />

iSURVEYAS.<br />

2.2 ROV, video and still images<br />

A MAGNUM ® ROV(Remotely Oper<strong>at</strong>ed Vehicle) system was used, which is a side entry cage<br />

deployed,dual manipul<strong>at</strong>or 170hp heavy work classROV(Figure4 and Figure5). The systemis<br />

deliveredand oper<strong>at</strong>edby OceaneeringAS.Thecageor TetherManagementSystem(TMS)supplies<br />

an additional85hp,is capableof poweringskidsandalsohasthruster control andauto heading.The<br />

wincheswere equippedwith a heavecompens<strong>at</strong>iondevice.<br />

The videosystempre-installedon the MagnumROVwasused,andan additionalHighDefinition(HD)<br />

still camera (Imenco Tiger Shark)was installed. Two flashes were installed, but the angle was<br />

potentially not optimal becauseof the physicallimit<strong>at</strong>ions of the ROV-frame. A twin pair of Imenco<br />

line laserswereinstalledadjustedto 10 cmbetweenlines.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

8 www.akvaplan.niva.no


Figure4. MagnumROVsystemunderdeploymentfrom NjordViking. Thebluecylinder<strong>at</strong> the baseof the ROVis<br />

the HDstill camera.PhotoSabineCochrane.<br />

Figure5. InstallingHDcameraon the Magnum ROV.Includedto give scaleto the figure above.PhotoSabine<br />

Cochrane.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 9


2.3 Survey track and waypoints<br />

Theplannedwaypointswere providedby RENASandare givenin Table1.<br />

Table1. Design<strong>at</strong>edwaypointsfor the present<strong>survey</strong>.Positionsfrom RENAS.<br />

Easting Northing Easting Northing<br />

WP001 412400 8000800 WP034 412000 8001600<br />

WP002 412400 8001600 WP035 4<strong>11</strong>975 8001600<br />

WP003 412375 8001600 WP036 4<strong>11</strong>975 8000800<br />

WP004 412375 8000800 WP037 4<strong>11</strong>950 8000800<br />

WP005 412350 8000800 WP038 4<strong>11</strong>950 8001600<br />

WP006 412350 8001600 WP039 4<strong>11</strong>925 8001600<br />

WP007 412325 8001600 WP040 4<strong>11</strong>925 8000800<br />

WP008 412325 8000800 WP041 4<strong>11</strong>900 8000800<br />

WP009 412300 8000800 WP042 4<strong>11</strong>900 8001600<br />

WP010 412300 8001600 WP043 4<strong>11</strong>875 8001600<br />

WP0<strong>11</strong> 412275 8001600 WP044 4<strong>11</strong>875 8000800<br />

WP012 412275 8000800 WP045 4<strong>11</strong>850 8000800<br />

WP013 412250 8000800 WP046 4<strong>11</strong>850 8001600<br />

WP014 412250 8001600 WP047 4<strong>11</strong>825 8001600<br />

WP015 412225 8001600 WP048 4<strong>11</strong>825 8000800<br />

WP016 412225 8000800 WP049 4<strong>11</strong>800 8000800<br />

WP017 412200 8000800 WP050 4<strong>11</strong>800 8001600<br />

WP018 412200 8001600 WP051 4<strong>11</strong>775 8001600<br />

WP019 412175 8001600 WP052 4<strong>11</strong>775 8000800<br />

WP020 412175 8000800 WP053 4<strong>11</strong>750 8000800<br />

WP021 412150 8000800 WP054 4<strong>11</strong>750 8001600<br />

WP022 412150 8001600 WP055 4<strong>11</strong>725 8001600<br />

WP023 412125 8001600 WP056 4<strong>11</strong>725 8000800<br />

WP024 412125 8000800 WP057 4<strong>11</strong>700 8000800<br />

WP025 412100 8000800 WP058 4<strong>11</strong>700 8001600<br />

WP026 412100 8001600 WP059 4<strong>11</strong>675 8001600<br />

WP027 412075 8001600 WP060 4<strong>11</strong>675 8000800<br />

WP028 412075 8000800 WP061 4<strong>11</strong>650 8000800<br />

WP029 412050 8000800 WP062 4<strong>11</strong>650 8001600<br />

WP030 412050 8001600 WP063 4<strong>11</strong>625 8001600<br />

WP031 412025 8001600 WP064 4<strong>11</strong>625 8000800<br />

WP032 412025 8000800 WP065 4<strong>11</strong>600 8000800<br />

WP033 412000 8000800 WP066 4<strong>11</strong>600 8001600<br />

Theplanned<strong>survey</strong>trackisshownin Figure6.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

10 www.akvaplan.niva.no


Figure6. Planned<strong>survey</strong>routefor detailed<strong>site</strong> <strong>survey</strong><strong>at</strong> Darwin,August2012.<br />

The<strong>survey</strong>grid comprised33 lines,eachof which is 800m in length.Thedistancebetweenthe lines<br />

is 25 m. The total length of the <strong>survey</strong> route (using a hypothetical straight line between the<br />

waypointsand includingthe transit between lines) was approxim<strong>at</strong>ely 27 200 m (26 400 m if only<br />

linesare included). All the abovewaypointswere used,althoughthe actualROVtrack variedslightly<br />

accordingto currentsand objects of biologicalinterest. Because currentswere reported to havea<br />

strongeasterlydirection,the directionof the maintracklineswasrot<strong>at</strong>ed 90 degrees.<br />

The ROVwas launchedon 18.08.2012<strong>at</strong> 13:53 local time (-2h for UTC),starting from the first<br />

waypoint <strong>at</strong> 14:41. The <strong>survey</strong> was completed on 19:08.2012 <strong>at</strong> 06:24 and ROVrecovery was<br />

completed <strong>at</strong> 06:47. Total video time was 17h 05m 06s, and total ROVdeploymenttime was the<br />

same(videopermanentlyon).<br />

2.4 Observ<strong>at</strong>ion logs and event logging<br />

2.4.1 Steps taken to address challenges<br />

Oneof the challengesof conducting biologicalanalysesfrom non-geo-referencedvideo and/or still<br />

photographsis the time-consumingwork of m<strong>at</strong>ching imagesor recorded 'events' to geographic<br />

positions.TheROVdive log recordsthe time of eachnote, or event taken,but the positionsneedto<br />

be m<strong>at</strong>chedwith the <strong>survey</strong>orlog.The<strong>survey</strong>orlog continuouslyrecordsthe ROVtrack,but doesnot<br />

containthe biologicalobserv<strong>at</strong>ions.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 <strong>11</strong>


Akvaplan-niva haspreviouslyworked with iSURVEYto developa systemwhich allowsthe biological<br />

events (i.e. observ<strong>at</strong>ions)to be taken without havingto stop the <strong>survey</strong>orlogging.Usually,event<br />

recordingrequiresa 'fix' procedure,whichtakesapproxim<strong>at</strong>ely3 minutesto complete.Thiswould be<br />

too time-consumingfor all our biologicalobserv<strong>at</strong>ions,and would have forced us to restrict the<br />

number of geo-referencedobserv<strong>at</strong>ionsmade. The <strong>survey</strong>orson-board from iSURVEYproduceda<br />

customised recording system, which allowed biologists to click on a number of pre-defined<br />

c<strong>at</strong>egories,asbiologicalrecordingsweremade.<br />

2.4.2 Event logging<br />

In the ROVcontrol room, the biologistsweregivena PClinkedto the <strong>survey</strong>log,andcouldmakegeoreferencedobserv<strong>at</strong>ionsas<br />

event logs. A number of pre-defined c<strong>at</strong>egorieswere made, allowing<br />

rapidrecording.Additionalnotescouldbemadefor eachof these.<br />

o Sediment(absenceof recordingmeansonly mud andsmallerstoneswereobserved):<br />

Stone<br />

Stonewith growth<br />

Boulder<br />

Boulderwith growth<br />

o Fauna(alphabeticalorder,l<strong>at</strong>in namefirst, colloquialdescriptivecharacteristicgiven)<br />

Sponges<br />

Aplysilla (yellow)<br />

Candelabrum(string)<br />

Axinella(funnel)<br />

Farreaocca(bumpy)<br />

Geodia(pot<strong>at</strong>o)<br />

Hymedesmia(blue)<br />

Polymastia(dog'sball; with spikes)<br />

Stylochordyla(stalked)<br />

Otherfauna<br />

Ascidiacea(seasquirts)<br />

Annelida(worms)<br />

Anthozoa(seaanemonesandseapens)<br />

Bryozoa<br />

Crustacea<br />

o Decapoda(Crabs)<br />

o Decapoda(Hermitcrabs)<br />

o Gammaridae(smallshrimps)<br />

o Isopoda<br />

o Munida(Squ<strong>at</strong>lobster)<br />

o Pandalus(the commercialshrimp)<br />

Echinoderm<strong>at</strong>a<br />

o Asteroidae(starfish)<br />

o Holothuroidae(seacucumbers)<br />

o Ophiuroidae(brittle-stars)<br />

o (pillow-stars)<br />

Fish<br />

Mollusca(shells)<br />

o Otherobserv<strong>at</strong>ions<br />

Litter (objectsspecified)<br />

Macroalgae(recordedto showconnectionsbetweenthe shoreandthe offshore<br />

shelf)<br />

Akvaplan-niva AS, 9296 Tromsø<br />

12 www.akvaplan.niva.no


3 About sponges and challenges for assessment<br />

3.1 OSPAR habit<strong>at</strong> classific<strong>at</strong>ion of sponges<br />

Offshore sponges in the south-western Barents Sea are classified under the OSPAR habit<strong>at</strong><br />

descriptionas"DeepSeaspongeaggreg<strong>at</strong>ions". Thefollowingtext is modifiedfrom OSPAR(2005):<br />

Deepseaspongeaggreg<strong>at</strong>ionsare principallycomposedof spongesfrom two classes:Hexactinellida<br />

andDemospongia.Glasssponges(Hexactinellidae)tend to be the dominantgroupof spongesin the<br />

deep sea although demospongidssuch as Cladorhizaand Asbestoplumaare also present. The<br />

massivespongesth<strong>at</strong> domin<strong>at</strong>e some areas include Geodia barretti, G. macandrewi,and Isops<br />

phlegraei.Theycan occur<strong>at</strong> very high densities,particularlyon the slopein areaswhere substr<strong>at</strong>e<br />

and hydrographicconditionsare favourable.Surveym<strong>at</strong>erial from a spongefield in the northern<br />

North Seaand other loc<strong>at</strong>ionshad a comparablediversityanddensityof spongeswith tropical reefs<br />

(Konnecker,2002). The spongesalso influence the density and occurrenceof other speciesby<br />

providingshelterto smallepifauna,within the osculaand canalsystem,and an elev<strong>at</strong>ed perch,e.g.<br />

for brittlestars(Konnecker,2002).Deep-seaspongeshavesimilarhabit<strong>at</strong> preferencesto cold-w<strong>at</strong>er<br />

corals,and henceare often found <strong>at</strong> the sameloc<strong>at</strong>ion.Researchhasshownth<strong>at</strong> the densem<strong>at</strong>s of<br />

spiculespresent around spongefields may inhibit colonis<strong>at</strong>ionby infaunal animals,resulting in a<br />

dominanceof epifaunalelements(Gubbay,2002).Inform<strong>at</strong>ion indic<strong>at</strong>esth<strong>at</strong> dominant speciesare<br />

slow growingtaking severaldecadesto reachlargesize(Klitgaard& Tendal,2001).Thehabit<strong>at</strong> and<br />

the rich diverse associ<strong>at</strong>edfauna is therefore likely to take many years to recover if adversely<br />

affected(Konnecker,2002).<br />

Theyoccurbetweenw<strong>at</strong>er depthsof 250-1300m(Bett & Rice,1992),where the w<strong>at</strong>er temper<strong>at</strong>ure<br />

rangesfrom 4-10°Candthere is moder<strong>at</strong>e currentvelocity(0.5knots).Deep-seaspongeaggreg<strong>at</strong>ions<br />

may be found on soft substr<strong>at</strong>aor hard substr<strong>at</strong>a,suchas bouldersand cobbleswhich may lie on<br />

sediment.Icebergplough-mark zonesprovidean ideal habit<strong>at</strong> for spongesbecausestableboulders<br />

and cobbles,exposedon the <strong>seabed</strong>,providenumerous<strong>at</strong>tachment/settlementpoints(B.Bett, pers<br />

comm.). However,with 3.5kg of pure siliceousspiculem<strong>at</strong>erial per m 2 reported from some <strong>site</strong>s<br />

(Gubbay,2002),the occurrenceof spongefields canalter the characteristicsof surroundingmuddy<br />

sediments.Densitiesof occurrenceare hardto quantify,but spongesin the classHexactinellidahave<br />

been reported <strong>at</strong> densitiesof 4-5 per m², whilst ‘massive’growth forms of spongesfrom class<br />

Demospongiahavebeenreported <strong>at</strong> densitiesof 0.5-1 per m 2 (B.Bett,pers. comm.).<br />

3.2 Sponges in the south -western Barents Sea<br />

Spongesare found in most sea-floor (benthic)faunalassemblages,both on hard andsoft substr<strong>at</strong>es.<br />

In the south-westernpart of the BarentsSea(precisearea not specifiedhere),spongescompriseup<br />

to 57 % of the benthic biomass(Ereskovsky,1995).Slightlyfarther east,along the Murman coast,<br />

almost80%of the recordedbiomasswasdue to sponges(Propp,1971).Extremelyhigh densitiesof<br />

spongesalso have been recorded in the Tromsøflaketarea west of the Troms/Finnmarkarea in<br />

northern Norway(Figure7).<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 13


Figure7. Over4 tonnesof sponges(presumablyaccidentally)collectedin a trawl duringa researchexpeditionto<br />

the Tromsøflaket, northern Norway in 2007. Image: Norwegian Research Institute<br />

(http://www.imr.no/tokt/toktomtaler/ okosystemtoktet/toktdagbok_2007/dekket_fullt_av_svamp/nb -no).<br />

TheNorwegianseafloorand habit<strong>at</strong> mappingprogrammeMAREANOhascharacterizedspongebeds<br />

asa habit<strong>at</strong> on the Tromsøflaket(seewww.mareano.no– <strong>at</strong> time of writing, spongemap facility out<br />

of order on web<strong>site</strong>).Densespongeaggreg<strong>at</strong>ionsare knownglobally.Geodiaspongebedshavebeen<br />

well documentedalsoin the north-westernAtlantic(Canada;Figure8).<br />

Figure 8. Geodia sponge assemblagein the Northwest Atlantic. Image: Northwest Atlantic Fisheries<br />

Organis<strong>at</strong>ion).<br />

In European w<strong>at</strong>ers, <strong>at</strong>tention has been raised by OSPARto dense, habit<strong>at</strong>-forming sponge<br />

associ<strong>at</strong>ions(Figure9).<br />

Akvaplan-niva AS, 9296 Tromsø<br />

14 www.akvaplan.niva.no


Figure9. Generaldistribution of habit<strong>at</strong>-forming spongesin the NEAtlantic and NordicSeasas indic<strong>at</strong>edby<br />

recordsin the OSPAR[…]d<strong>at</strong>abase.Concentr<strong>at</strong>ionof spongesvaryconsiderablywithin theseareas.<br />

In the BarentsSea,spongec<strong>at</strong>chesin trawls(fisheriesandresearch)havebeennoted (Figure10). The<br />

following is an extract from OSPAR(2010). "The western Barents Sea is well known for mass<br />

occurrencesof spongesfrom numerousscientificand fishermen sources(reviewedby Klitgaard&<br />

Tendal2004).Between150and 350m depth,spongesof up to 1 m diameterandcontributingup to<br />

95-98 %of the localtotal biomasssamplesand up to 5-6 kg*m-2 were found to occuron sandyand<br />

sandy-silty bottom with good w<strong>at</strong>er movement. The speciescomposition correspondsto the<br />

“Atlantic“ band group as describedby Klitgaardand Tendal(2004,seeabove)and includesGeodia<br />

barretti, G.macandrewi,Geodia(former Isops)phlegraei,I. pyriformes, andother species."<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 15


Figure10. BarentsSea.Spongebyc<strong>at</strong>chin researchbottom trawling 1982-97 superimposedon fishing<br />

effort 2004(asdensityof VMSd<strong>at</strong>a points,NorwayMin. Env.2005-2006).Redstar indic<strong>at</strong>esthe approxim<strong>at</strong>e<br />

positionof Salina, JuksaandDarwin.<br />

3.3 About sponges in general<br />

Spongesare filter-feeders,and therefore act asa direct link betweenthe w<strong>at</strong>er columnand benthic<br />

fauna. Most feed on m<strong>at</strong>ter dissolvedor suspendedin the w<strong>at</strong>er column, suchas diverseorganic<br />

m<strong>at</strong>erial, algae and bacteria. Their an<strong>at</strong>omy varies from small, simple forms to large complex<br />

structures,but essentiallythe bodyhasone or severalchambersthroughwhichw<strong>at</strong>er is pumped.<br />

Becausespongesare sessile,and they dependon w<strong>at</strong>er flow, they are reputed to be sensitiveto<br />

sediment<strong>at</strong>ion.However,d<strong>at</strong>a basedon experimentalstudiesare spares,and as a result, ongoing<br />

studies in Norway (Akvaplan-niva, IRIS,Institute of Marine Research)and intern<strong>at</strong>ionally, are<br />

addressingsensitivity of spongesto various discharges. This note will not addressthe issue of<br />

sensitivity,but will focuson distribution recordsandchallengesrel<strong>at</strong>ingto assessingdensity.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

16 www.akvaplan.niva.no


Figure <strong>11</strong>. General structure of a hypothetical sponge. Figure from University of Berkeley<br />

(http://www.ucmp.berkeley.edu/porifera/poriferamm.html ).<br />

Insidethe spongeis a densem<strong>at</strong>rix of spicules,whichform a skeletonto allow the animalto retain its<br />

shape (Figure 12). Thesespiculesare of siliceousand/or calcareousm<strong>at</strong>erial, dependingon the<br />

group.<br />

Figure 12. Scanning electron microscope (SEM) image of sponge spicules. Image from<br />

http://www.ucmp.berkeley.edu/porifera/porskel.html.<br />

Sponges,like many large sessile (non-moving) organisms,act as habit<strong>at</strong> for other organisms.<br />

Individualspongescan give shelter to for examplesmallcrustaceansand bristleworms(Figure13).<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 17


Somespongesform densereefs,and providehabit<strong>at</strong> for a wide rangeof organisms,in a similarway<br />

to coralreefs(seeBuhl-Mortensenet al.2010).<br />

Figure13. Left: unidentifiedspongefrom the deep-w<strong>at</strong>er licenseBønna,home to a popul<strong>at</strong>ion of gammarid<br />

crustaceansand Right: a Geodia colony, offering substr<strong>at</strong>e and shelter for other organisms.Photo left:<br />

Akvaplan-niva/Oceaneering/Eni right: Illustr<strong>at</strong>ionphotograph,unknownloc<strong>at</strong>ion.<br />

All spongesgive habit<strong>at</strong> to other organisms,but the ecosystemimplic<strong>at</strong>ionsvary with scale.Small,<br />

individualspongecoloniesare hometo mainlysmallinvertebr<strong>at</strong>esand bacteria,whereaslargereefformingspongescanoffer<br />

protection alsoto largerinvertebr<strong>at</strong>esandfish.<br />

3.4 Red-listed sponges<br />

The Norwegianred-list for species(Artsd<strong>at</strong>abanken,2010) lists one sponge,Geodiasimplicissima<br />

underc<strong>at</strong>egoryDD(d<strong>at</strong>adeficient).Listedin termsof countiesin Norway,there are no spongeslisted<br />

asbeingthre<strong>at</strong>enedor in declinein northern Norway(Table2).<br />

Table2. Extractfrom Table8 in Kålåset al., 2010.Countydistribution of the numberof thre<strong>at</strong>enedand near<br />

thre<strong>at</strong>ened speciesbased on d<strong>at</strong>a from the Rødlisted<strong>at</strong>abase,and concernsknown current occurrencesor<br />

assumedcurrentoccurrencesbasedon earlierobserv<strong>at</strong>ions.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

18 www.akvaplan.niva.no


Geodia belongs within the Demospongiae, and is an extremely species-rich genus (see<br />

http://www.marinespecies.org/aphia.php?p= taxdetails&id=132005). Differences between species<br />

generallylie in the finer detailsof the skeleton,or spicules,and therefore these usuallycannot be<br />

identified with certainty from pictures or videos.Geodiasimplicissimais regardedas a speciesof<br />

uncertain st<strong>at</strong>us. The following is an extract from the Intern<strong>at</strong>ional Marine SpeciesIdentific<strong>at</strong>ion<br />

Portalhttp://species-identific<strong>at</strong>ion.org/species.php?species_group=s ponges&id=234)<br />

SpeciesOverview<br />

GeodiasimplicissmaBurton (1931)is known only from a few fragmentsfrom Northern Norway.The<br />

differencewith the more commonG.barretti and G.cydoniumis microscopical:it hasan ectosomal<br />

palisadeof smalloxeaslyingperipheralto the crustof sterrasters.<br />

TaxonomicDescription<br />

Colour: Unknown.<br />

Shape,size,surfaceand consistency: Knownonly from a few fragments,so no detailsof the habit<br />

areknown.<br />

Spicules: Megascleres: Huge oxeas:2200 x 32 µm; "microxeas"(= cortical oxeas):250 x 4 µm;<br />

orthotriaenes:shaft1700x 48 µm, cladi320µm; a singlean<strong>at</strong>riaenewith cladiof 150µm wasfound.<br />

Microscleres: Sterrasters,spherical:70 µm; pycnasters:4 µm.<br />

Skeleton: (Geodiasimplicissimaskel) Ectosomal: a palisadeof microxeasis erectedon the sterraster<br />

layer, which in its turn is carriedby the cladi of the orthotriaenes.Choanosomal : radial bundlesof<br />

oxeasandorthotriaenes.<br />

Ecology: In fjords,10-75 m.<br />

Distribution: NorthernNorway.<br />

Etymology: The name presumably refers to the rel<strong>at</strong>ively simple spicule complement.<br />

Typespecimeninform<strong>at</strong>ion: Thetype is in the N<strong>at</strong>uralHistoryMuseum,London:BMNH1913.6.1.36.<br />

Remarks<br />

Thedescriptionis uns<strong>at</strong>isfactoryandthe specificdistinctnessisdoubtful.<br />

3.5 Sponges as ecosystem engineers<br />

Sponges,corals and also sea-pens have long been acknowledgedfor their role as autogenic<br />

(individual-based) ecosystemengineers (Miller et al., 2012 and numerous references therein).<br />

Ecosystem engineersprovide living spacefor other organisms(Figure14), or they may alter the<br />

physicalpropertiesof the immedi<strong>at</strong>ehabit<strong>at</strong> (in the caseof sponges,they filter large quantities of<br />

w<strong>at</strong>er daily, and provide small-scale shelter from bottom currents). Thus they can alter the<br />

biodiversityin areaswhichthey occupy,andhavea role in influencingsea-floor ecosystemfunction.<br />

ThelargeGeodiasponges,andalsoother unidentifiedbranchingforms,in the south-westernBarents<br />

Seaevidentlyprovidehabit<strong>at</strong> for organismssuchassqu<strong>at</strong> lobsters.Thesecanbe seenin burrows<strong>at</strong><br />

the baseof the sponge,with clawsextended.Alsoother invertebr<strong>at</strong>esareexpectedto takeshelterin<br />

this way. During filming, fish were frequently seen to feed from the bases of the sponges<br />

(presumablypreying on the resident invertebr<strong>at</strong>es),but they seldom did damageto the actual<br />

sponges.However,occasionally,fish were seento "accidentally"bite off a chunkof a sponge,and<br />

then l<strong>at</strong>er ejectit from their mouths.Personalobserv<strong>at</strong>ions,S.Cochrane.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 19


Figure14. Photosfrom Mercier(2012)showing(left) a sea-penfield and (right) developinglarvaeof the redfish<br />

Sebastestuckedamong the polypsof the seapens.Sizeof the seapensis not given,but the scalebarson the<br />

right are both 1 mm.<br />

The ecologicalrole of sponges,and their responsesto environmentalconditionsare to someextent<br />

documentedfor shallow-w<strong>at</strong>ers (seefor exampleBell & Smith,2004),we have few studieswhich<br />

clarify the role of coralsand spongesas autogenic engineersin deeperw<strong>at</strong>er (Miller et al., 2012).<br />

Thoseauthors further st<strong>at</strong>e"[…]nevertheless,many fishes and macroinvertebr<strong>at</strong>esinhabit deepw<strong>at</strong>er<br />

coral (Rogers,1999, Husebøoet al., 2002, Mortensen & Buhl Mortensen, 2005 and Stone,<br />

2006) and sponge(Beulieu,2001, Marliave et al., 2009) habit<strong>at</strong>s. Unlike shallow-w<strong>at</strong>er systems,<br />

where the processesconnectinghabit<strong>at</strong> with popul<strong>at</strong>ionsand communitiesof dependantorganisms<br />

are rel<strong>at</strong>ively well understood,the role of habit<strong>at</strong> structure, includingth<strong>at</strong> of autogenicecosystem<br />

engineers,in deep-w<strong>at</strong>er communitiesis still uncleardue to lack of small-scaleobserv<strong>at</strong>ionaland<br />

experimentalstudies(Auster,2007).<br />

Obviously,the role of spongesas ecosystemengineersis a question of scale.At a small scale,an<br />

individual spongeprovides a habit<strong>at</strong> for a range of other organisms,but to be significant<strong>at</strong> an<br />

ecosystemscalerequiresth<strong>at</strong> large areasand/or large amountsof spongesare involved. Thisbegs<br />

the question to which we have no clear answer – how many sponges, or how large an area<br />

constitutes a resource of ecosystemsignificance?Further, how can we then assessissuesof<br />

vulnerabilityto humanactivities,or conserv<strong>at</strong>ionst<strong>at</strong>us.<br />

The UK Biodiversity Action plan (http://jncc.defra.gov.uk/pdf/UKBAP_BAPHabit<strong>at</strong>s -12-<br />

DeepSeaSpongeComms.pdf ) contains some interesting remarks, about sponge abundances,<br />

extractedfrom OSPAR(2008). "Densitiesof occurrenceare hard to quantify,but spongesin the class<br />

Hexactinellidahave been reported <strong>at</strong> densities of 4-5 per m², whilst ‘massive’growth forms of<br />

spongesfrom classDemospongiahave been reported <strong>at</strong> densitiesof 0.5-1 per m 2 (B. Bett, pers.<br />

comm.)." In this context,we canassumeth<strong>at</strong> "massivegrowth forms" meanslargeindividuals,such<br />

asthe Geodiaspecimensin the BarentsSea, whichcanmeasure30-40 cm andmorein diameter.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

20 www.akvaplan.niva.no


4 Abundance quantific<strong>at</strong>ion challenges - case study<br />

Salina, Juksa and Darwin<br />

4.1 General<br />

Not only are spongesdifficult to identify, but they alsoare difficult to quantify from the type of d<strong>at</strong>a<br />

usuallycarriedout in connectionwith pre-<strong>drilling</strong> <strong>survey</strong>s.TheCENstandard(CENprEN16260)for<br />

<strong>visual</strong>assessmentsgivesguidanceon an abundancescale,but this requires knowledgeof numbersof<br />

spongesper unit area.During<strong>visual</strong><strong>survey</strong>s,it is not alwayspossibleto uselaserbeamsduringall of<br />

the filming,andalsothe flight heightoften dependson individualconditions.Becausespongesin the<br />

south-westernpart of the BarentsSeaoften are veryp<strong>at</strong>chilydistributed,estim<strong>at</strong>inga standardarea<br />

(m2)from a smaller(or larger)areausuallyisnot represent<strong>at</strong>iveof the realsitu<strong>at</strong>ion.<br />

During<strong>visual</strong>assessmentscarriedout during 2008,a 4-level abundancescalewas devisedby DNV,<br />

basedon minimum to maximumspongedensitiesrepresent<strong>at</strong>ivefor the RegionIX area. Thisscale<br />

alsowasused<strong>at</strong> Salinain 2010(Akvaplan-niva)andJuksaandDarwinin 20<strong>11</strong>(DNV).<br />

Figure15. Abundancescaledefinedby DNV,2008.Upperleft rare,upperright, sc<strong>at</strong>tered,lowerleft, regularand<br />

lowerright, highdensity.<br />

At Salina,six of the imagesselectedfor detailed faunal analyseswere classifiedas havinga high<br />

densityof sponges,accordingto the abovescheme(Figure16).<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 21


Figure16. Imagefrom Salina,2010,classifiedashavinga high densityof sponges.Thegeneralseafloorpicture<br />

issimilaralsofor both DarwinandJuksa.<br />

When comparingimages,it is clear th<strong>at</strong> scaleplaysa very large part in how rel<strong>at</strong>ive abundanceis<br />

perceived(comparelower two imagesin Figure15 with Figure16). Subjectively,the round Geodia<br />

(?barretti) spongesare estim<strong>at</strong>ed to have a maximum diameter of around 10 cm, but without<br />

consistentlaserscale,we cannotsayfor certain.If the imageabovehadbeentaken<strong>at</strong> a lower zoom<br />

(or higher flight distance),it might havebeen difficult to distinguishbetween "regular abundance"<br />

and"high abundance".<br />

Anothersourceof biasis th<strong>at</strong> there hasbeenno <strong>at</strong>tempt to comparedensitiesreportedby trawl (see<br />

Figure7) with imagesfrom the south-westernpart of the BarentsSea. Intuitively, the phrase'high<br />

density' conjuresimagesof tonnes of sponges(capturedalong an entire trawl route), whereasthe<br />

reality in termsof individualcoloniesper m 2 (or km 2 ) is quite different.<br />

The baseline<strong>survey</strong>scarried out <strong>at</strong> the three fields were not intended to provide a quantit<strong>at</strong>ive<br />

assessmentof sponges,andthereforethe abundancescalesare only of useto comparebetweenthe<br />

five planned <strong>drilling</strong> <strong>site</strong>s documented. Subjectiveabundancescalesalso are notoriously userspecific,and<br />

so it also is not guaranteedth<strong>at</strong> another user would have classedthese imagesin<br />

exactlythe sameway(seealsoour methodologicalexperiencesoutlinedin Section4.2).<br />

4.2 Current approach es – assessing coverage<br />

DuringJuly,2012,CochraneandGeraudiefrom Akvaplan-niva conductedsimilar<strong>site</strong> assessments<strong>at</strong><br />

the nearbyfields Salina(PL533) and Juksa(PL490). Theneed for thesemissionsarose<strong>at</strong> very short<br />

notice,andwe <strong>at</strong>tempted to devisea methodologybasedon practicalpossibility,but asobjective as<br />

possible, and with reference to the intern<strong>at</strong>ional Europeanstandard for <strong>visual</strong> assessmentsof<br />

biodiversity(CENFprEN16260). Coverageof organismsis recommendedto be recordedin terms of<br />

numbersof individuals/coloniesper m 2 , or %coverfor encrustingorganisms(Table3).<br />

Akvaplan-niva AS, 9296 Tromsø<br />

22 www.akvaplan.niva.no


Table3. Extractfrom EuropeanstandardCEN/TC230/WG2/TG7"W<strong>at</strong>er quality— Visual<strong>seabed</strong><strong>survey</strong>susing<br />

remotelyoper<strong>at</strong>edandtowedobserv<strong>at</strong>iongearfor collectionof environmental d<strong>at</strong>a".<br />

The ideal would be to record numbersof spongesper unit area of <strong>seabed</strong>,but this is simply not<br />

possiblewhile the ROVis in motion. Further,unlessthe ROVis set <strong>at</strong> an altimeter andwith standard<br />

pitch androll, suchquantific<strong>at</strong>ionsare difficult. Thereasonwe chosenot to use'fixed' navig<strong>at</strong>ionfor<br />

the ROVis the <strong>survey</strong> programmerequestedth<strong>at</strong> objectsof biologicalinterest are filmed, and this<br />

requireszoomingin or out asappropri<strong>at</strong>e.<br />

Giventhe short mobilis<strong>at</strong>iontime, we constructeda makeshiftsystemto <strong>visual</strong>iseour recordingsin<br />

termsof %coverof sponges(i.e.how muchof the unit of seafloorobservediscoveredby sponges).If<br />

the actualvaluesturned out to be "wrong", we reasonedth<strong>at</strong> we couldadjust them l<strong>at</strong>er; the main<br />

point wasobjectivityandconsistencybetweenthe different observers.Ourfirst improvisedsystemis<br />

shownin Figure17.<br />

Figure17. Improvisedconceptual<strong>visual</strong>is<strong>at</strong>ionof spongecoverage,usedin July,2012<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 23


It is clear th<strong>at</strong> Cochraneadopted a "biologicallyintuitive" approach,the reasoningbeing th<strong>at</strong> since<br />

spongesare round or irregularlyshaped,even<strong>at</strong> maximalcoverage,there still will be someareasof<br />

sedimentvisible.Duringmobilis<strong>at</strong>ionfor the current <strong>survey</strong><strong>at</strong> Darwin,to two different Akvaplan-niva<br />

observers,Palerudand Hansenconductedthe <strong>survey</strong>. In the interveningtime between<strong>survey</strong>s,we<br />

were ableto givethe m<strong>at</strong>ter considerablygre<strong>at</strong>er<strong>at</strong>tention. Duringefforts to standardiserecording<br />

str<strong>at</strong>egies, they adopted a more precise "m<strong>at</strong>hem<strong>at</strong>ical" approach. A guidance scheme was<br />

developed,andthe precise%coverof spongerel<strong>at</strong>iveto sedimentwasrecordedandprinted out asa<br />

templ<strong>at</strong>e. It is clear th<strong>at</strong> the schemeabovegivesfar higher % cover figures than the m<strong>at</strong>hem<strong>at</strong>ical<br />

approach.<br />

Figure18. M<strong>at</strong>hem<strong>at</strong>icallycalcul<strong>at</strong>ed%coverschemeadoptedby Palerudand Hansenduringthe present<strong>visual</strong><br />

<strong>survey</strong><strong>at</strong> Darwin,August,2012.<br />

Bell& Smith(2004)adopteda m<strong>at</strong>hem<strong>at</strong>icalcoveragesystemto quantify spongesfrom still images<br />

of sponges. Theyprojectedthe photographsonto a grid of 400dots,andcountedthe numberof dots<br />

which landed on a sponge,and from this calcul<strong>at</strong>eda % cover figure. Thisis comp<strong>at</strong>iblewith the<br />

current approach, but in-situ <strong>visual</strong> <strong>survey</strong>spresent the challengeth<strong>at</strong> the oper<strong>at</strong>ors must make<br />

continual, qualit<strong>at</strong>ive decisionson estim<strong>at</strong>ed % cover. There is a clear potential optical illusion –<br />

actual23%coverasshownaboveintuitively seemsdenser.Trainingis required to ensureconsistent<br />

recordings.<br />

Wh<strong>at</strong>everthe classific<strong>at</strong>ionmethod used,it alsois veryclearth<strong>at</strong> we facean urgentchallenge– how<br />

to classifyspongedensitieswith correctmeaning?Thephrase5 %covertendsto provokereactions<br />

of – "th<strong>at</strong>'s not much", whereas<strong>at</strong> the samedensity,a trawl might pick up more than one tonne of<br />

spongesin a singlehaul. If another observeris more 'intuitively' biased,th<strong>at</strong> samedensitymight be<br />

reported<strong>at</strong> higherclassific<strong>at</strong>ions.<br />

We recommenda standardis<strong>at</strong>ionof approachesbetweenoper<strong>at</strong>ors<strong>at</strong> leastin Norway,to makesure<br />

we observeandreport in a similarmanner.Fromthis starting-point, we needfurther studyto be able<br />

to transl<strong>at</strong>e%coverinto vulnerabilityandprotectionst<strong>at</strong>us<strong>at</strong> an ecosystemscale.<br />

Forthe currentassessment,we placeemphasison the following:<br />

Visualimagesof spongeassemblages, to illustr<strong>at</strong>ethe variousabundancec<strong>at</strong>egories;<br />

Holistic and integr<strong>at</strong>ed assessmentof the impacts of <strong>drilling</strong> mud/cuttings on the<br />

environment<br />

o on the sea floor, but also other impacts of the rel<strong>at</strong>ed pressuressuch as energy<br />

consumption(emissionsto air);<br />

o interpret<strong>at</strong>ion of environmentalcostsandbenefitsof variousdischargescenarios.<br />

Assessmentof overallvulnerabilityandsensitivity– canwe answerthe necessary questions?<br />

Akvaplan-niva AS, 9296 Tromsø<br />

24 www.akvaplan.niva.no


5 Results and discussion<br />

5.1 General observ<strong>at</strong>ions<br />

A total of 1950observ<strong>at</strong>ionswere made,and recordedasevent fixeson the <strong>survey</strong>log. Thesewere<br />

distributedwithin c<strong>at</strong>egoriesasgivenin Section2.4.2.<br />

RecordedROVdepths variedfrom approxim<strong>at</strong>ely310 – 335 m (Figure19). Someminor troughsand<br />

depressionsare evident in the central to upper part of the <strong>survey</strong>area, notably also closeto the<br />

SPUDloc<strong>at</strong>ion. We estim<strong>at</strong>ethe ROVflying height to be between 1-2 m abovethe seafloor, such<br />

th<strong>at</strong> the actual w<strong>at</strong>er depths should be adjustedaccordingly.Despitethis, the chart givesa good<br />

represent<strong>at</strong>ionof the rel<strong>at</strong>ivevari<strong>at</strong>ionin bottom topographyacrossthe studyarea.<br />

Figure19. Visualrepresent<strong>at</strong>ionof depthsrecordedduring the <strong>survey</strong>,basedon the <strong>survey</strong>log. Theplanned<br />

<strong>drilling</strong>loc<strong>at</strong>ion<strong>at</strong> Darwinisshownby a yellowstar.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 25


5.2 Seafloor conditions<br />

5.2.1 Sediment composition<br />

Thesediment<strong>at</strong> Darwingenerallycomprisedmud, with occasionalsc<strong>at</strong>teredstonesand smallrocks<br />

on the surface(Figure20).<br />

Figure20. Illustr<strong>at</strong>ive imagesshowingtypical sedimentconditions<strong>at</strong> the Darwin field, August,2012.Photos:<br />

OceaneeringAS.<br />

5.2.2 Litter and other human impacts<br />

Twoobserv<strong>at</strong>ionsof litter were made(Figure21 andpossiblyalsoFigure39).<br />

Figure21. Observ<strong>at</strong>ionof marinelitter. Pieceof shapedmetalof unknownorigin.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

26 www.akvaplan.niva.no


5.2.3 Seashore algae and fishfalls<br />

Theoffshoreenvironmentoften is perceivedto be a barrenenvironment,remotefrom the processes<br />

which occur alongthe coast.However,often we find rel<strong>at</strong>ively fresh piecesof seaweedorigin<strong>at</strong>ing<br />

from the shore, andthis indic<strong>at</strong>esa dynamictransport p<strong>at</strong>hwayfrom the coastto the offshorestudy<br />

areas.<br />

Onlyoneobserv<strong>at</strong>ionof macroalgaewasmade(position4<strong>11</strong>675.2/ 8000871; not photographed).<br />

5.3 Distribution maps and selected images<br />

5.3.1 General overview<br />

During the ROV<strong>survey</strong>1366 pictures were taken of the sea bottom. The bottom generallyhad a<br />

smooth surfaceand the depth varied from appr. 310 – 335 m. Thedepth vari<strong>at</strong>ionswere affecting<br />

the angleof the ROVusingduringthe <strong>survey</strong>,resultingin a vari<strong>at</strong>ionof angledpictures.Asa result,it<br />

is difficult to make accur<strong>at</strong>ecalcul<strong>at</strong>ionsof the area of sediment present in each picture. A laser<br />

beam is showinga distanceof 10 cm between the lines, but also the length of the beam varies<br />

accordingto the angleof the ROV.<br />

Further, during periods where fish shoalsare abundantnear the seafloor (from around 4 am and<br />

towardsafternoon),the lights on the ROV<strong>at</strong>tracted largeamountsof curiousfish duringthe <strong>survey</strong>,<br />

mainly coalfish (Pollachiusvirens). Thesemadefilming of spongesdifficult becausethey stir up the<br />

sedimentsurface.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 27


5.3.2 Plots of sponge distribution and density<br />

We haveadopted two methods for presentingobserv<strong>at</strong>ionsof spongedensities.First, a 'dot-map'<br />

showingthe actualobserv<strong>at</strong>ionsmadealongthe ROVtrack (Figure22). Becausethis canbe <strong>visual</strong>ly<br />

difficult to interpret, we alsopresentdistribution maps,where the distribution of spongedensities<br />

areinterpol<strong>at</strong>edin-betweenthe actualobserv<strong>at</strong>ionpoints,usingthe SURFERprogramme(Figure23).<br />

Estim<strong>at</strong>edspongedensities(%of sedimentsurfaceoccupiedby sponge)rangedfrom 0 %to 15-25 %,<br />

andgenerallyweredistributedall overthe <strong>survey</strong>area.<br />

Figure22. Visualobserv<strong>at</strong>ionsof estim<strong>at</strong>edspongedensities,Darwin,August2012<br />

Akvaplan-niva AS, 9296 Tromsø<br />

28 www.akvaplan.niva.no


Figure23. Map illustr<strong>at</strong>ing the densityestim<strong>at</strong>ion(%coveragesponges)on the sedimentsurface.Seemethods<br />

sectionfor quantific<strong>at</strong>ionmethod.Blackcrossesindic<strong>at</strong>eobserv<strong>at</strong>ions;d<strong>at</strong>a are interpol<strong>at</strong>edbetweenpointsby<br />

the krigingmethodin SURFERprogramme.<br />

Basedon Figure23, a total of 30 positionswere selectedfor a more detailed analysisof biological<br />

conditions (Figure 24). Thesewere placed in areasrepresent<strong>at</strong>iveof the various spongedensity<br />

assessments,andserveto 'ground-truth' the <strong>visual</strong>assessmentsmadeduringthe field mission.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 29


Figure24. Loc<strong>at</strong>ionof the 30 imagesselected for further analysis.<br />

Theselectedimagesareshownin Figure25 to Figure29.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

30 www.akvaplan.niva.no


Position2. 0-1 % coverage Position3. 0-1 % coverage.Geodia Position4. 0-1 % coverage<br />

Position5. 0-1 % coverage Position8. 0-1 % coverage.GeodiaandAplysilla Position10.0-1 % coverage.Geodia<br />

Figure25. Photosfrom selectedpositions,illustr<strong>at</strong>ingthe c<strong>at</strong>egory0-1 %coverage.Darwinfield,August2012.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 31


Position16. 0-1 % coverage Position 18. 0-1 % coverage Position 20. 0-1 % coverage<br />

Position25. 0-1 % coverage Position 27. 0-1 % coverage.GeodiaandAplysilla Position 9. 0-1 % coverage.GeodiaandAplysilla<br />

Figure26. Photosfrom selectedpositionswith 0-1 %coverageof sponges<strong>at</strong> Darwinaugust2012.Theseimagestakenearlymorning,whenfishbecameabundant.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

32 www.akvaplan.niva.no


Position1. 1-5 % coverage.GeodiaandAplysilla Position 6. 1-5 % coverage.GeodiaandAplysilla Position 7. 1-5 % coverage.GeodiaandAplysilla<br />

Position <strong>11</strong>. 1-5 % coverage. Aplysilla, Farrea, Geodia, Position 12. 1-5 % coverage.GeodiaandAplysilla Position 14. 1-5 % coverage.Geodia,Aplysilla andFarrea<br />

HymedesmiandPolymastia<br />

Figure27. Photosfrom selectedpositions(seemapin figurex) with 1-5 %coverageof sponges<strong>at</strong> Darwinaugust2012.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 33


Position15. 1-5 % coverage.GeodiaandAplysilla Position 19. 1-5 % coverage.GeodiaandAplysilla Position 24. 1-5 % coverage.GeodiaandAplysilla<br />

Position26. 1-5 % coverage.Geodiaand?Mycale. Position29. 1-5 % coverage.Geodia,Aplysilla andFarrea Position13. 1-5 % coverage.GeodiaandAplysilla<br />

Figure28. Photosfrom selectedpositionswith 1-5 %coverageof sponges<strong>at</strong> DarwinAugust2012.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

34 www.akvaplan.niva.no


Position 17. 5-10 % coverage.Geodia, Aplysilla and<br />

Farrea<br />

Position 22. 5-10 % coverage.Geodia, Aplysilla and<br />

Farrea<br />

Position 30. 5-10 % coverage.Aplysilla, Farrea, Geodia, Position 21. 5-10 % coverage.Geodia, Aplysilla and<br />

Hymedesmi andPolymastia<br />

Farrea<br />

Figure29. Photosfrom selected positions with 5-10 %coverageof sponges<strong>at</strong> Darwinaugust2012.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 35<br />

Position 23. 5-10 % coverage.Geodia, Aplysilla, Mycale<br />

Position 28. 5-10 % coverage.Farrea


5.3.3 Overall assessment of sponge densities <strong>at</strong> the Darwin <strong>site</strong><br />

Figure30 showsthe proportion of the variousspongedensitiesencounteredacrossthe <strong>survey</strong>area.<br />

Most of the areawasclassedashaving1-5 %coverof sponges,with similarproportionsof areaswith<br />

practically0 %sponges(seefiguretext) and5-10 %coverage.<br />

Figure30. Visual represent<strong>at</strong>ionof frequenciesof spongeabundanceclassesacrossthe study area. Upper:<br />

histogram showingactual numbersof observ<strong>at</strong>ionsand lower: pie chart expressingrel<strong>at</strong>ive frequenciesas<br />

percentages.Note th<strong>at</strong> 0 %abundance(not present)shouldbe consideredas 0-1 %.Seeimagesabove.There<br />

are seldom no spongesover many metres of <strong>seabed</strong>,thus 0 % is a m<strong>at</strong>ter of scale and timing (to the<br />

millisecond)of whenthe observ<strong>at</strong>ionwasmade.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

36 www.akvaplan.niva.no


5.3.4 Integr<strong>at</strong>ed assessment – baseline <strong>survey</strong> and detailed <strong>site</strong> <strong>survey</strong><br />

Figure31showsthe combinedobserv<strong>at</strong>ionsof spongedensitiesmadeduring the baseline<strong>survey</strong>in<br />

20<strong>11</strong>(DNV)andthe current<strong>survey</strong>.<br />

Initially, we aimed to integr<strong>at</strong>e the abundancec<strong>at</strong>egoriesto provide a combinedassessment,but<br />

without re-analysing the original images,we could not integr<strong>at</strong>e these efficiently. A decisionwas<br />

taken to simply use the current recordings,but to work together with DNV in the future, to<br />

standardiserecordingapproaches.<br />

Figure31. Map of observ<strong>at</strong>ionsof spongedensitiescarriedout duringthe 20<strong>11</strong>baseline<strong>survey</strong>and the current<br />

2012detailed<strong>visual</strong><strong>site</strong><strong>survey</strong>.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 37


5.3.5 Dominant sponge species recorded in the current <strong>survey</strong><br />

Table4 liststhe mostcommonspongesrecorded<strong>at</strong> the Darwinfield.<br />

Table4. Listof the mostfrequentlyrecordedspongespecies/groups<strong>at</strong> the Darwinfield,August,2012. Simplified<br />

identific<strong>at</strong>ioncharacteristicsareprovidedto assistnon-specialists.<br />

Sponges Simplified identi fic<strong>at</strong>ion characteristics<br />

Aplysilla sp. Yellow lumps<br />

Axinella sp. White funnel<br />

Candelabrum phrygium Pink string<br />

Farrea occa White and bumpy<br />

Geodia sp. White pot<strong>at</strong>o<br />

Hymedesmia sp. Fl<strong>at</strong> and blue<br />

Polymastia sp. Dog's rubber ball (white)<br />

Stylochordyla borealis Stalked tulip (white)<br />

Imagesof eachof these species/groupsare shown in Figure32. Note, figure extendsover several<br />

pages.<br />

Aplysilla Aplysilla<br />

Axinella Axinella<br />

Akvaplan-niva AS, 9296 Tromsø<br />

38 www.akvaplan.niva.no


Candelabrum phrygium Candelabrum phrygium<br />

Farreaocca Farreaocca<br />

Geodia Geodia<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 39


Hymedesmia Hymedesmia<br />

Polymastia Polymastia<br />

Stylochordyla borealis Stylochordyla borealis<br />

Figure32. Imagesof the mostdominantspongespecies/groupsobserved <strong>at</strong> the Darwinfield. Illustr<strong>at</strong>ionimages<br />

from Akvaplan-nivaarchives.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

40 www.akvaplan.niva.no


Theapproxim<strong>at</strong>edistributionof the pot<strong>at</strong>o spongeGeodiais shownin Figure33.<br />

Figure33. Observ<strong>at</strong>ionsof the pot<strong>at</strong>o spongeGeodia<strong>at</strong> Darwin,August,2012.<br />

This obviously is a common species, and occurs acrossalmost all of the <strong>survey</strong> area. We can<br />

thereforeconsiderit asa keyspeciesfor the area,but it is by no meansrare.<br />

Figure34 showsthe observeddistribution of the yellow spongeAplysilla. It appearsto be somewh<strong>at</strong><br />

more p<strong>at</strong>chily distributed than Geodia, but still can be considereda common and typical sponge<br />

speciesfor the area.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 41


Figure34. Observ<strong>at</strong>ionsof the yellowsponge,Aplysilla,<strong>at</strong> Darwin,August2012.<br />

Figure35 and Figure36 showthe distributionsof the glassspongeFarreaoccaand the blue sponge<br />

Hymedesma. Boththesespongesare r<strong>at</strong>her morep<strong>at</strong>chilydistributed than Geodia, but still shouldbe<br />

consideredasdominantspecies/groupswhicharetypicalfor the area.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

42 www.akvaplan.niva.no


Figure35. Observ<strong>at</strong>ionsof the glass-spongeFarreaocca<strong>at</strong> Darwin,August,2012.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 43


Figure36. Observ<strong>at</strong>ionsfor the bluespongeHymedesma, Darwin,August2012.<br />

5.3.6 Trawl tracks<br />

Figure 37 shows the distribution of trawl tracks <strong>at</strong> the Darwin field, August,2012. Evidenceof<br />

trawling existsthroughout the area.Trawltrackswere observed<strong>at</strong> almosthalf of all the ROV<strong>survey</strong><br />

lines. A total of 19 observ<strong>at</strong>ionsof trawl tracksweremade.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

44 www.akvaplan.niva.no


Figure37. Observ<strong>at</strong>ionsof trawl tracks<strong>at</strong> the Darwinfield,August,2012.<br />

5.3.7 General impressions (images)<br />

During the course of the <strong>survey</strong>, it becameclear th<strong>at</strong> the Darwin area supports a healthy fish<br />

popul<strong>at</strong>ion (Figure38). Fishspeciesobservedwere saithe (Pollachiusvirens), Atlantic cod (Gadus<br />

morhua), spottedwolfish (Anarhichasminor), redfish(Sebastes) anda variety of others.Fishtend to<br />

become numerous <strong>at</strong> the sea floor, and <strong>at</strong>tracted to the ROVlights from early in the morning,<br />

approxim<strong>at</strong>ely4am (pers. com. Knut Bergen,OceaneeringROVsupervisor),and this also was the<br />

casein the present<strong>survey</strong>.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 45


Figure38. Upper:spottedwolffishrestingon the sediment,amongthe glass-spongeFarreaocca.Lower:saithe,<br />

<strong>at</strong>tractedto the lightsof the ROV.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

46 www.akvaplan.niva.no


Figure39. Upper:fish (saithe) and possibly a corrodedmetal fishing flo<strong>at</strong> with somebiologicalgrowth and<br />

(lower)spongeson muddysediment;Geodiaand Aplysillain the foreground,and Farreaoccafarther back(to<br />

the right).<br />

Figure40 showsa typicalexampleof a largestonewith growth.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 47


Figure40. Largestonein foreground,with growth of wh<strong>at</strong> appearsto be hydroids.In the backgroundmuddy<br />

sedimentsanderectspongecolonies,frequentedby fish.<br />

5.4 Environmental costs and benefits for disch arge scenarios<br />

5.4.1 Discharge scenarios<br />

Managementof human pressuresto the environment can be consideredwithin an ecosystem<br />

perspective,whereimpactsandremedialactionsoper<strong>at</strong>e<strong>at</strong> a rangeof time-scales(short,middleand<br />

long-term). Environmentalbenefits of remedialaction to one ecosystemcomponentmay result in<br />

neg<strong>at</strong>ive impacts on another, and these need to be evalu<strong>at</strong>edwithin an integr<strong>at</strong>ed assessment<br />

str<strong>at</strong>egy.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

48 www.akvaplan.niva.no


Table5. Extractfrom OSPAR2010,listingthe mainpressureswhichmayaffect spongepopul<strong>at</strong>ions.<br />

Fisheriesand CO2 emissionsare listed as posing large-scale,very high thre<strong>at</strong>s. Fisheriesare not<br />

consideredfurther here. However,CO2 emissionsare consideredto be one of the main causesof<br />

oceanacidific<strong>at</strong>ion,and this inhibits the calcific<strong>at</strong>ionprocesses,which certainly coralsand <strong>at</strong> least<br />

somegroupsof spongesrely upon.Therefore,emissionsto air duringoper<strong>at</strong>ionalactivitiesshouldbe<br />

seen in the ecosystemcontext of managementof spongeand/or coral habit<strong>at</strong>s in the vicinity of<br />

petroleum oper<strong>at</strong>ions.Oceanacidific<strong>at</strong>ionis listed asa pressurerequiringmonitoring within the EU<br />

Marine Str<strong>at</strong>egyFrameworkDirective(MSFD;Directive2008),and also fe<strong>at</strong>uresin the Norwegian<br />

Integr<strong>at</strong>edManagementPlanfor the Barents Sea(availableon www. regjeringen.no).<br />

ThepressuresMineralsexploit<strong>at</strong>ionandDumpingof solidwastecanbe seenwithin the MSFDimpact<br />

c<strong>at</strong>egoriesof habit<strong>at</strong> loss and habit<strong>at</strong> damage,in this case having local impacts (OSPAR,2010).<br />

Obviously, if local impacts become very numerous, there arises an increased risk of habit<strong>at</strong><br />

fragment<strong>at</strong>ion,but in the BarentsSea<strong>at</strong> this time, this appearsto be of minor concern.<br />

Thetime-scaleof impactsshouldalsobe given<strong>at</strong>tention. If spongesrecolonizelocallyaffected areas<br />

during the averagelifecycleof a successfulpetroleum project (perhaps30+ years),these might be<br />

consideredashavinghighimpacts(spongemortality) <strong>at</strong> a localgeographicscaleandshort-term time<br />

scale, but negligible in the long term. Such impacts are consideredwithin the MSFDas being<br />

'reversible'.Of major concernis permanentlossor irreversibleneg<strong>at</strong>iveimpacts.Oceanacidific<strong>at</strong>ion<br />

posessuchanirreversiblethre<strong>at</strong>.<br />

Theenvironmentalcostsandbenefitsof the three maindischargescenariosare givenin Table6.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 49


Table 6. Summaryof environmentalcosts and benefits associ<strong>at</strong>edwith the three main types of discharge<br />

scenarios.<br />

Scenario Cost Benefit<br />

Dischargeon sea floor<br />

directly<strong>at</strong> SPUD<strong>site</strong><br />

Discharge<strong>at</strong> seafloor to<br />

another loc<strong>at</strong>ion with<br />

lower spongedensity.<br />

5.4.2 Deposition scenarios rel<strong>at</strong>ed to area of impact to sponges<br />

SINTEFhave previously modelled likely sp<strong>at</strong>ial extent of depositions of <strong>drilling</strong> muds/cuttings,<br />

specified in terms of depositionthicknesses. We havethen compiledthe biologicalobserv<strong>at</strong>ionsof<br />

spongeabundanceswithin eachof the modelled areasof deposition.On this basis,we present an<br />

estim<strong>at</strong>e of area of affected seafloor containing the various c<strong>at</strong>egoriesof sponge abundances<br />

(Section5.4.3, Table7). TheRENASapplic<strong>at</strong>ionfor permit to oper<strong>at</strong>epresentsdifferent altern<strong>at</strong>ives<br />

for handlingof cuttingsreferred to asCase1 – 7. Thedischargescenariospresentedbelow refer to<br />

thesecases.<br />

Note: the dischargescenarioswere workedout usingthe originalSPUDloc<strong>at</strong>ion;but on 21.09.2012,<br />

Case7 wasupd<strong>at</strong>edto a new loc<strong>at</strong>ion.Thepositionsareasfollows(both usingED50Zone34N):<br />

Longitude L<strong>at</strong>itude<br />

Explor<strong>at</strong>ionWell -original 4<strong>11</strong>870 8001215<br />

Explor<strong>at</strong>ionWell - new 4<strong>11</strong>923 8001225<br />

1 CO2 emissionsare seenin the context of beinga major contributor to oceanacidific<strong>at</strong>ionthrough uptaketo<br />

the seafrom air.<br />

Short- to middle-term local mortality to<br />

spongeswithin anareaof between20 – 70 km 2<br />

(dependingon mortality to different particle<br />

sizefractions)<br />

Additional energy consumption (CO 2<br />

emissions 1 ) from vesselsin oper<strong>at</strong>ion using<br />

dynamicpositioning(DP). Averageof 30 m 3 fuel<br />

consumption per day per vessel is not<br />

unrealistic (pers. comm. Captain of Njord<br />

Viking).<br />

Physical damage to sea floor/sponges by<br />

pipeline.<br />

Localimpactsto another areahinderingfuture<br />

(short-to-middle-term) sponge recruitment <strong>at</strong><br />

this loc<strong>at</strong>ion<br />

Dischargefrom rig Additionalenergycosts(seeabove)<br />

Sediment<strong>at</strong>ionpotentially spreadover a wider<br />

area.<br />

Without d<strong>at</strong>a on lethal limits for<br />

exposure to sediment<strong>at</strong>ion, no<br />

guaranteedischargesare abovelethal<br />

limits.<br />

If not, riskof moreextensiveimpacts.<br />

Impact strictly localised.<br />

Minimalhabit<strong>at</strong> fragment<strong>at</strong>ion<br />

Long-term local recolonis<strong>at</strong>ion<br />

is likely (e.g. within the lifetime<br />

of the project– 30years+)<br />

Spongesdirectly <strong>at</strong> the SPUD<br />

<strong>site</strong>minimallyimpacted.<br />

Lower intensity of impacts<br />

immedi<strong>at</strong>ely around the SPUD<br />

loc<strong>at</strong>ion.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

50 www.akvaplan.niva.no


5.4.2.1 Deposition Case 1: to seafloor <strong>at</strong> original SPUD loc<strong>at</strong>ion<br />

Figure41 showsobserved and estim<strong>at</strong>ed spongeabundancesin rel<strong>at</strong>ion to a dischargescenario<br />

where<strong>drilling</strong>cuttingsaredepo<strong>site</strong>d<strong>at</strong> the originalSPUDloc<strong>at</strong>ion.<br />

Figure41. Illustr<strong>at</strong>ion of depositionCase1: discharge<strong>at</strong> the original SPUDloc<strong>at</strong>ion. Upper:observ<strong>at</strong>ionsand<br />

(lower) interpol<strong>at</strong>ed distribution of spongeabundances,with overlayedmodelledsp<strong>at</strong>ial extent of depo<strong>site</strong>d<br />

<strong>drilling</strong> cuttings(asprovidedby SINTEF).<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 51


5.4.2.2 Deposition Case 2: to seafloor (CTS) and from rig<br />

Figure42 shows observedand estim<strong>at</strong>ed spongeabundancesin rel<strong>at</strong>ion to a dischargescenario<br />

where the <strong>drilling</strong> cuttings from the top section are depo<strong>site</strong>d 200m in a north-north-westerly<br />

directionfrom the originalSPUDloc<strong>at</strong>ion, andthe remainingcuttingsaredischargedfrom the rig.<br />

Figure42. Illustr<strong>at</strong>ionof depositionCase2: dischargefrom both the originalSPUDloc<strong>at</strong>ionand from rig. Upper:<br />

observ<strong>at</strong>ionsand (lower) interpol<strong>at</strong>ed distribution of spongeabundances, with overlayedmodelled sp<strong>at</strong>ial<br />

extentof depo<strong>site</strong>d<strong>drilling</strong> mud/cuttings(asprovidedby SINTEF)<br />

Akvaplan-niva AS, 9296 Tromsø<br />

52 www.akvaplan.niva.no


5.4.2.3 Deposition Case 6: to seafloor 300 m north of original SPUD<br />

Figure42 shows observedand estim<strong>at</strong>ed spongeabundancesin rel<strong>at</strong>ion to a dischargescenario<br />

where<strong>drilling</strong>mudsaredepo<strong>site</strong>d300m north of the originalSPUDloc<strong>at</strong>ion.<br />

Figure 43. Illustr<strong>at</strong>ion of depositionCase6: discharge300 m north of the original SPUDloc<strong>at</strong>ion. Upper:<br />

observ<strong>at</strong>ionsand (lower) estim<strong>at</strong>ions of sponge abundances,with overlayed modelled sp<strong>at</strong>ial extent of<br />

depo<strong>site</strong>d<strong>drilling</strong> mud/cuttings(asprovidedbySINTEF).<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 53


5.4.2.4 Deposition Case 7: Deposition <strong>at</strong> new, reloc<strong>at</strong>ed SPUD loc<strong>at</strong>ion<br />

Figure44 showsobservedand estim<strong>at</strong>edspongeabundancesin a dischargescenariowhere <strong>drilling</strong><br />

mudsaredepo<strong>site</strong>d<strong>at</strong> the new SPUDloc<strong>at</strong>ion(X:4<strong>11</strong>923mE;Y8001225mN(ED50Zone34N).<br />

Figure44. Illustr<strong>at</strong>ion of depositionCase7: discharge <strong>at</strong> the new SPUDloc<strong>at</strong>ion (upd<strong>at</strong>e21.09.2012)<br />

. Upper:<br />

observ<strong>at</strong>ionsand (lower). Interpol<strong>at</strong>ed estim<strong>at</strong>ionsof spongeabundances,with overlayedmodelledsp<strong>at</strong>ial<br />

extentof depo<strong>site</strong>d<strong>drilling</strong> mud/cuttings(asprovidedbySINTEF).<br />

Akvaplan-niva AS, 9296 Tromsø<br />

54 www.akvaplan.niva.no


5.4.2.5 Deposition Case 6a: depositio n north -east of original SPUD<br />

Figure45 showsobservedand estim<strong>at</strong>ed spongeabundancesin rel<strong>at</strong>ion to a dischargescenario<br />

where <strong>drilling</strong> muds are depo<strong>site</strong>d<strong>at</strong> the seafloor, slightly to the north-east of the original SPUD<br />

loc<strong>at</strong>ion.<br />

Figure45. Illustr<strong>at</strong>ionof depositionCase6a: dischargenorth-eastof the SPUDloc<strong>at</strong>ion.Upper:observ<strong>at</strong>ionsand<br />

(lower) interpol<strong>at</strong>ed estim<strong>at</strong>ionsof spongeabundances,with overlayedmodelledsp<strong>at</strong>ial extent of depo<strong>site</strong>d<br />

<strong>drilling</strong> mud/cuttings(asprovidedbySINTEF).<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 55


5.4.3 Compar<strong>at</strong>ive assessment<br />

Table7 showsvariousexpressionsof extent of impactsunderthe variousdischargescenarios.Case7<br />

usesthe new SPUDloc<strong>at</strong>ionandis shownin bold.<br />

Table 7. Comparisonof the extent of impacts to the seafloor and spongeassemblages,under 5 different<br />

dischargescenarios.Note Case7 is calcul<strong>at</strong>edfor the new SPUDloc<strong>at</strong>ion (upd<strong>at</strong>ed21.09.2012)whereasthe<br />

otherscenariosarebasedon the originalSPUDloc<strong>at</strong>ion.<br />

Case1 Case2 Case6 Case7 Case6a<br />

Sp<strong>at</strong>ialextent of impacts<br />

Affectedarea1-3 mm (m2) 71426 <strong>11</strong>3031 71928 25341 71928<br />

Affectedarea3-10mm (m2) 44913 57388 45916 12249 45916<br />

Affectedarea10-30 mm (m2) 19767 18289 23587 7289 23587<br />

Numberof observ<strong>at</strong>ionsin affectedareas<br />

No.Observ<strong>at</strong>ions1-3mm0-1 %cover 27 42 19 16 57<br />

No.Observ<strong>at</strong>ions1-3mm1-5 %cover 272 397 233 <strong>11</strong>2 330<br />

No.Observ<strong>at</strong>ions1-3mm5-10 %cover 33 42 26 15 19<br />

No.Observ<strong>at</strong>ions1-3mm10-15 %cover 2 5 3 1 0<br />

No.Observ<strong>at</strong>ions1-3mm>15%cover 0 0 0 0 0<br />

Proportionsof observ<strong>at</strong>ionsin affectedareas<br />

%areaaffected1-3mm0-1%cover 8 % 9 % 7 % <strong>11</strong> % 14 %<br />

%areaaffected1-3mm1-5 %cover 81 % 82 % 83 % 78 % 81 %<br />

%areaaffected1-3mm5-10 %cover 10 % 9 % 9 % 10 % 5 %<br />

%areaaffected1-3mm10-15 %cover 1 % 1 % 1 % 1 % 0 %<br />

%areaaffected1-3mm>15%cover 0 % 0 % 0 % 0 % 0 %<br />

Case7 hasthe lowest sp<strong>at</strong>ialextent of impacts.Note th<strong>at</strong> areasaffected by higher sediment<strong>at</strong>ion<br />

than 30 mm thicknessarenot distinguishedin this exercise.<br />

5.5 Assessing vulnerability of sponge assemblages to <strong>drilling</strong><br />

discharges<br />

5.5.1 Wh<strong>at</strong> do sensitivity and vulnerability mean?<br />

We candefine sensitivityin terms of how muchreactionis causedby specificactions.In the caseof<br />

sponges,we canidentify wh<strong>at</strong> environmentalfactorshavea positiveandneg<strong>at</strong>iveeffect on sponges.<br />

Generally,sponges,likeother benthicorganisms,areaffectedby:<br />

Foodsupplyfrom the upperw<strong>at</strong>er layers<br />

Propertiesof the bottom w<strong>at</strong>er masses<br />

Sediment<strong>at</strong>ionof particles<br />

o Forspongesexcessivesediment<strong>at</strong>ionis assumedto causesmothering<br />

Exposureto chemicalsandphysicaldamage<br />

o May alter the ability to perform basic body functions (respir<strong>at</strong>ion, feeding and<br />

disposalof wasteproducts)<br />

Organismsare vulnerableif any of the abovefactorsare likely to be altered in the areain question,<br />

usuallyby ongoingclim<strong>at</strong>icchangesor humanactivities.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

56 www.akvaplan.niva.no


For example,spongesare sensitiveto physicaldamage(suchas trawling or anchor handling)and<br />

smothering(suchasfrom passingtrawls or depositionof <strong>drilling</strong> muds),but they are only vulnerable<br />

in areaswheretheseactivitiesactuallyoccur.<br />

Assessingsensitivity to <strong>drilling</strong> cuttings requires further research on sponge metabolism and<br />

responsesto various disturbances(see below). Sensitivity and vulnerability can therefore be<br />

measured<strong>at</strong> an individual scale,but for environmentalmanagementand conserv<strong>at</strong>ionissues,an<br />

ecosystemperspectiveusuallyis adopted.<br />

Arisingquestionsaretherefore:<br />

Howmuchimpactswill be causedby plannedactivities<br />

Amountof spongeseradic<strong>at</strong>edor reducedin function;<br />

Howlongwill the effectsremainvisibleon the sea-floor<br />

Arethe impactsshort,middleor long-term?<br />

Will remedialactionshaveother undesirableenvironmentalside-effects<br />

Disposalin marinehabit<strong>at</strong>sversustransportto coastalor terrestrialzone<br />

Disposalof solidwasteversusemissionsto air<br />

To d<strong>at</strong>e, we do not havereal answersto these questionsin rel<strong>at</strong>ion to spongeassemblagesin the<br />

Barents Sea.In responseto emerging needs, a number of researchiniti<strong>at</strong>ives are taking place<br />

(Akvaplan-niva,Institute for MarineResearchandIRIS;seealsobelow).<br />

5.5.2 Ongoing and planned experimental and in situ work on assessing<br />

sensitivit y of sponges to <strong>drilling</strong> cuttings.<br />

Recently(05.09.2012),Akvaplan-niva submitted a researchproposal to the NorwegianResearch<br />

CouncilPROOFNYprogramme,on the impacts of <strong>drilling</strong> cuttings on spongeassemblagesin the<br />

south-westernBarentsSea.RENAS, together with EniNorgeand Lundin,hasgivenan expressionof<br />

interest to function as an end-user to this research. In addition, these companieswill guide the<br />

selectionof experimentalexposureparameters,and, where possibleor practical,offer assistancein<br />

collection/ in-situ studyof sponges,shouldan opportunity ariseduringanyfuture <strong>visual</strong>surveillance<br />

or stand-by missionswhereROVservicescanbe usedto mutual benefit.<br />

Thisreal link betweenexperimentalresearchand industrialneedsis a major stepforwards,towards<br />

answeringsomeof the urgentquestionsraisedduringthis, andrel<strong>at</strong>eddetailed<strong>site</strong> <strong>survey</strong>s.<br />

Howmuchsediment<strong>at</strong>ionislethal to sponges?<br />

o Andwhichsedimentfractioncausesmost stressto sponges?<br />

How do spongesreact to exposureof someof the substancesusedduring oper<strong>at</strong>ions(e.g.<br />

BariteandBentonite)?<br />

How is the metabolism/respir<strong>at</strong>ion/ generalperformanceof spongesaffectedby sub-lethal<br />

exposureto <strong>drilling</strong>discharges?<br />

How fast do spongesgrow, and therefore wh<strong>at</strong> is the expected recovery period after<br />

depositionof <strong>drilling</strong>mud/cuttings?<br />

o note – another question arises- do spongesreadily recolonize,despitechangesin<br />

the grainsizecomposition<strong>at</strong> the sedimentsurface?<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 57


6 References<br />

Auster, P.J. 2007. Linking deep-w<strong>at</strong>er corals and fish popul<strong>at</strong>ions. Conserv<strong>at</strong>ionand Adaptive<br />

Managementof Seamountand Deep-w<strong>at</strong>er coral ecosystems.Rosensteilschoolof marine<br />

and<strong>at</strong>mosphericsciences.Miami, FL.USA.Pp93-99.<br />

Bett, B.J.and Rice,A.L.1992.Theinfluenceof hexactinellidsponge(Pheronemacarpenteri)spicules<br />

on the p<strong>at</strong>chydistribution of macrobenthosin the PorcupineSeabight(b<strong>at</strong>hyalNEAtlantic).<br />

Ophelia,36:217–226.<br />

Beulieu,S.E.,2001.Life on glasshouses.Spongestalk communitiesin the deepsea.Marine Biology<br />

138:803-817.<br />

CENFprEN16260 W<strong>at</strong>er quality - Visual<strong>seabed</strong><strong>survey</strong>susing remotely oper<strong>at</strong>ed and/or towed<br />

observ<strong>at</strong>iongearfor collectionof environmentald<strong>at</strong>a.<br />

DNV20<strong>11</strong>a. Baseline<strong>survey</strong>Darwin20<strong>11</strong>.ReportNo.2012-0448<br />

DNV20<strong>11</strong>b. Visualbaseline<strong>survey</strong>in the BarentsSea20<strong>11</strong>.ReportNo.20<strong>11</strong>-1695.<br />

DNV2012.Spongeassessment<strong>at</strong> Darwin.ReportNo.14L2KD5-2012.<br />

Gubbay, S.,2002. OffshoreDirectory:Reviewof a selectionof habit<strong>at</strong>s,communtiesand speciesof<br />

the North-EastAtlantic. WWF-UK:North-EastAtlantic Programme.<br />

Husebøo,A., Nøttestad,L.,Fosså,J.,Furevik,D., Jørgensen,S.2002.Distribution and abundanceof<br />

fish in deep-seacoralhabit<strong>at</strong>s.Hydrobiologia471:91–99.<br />

ICES2002.Reportof the WorkingGroupon EcosystemEffectsof Fisheries.Advisory Committeeon<br />

Ecosystems. ICESCM2002/ACE:03.<br />

Klitgaard,A.B. & Tendal,O.S.(2001).“Ostur”-“cheesebottoms”-spongedomin<strong>at</strong>edareasin Faroese<br />

shelf and slope areas. In Marine biological investig<strong>at</strong>ionsand assemblagesof benthic<br />

invertebr<strong>at</strong>esfrom the FaroeIsland,pp. 13–21. Ed.by G.Gruntseand O.S.Tendal.Kaldbak<br />

Marine BiologicalLabor<strong>at</strong>ory,the FaroeIslands.<br />

Klitgaard,A.B. (1995). The fauna associ<strong>at</strong>edwith outer shelf and upper slope sponges(Porifera,<br />

Demospongiae)<strong>at</strong> the FaroeIslands,northeasternAtlantic.Sarsia,80:1–22.<br />

Konnecker,G. (2002) SpongeFields.In: Gubbay,S. Offshore Directory. Reviewof a selection of<br />

habit<strong>at</strong>s,communitiesandspeciesof the North-EastAtlantic.WWF-UK.North-EastAtlantic<br />

Programme.<br />

Marliave, J.B., Conway, K.W., Gibbs, D.M., Lamb, A., Gibbs, C. 2009. Biodiversity and rockfish<br />

recruitment in spongegardensandbiohermsof southernBritishColumbia,Canada.Marine<br />

Biology156:2247–2254.<br />

Miller, R.J.,Hocevar,J.,Stone,R.,Fedorov,D. 2012.Structure-forming CoralsandSpongesand their<br />

use as Fish Habit<strong>at</strong> in Bering Sea Submarine Canyons. PLoS ONE 7(3): e33885.<br />

doi:10.1371/journal.pone.0033885 .<br />

Mortensen, P.B.,Buhl-Mortensen, L. 2005. Morphology and growth of the deepw<strong>at</strong>er gorgonians<br />

PrimnoaresedaeformisandParagorgiaarborea. MarineBiology147:775–788.<br />

OSPARCommission,2008:Descriptionsof habit<strong>at</strong>son the OSPARlist of thre<strong>at</strong>enedand/or declining<br />

speciesandhabit<strong>at</strong>s. Reference2008-07.<br />

OSPARCommission,2010. Backgrounddocument for deep sea sponge aggreg<strong>at</strong>ions.Public<strong>at</strong>ion<br />

Number: 485/2010, ISBN 978-1-907390-26-5. Available <strong>at</strong><br />

http://www.ospar.org/documents/dbase/public<strong>at</strong>ions/p00485_deep_sea_sp onge_aggrega<br />

tions.pdf<br />

Rogers, A. 1999.Thebiologyof Lopheliapertusa(Linnaeus1758)and other deepw<strong>at</strong>erreef-forming<br />

coralsand impactsfrom human activities.Intern<strong>at</strong>ional Reviewof Hydrobiology.pp 315–<br />

406.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

58 www.akvaplan.niva.no


Stone, R.P. 2006.Coralhabit<strong>at</strong> in the Aleutian Islandsof Alaska:depth distribution, fine-scalespecies<br />

associ<strong>at</strong>ions,andfisheriesinteractions.CoralReefs25:229–238.<br />

<strong>Detailed</strong> <strong>site</strong> <strong>survey</strong> <strong>at</strong> PL531 Darwin<br />

Akvaplan-niva AS Rapport 6051 - 1 59


Appendices<br />

Anelectronicsupplement(on externalharddisk)isgivento RENAS, includingall d<strong>at</strong>aandthis report.<br />

Akvaplan-niva AS, 9296 Tromsø<br />

60 www.akvaplan.niva.no

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!