04.06.2013 Views

DRAM Technology

DRAM Technology

DRAM Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>DRAM</strong><br />

<strong>Technology</strong><br />

Research & Development Division<br />

Yunseok Chun, Ph.D. (yunseok.chun@skhynix.com)<br />

© 2012 SK hynix Semiconductor Inc.<br />

This document is proprietary and confidential of SK hynix Semiconductor Inc.


Tutorial Overview<br />

<strong>DRAM</strong> <strong>Technology</strong><br />

Objectives<br />

• To provide an introduction to current <strong>DRAM</strong><br />

technology, <strong>DRAM</strong> fundamental,<br />

scaling trends & challenges


Contents<br />

• Overview<br />

• <strong>DRAM</strong> Fundamentals<br />

• <strong>DRAM</strong> Scaling<br />

• Wrap-up


Overview<br />

• Applications & Classification<br />

• Business<br />

• Cost<br />

• <strong>Technology</strong> Acceleration


Chips<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 5


Memory Chip Applications<br />

<strong>DRAM</strong><br />

Flash<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 6


Classification of Memory<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 7


Industry<br />

반도체 회사<br />

• 제조<br />

• 불량부품 교체 불가<br />

• Yield ~80%<br />

• 파급효과 : 小<br />

자동차 회사<br />

• 조립<br />

• 불량부품 교체 가능<br />

• Yield ~100%<br />

• 파급효과 : 大<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 8


History of <strong>DRAM</strong><br />

Dr. Robert H. Dennard,<br />

IBM Fellow<br />

created the one-transistor<br />

<strong>DRAM</strong> in 1966<br />

World 1’st Available <strong>DRAM</strong> Chip<br />

Intel 1103<br />

1966<br />

. 1 Kb<br />

. 3 Transistors<br />

1’st <strong>DRAM</strong> Chip with 1-Tr. & 1-Cap.<br />

MK4096<br />

[Source : S.Y. Cha(Hynix), VLSI Short Course 2011]<br />

1970<br />

. 4 Kb<br />

. 1-Tr. & 1-Cap.<br />

. Address multiplexing<br />

. VDD : 11.4~12.6V<br />

. Access time of 300ns<br />

. Refresh time of 2ms<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 9<br />

1973


<strong>DRAM</strong> in Semiconductor Industry<br />

Sensor<br />

[Source : WSTS 2011]<br />

Analog<br />

Opto<br />

Discrete<br />

$ 226.2 billion in 2011<br />

Other<br />

Memory<br />

Logic<br />

NAND SRAM<br />

Memory<br />

MPU<br />

Other Micro<br />

$ 22.4 billion for <strong>DRAM</strong><br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 10


<strong>DRAM</strong> Producer<br />

▷ Elpida<br />

▷ Hynix<br />

▷ Micron<br />

▷ Nanya<br />

▷ PowerChip<br />

▷ ProMos<br />

▷ Samsung<br />

▷ Winbond<br />

1985 1995 2000 2009 2015<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 11


Rapid Scaling<br />

2002<br />

58,062ea of 130nm<br />

256Mb DDR <strong>DRAM</strong> cell in a hair<br />

Thickness of a human hair : ~ 100㎛ (Average)<br />

[Source : S.Y. Cha(Hynix), VLSI Short Course 2011]<br />

2010<br />

506,844ea of 4xnm<br />

1Gb DDR3 <strong>DRAM</strong> cell in a hair<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 12


<strong>DRAM</strong> Scaling Trend<br />

Minimum Feature Size [nm]<br />

200<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Die cost =<br />

Cost =<br />

wafer cost<br />

net die * yield<br />

Die cost + Test cost + Package cost<br />

final test yield<br />

[Source : ITRS]<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 13<br />

[Year]


Net die ?<br />

200mm (8 inch)<br />

4<br />

10<br />

82<br />

86<br />

18<br />

76<br />

28<br />

38<br />

48<br />

58<br />

68<br />

ex) 86 ea vs. 210 ea<br />

300mm (12 inch)<br />

2배 이상의 cost가 들어가지 않으면 300mm Wafer 사용이 이익<br />

8<br />

18<br />

30<br />

44<br />

194<br />

204<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 14<br />

210<br />

58<br />

74<br />

90<br />

106<br />

122<br />

138<br />

154<br />

168<br />

182


<strong>DRAM</strong> 제품 제조 과정<br />

Design<br />

Circuit Design<br />

Wafer Processing<br />

Photo<br />

Lithography<br />

Test & Package<br />

Wafer<br />

Test<br />

Etch<br />

Layout Drawing Mask Making<br />

Diffusion<br />

Implantation<br />

Inspection & Measurement<br />

Thin Film<br />

(CVD/PVD)<br />

Die & Wire Encap-<br />

Dicing Bonding sulation <br />

CMP<br />

Cleaning<br />

Test &<br />

Burn-in<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 15


<strong>DRAM</strong> Fundamentals<br />

• MOSFET<br />

• Chip Architecture<br />

• <strong>DRAM</strong> Operation


What is MOSFET ?<br />

Source<br />

0V<br />

Gate<br />

Gate Oxide Gate Oxide<br />

N+ N+<br />

N+<br />

- - - - - - - - - N+<br />

X<br />

P-Substrate<br />

B<br />

V DS<br />

Drain<br />

Source<br />

Channel<br />

V GS > V T V DS<br />

Gate<br />

P-Substrate<br />

Off State On State<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 17<br />

B<br />

Drain


MOS-C ?<br />

Metal-Oxide-Semiconductor Capacitor<br />

MOSFET ?<br />

Metal-Oxide-Semiconductor Field Effect Transistor<br />

CMOS ?<br />

Oxide<br />

Complementary MOSFET : NMOS + PMOS Low Power<br />

V GB<br />

N+ Gate<br />

2 terminal 4 terminal<br />

N+ N+<br />

P-Substrate P-Substrate P-Substrate<br />

V GS<br />

B<br />

Short channel effect<br />

MOS-C MOSFET (Long Channel) MOSFET (Short Channel)<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 18<br />

V DS<br />

V GS<br />

B<br />

V DS


NMOS & PMOS Structure<br />

Vs<br />

NMOSFET PMOSFET<br />

Vg(Vgs>0) Vd(Vds>0)<br />

N+ Poly<br />

oxide<br />

e<br />

N+ N+<br />

P-type 기판(P-Well)<br />

Vb(Vbs0, Vbs


MOSFET Performance<br />

x<br />

Source<br />

L D<br />

V GS<br />

Gate<br />

N+ N+<br />

Leff<br />

Ldrawn<br />

P-Substrate<br />

B<br />

V DS<br />

Drain<br />

High Performance<br />

& Low Power<br />

1. Maximize On Current !<br />

2. Minimize Off Current !<br />

Z<br />

y<br />

I D V DS =2V<br />

V DS =0.05V<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 20<br />

Logarithmic Scale<br />

0<br />

V T<br />

Ideal MOS Current<br />

1 2 3<br />

On Current<br />

COX<br />

W<br />

I D GS <br />

2 L<br />

<br />

Off Current<br />

2 V V<br />

T<br />

V GS


<strong>DRAM</strong> Chip Architecture<br />

1 MAT<br />

Cell Array<br />

Bit line sense amp<br />

Peripheral Circuit<br />

Word Line<br />

Sub WL<br />

driver<br />

Bit Line<br />

Cell Transistor<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 21<br />

Cell Capacitor<br />

SN<br />

SNC<br />

BLC<br />

Cell<br />

BL<br />

Peripheral Transistor<br />

Peripheral


Devices inside <strong>DRAM</strong> Chip<br />

Cell<br />

Cell Transistor<br />

Cell Capacitor<br />

Word line, Bit line, Contacts<br />

1 MAT<br />

Cell Array<br />

Bit line sense amp<br />

Sub WL<br />

driver<br />

Peripheral Transistors<br />

High speed/ Low power<br />

S/A Transistor for Sensing<br />

SWD Transistor for driving WL<br />

with High Voltage<br />

Transistors for voltage generation<br />

Role Area Ratio<br />

Cell Data storage 50~55 %<br />

Core Data restoring 25~30 %<br />

peripheral Control-logic / In-Out interface ~20 %<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 22<br />

Word Line<br />

Bit Line


<strong>DRAM</strong> Cell<br />

Word Line<br />

SN SN<br />

SN<br />

Gate<br />

Cell capacitor<br />

(Charge storage)<br />

Si<br />

BL<br />

Bit Line<br />

capacitor<br />

1. Word Line<br />

Access Transistor Gate Control ( On/Off )<br />

Storage Node High Data 보다 승압된 젂원 Level 사용<br />

Poly-Si Layer (또는 WSi 2, W)<br />

2. Bit Line<br />

Data Transfer Line<br />

Read/Write 공용<br />

Half Vcore level Precharge for Power Saving<br />

3. Access Transistor<br />

Switch기능의 NMOS Transistor 1개<br />

Refresh 특성강화 위해 High Vt 설정<br />

4. Capacitor<br />

Data 저장 장소<br />

Storage Node의 Charge량에 의해 Data유지<br />

REFRESH 필요<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 23


BL<br />

1 Transistor 1 Capacitor <strong>DRAM</strong> Cell<br />

WL<br />

CAP<br />

BL<br />

WL<br />

2 Transistors on 1 Active<br />

Bit Line (V BL)<br />

: Data Path<br />

to Bit Line Sense Amp.<br />

Word Line (V (VWL) WL) WL)<br />

: Control signal<br />

to Access Transistor<br />

Body (V (VBB) BB) BB)<br />

: Substrate<br />

Storage Node (V SN)<br />

: Storing charges<br />

to Word line Driver<br />

Access (Cell) Transistor<br />

: Switching Bit line to storage node<br />

Common Plate (V CP)<br />

: Keeping Plate constant<br />

Cell Capacitor (C S)<br />

: Keeping stored charges<br />

If V SN is high voltage, then cell data is “1”.<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 24


Basic <strong>DRAM</strong> operation<br />

Capacitor<br />

(Cs)<br />

Q s=Cs*Vcore<br />

Cell Tr.<br />

(Vth, Ids, Rc)<br />

Bit-Line<br />

(Cbl)<br />

Vcore/2<br />

Q b=Cbl*Vcore/2<br />

Sense<br />

Amplifier<br />

/Bit-Line<br />

(Cbl)<br />

Vcore/2<br />

Q b=Cbl*Vcore/2<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 25


Basic <strong>DRAM</strong> Operation<br />

WL<br />

BL /BL<br />

BL S/A<br />

BL /BL<br />

Restore<br />

Sensing<br />

Active (RAS) → Row Address Input & Decoding → BL S/A Activation<br />

→ Read/Write (CAS) → Column Address Input & Decoding<br />

→ Column selection signal enable (Yi) → Data Sensing (or Write Drive) → Data Out<br />

V PP<br />

V Core<br />

V BLP<br />

V SS<br />

BL & /BL<br />

Data<br />

S/A<br />

Write<br />

Driver<br />

Active<br />

WL<br />

Command<br />

Enable<br />

S/A<br />

Enable<br />

Data Input<br />

Register<br />

Pipe<br />

Register<br />

WL<br />

Read/Write<br />

Available<br />

Output<br />

Buffer<br />

BL<br />

△V Charge Sharing<br />

/BL<br />

Input<br />

Buffer<br />

Precharge<br />

Command<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 26<br />

I/O<br />

PAD<br />

WL & S/A<br />

Disable


Basic Operation : Write<br />

V PP<br />

Total Cell Resistance to write data (Rc)<br />

= R ch (Channel Resistance of Cell Tr)<br />

+ R BLC (Bit Line Plug Contact Resistance)<br />

+ R SNC (Storage Node Contact Resistance)<br />

+ R BL (Bit Line Resistance)<br />

Vcore for writing “1”<br />

V SS (0V) for writing “0”<br />

Even though the technology shrinks down,<br />

Rext<br />

R ch is mainly depends on the V PP Level, mobility,<br />

dimension of Cell transistor, gate oxide thickness.<br />

But, the maximum value of V PP is limited by the<br />

reliability of gate oxide.<br />

Total Rc should be maintained under a certain<br />

value in order to satisfy tWR specification(~12ns).<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 27


Basic Operation : Read<br />

V core or V ss<br />

When the desired WL is selected, charge of<br />

capacitor is transferred between the storage cell<br />

/BL<br />

BL<br />

and the connected bit line.<br />

But, only small voltage is applied to the connected<br />

bit line due to high capacitance of bit line.<br />

Sense amplifier has to amplify that small difference.<br />

V BLP (~1/2V core)<br />

V BLP ± ΔV<br />

C B : Bit line capacitance ~ (3~4)xCs<br />

B<br />

Sense<br />

Amplifier<br />

( V V<br />

1<br />

C / C<br />

core BLP<br />

V <br />

~ 150 mV<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 28<br />

S<br />

)


Basic Operation : Retention<br />

Field<br />

Ox.<br />

4<br />

5<br />

-<br />

+<br />

-<br />

+<br />

-<br />

+<br />

-<br />

+<br />

SNC Gate BLC<br />

1<br />

Capacitor<br />

2<br />

Leakage paths losing data<br />

1) Junction leakage<br />

2) GIDL<br />

3) Off-leakage<br />

3<br />

The dynamic nature of <strong>DRAM</strong> requires that the memory<br />

be refreshed periodically so as not to lose the contents<br />

of the memory cells.<br />

Refreshed every 64ms typically (as defined by JEDEC)<br />

4) Field Tr. leakage<br />

5) Capacitor leakage<br />

Cells with low retention time (Tail Cells)<br />

are screened, and then replaced<br />

(repaired) by redundancy cells.<br />

Stored charge<br />

CS<br />

C<br />

<br />

tREF <br />

<br />

V<br />

B<br />

BLP 1 VOffset<br />

<br />

a CS<br />

<br />

Sensing ability<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 29


Basic Operation : Sensing Margin<br />

Sensing Signal<br />

ΔV =<br />

V core-V blp<br />

1+C BL/C S<br />

Sensing Margin<br />

= ΔV – S/A Offset<br />

S/A Offset<br />

In order for sense amplifier to amplify<br />

successfully, a certain amount of<br />

sensing margin is necessary except for<br />

intrinsic offset and noise from total<br />

charge sharing voltage.<br />

Noise by data pattern<br />

As technology shrinks down,<br />

△V decrease due to reduced Cell<br />

Capacitance (Cs) & Vcore<br />

Intrinsic offset increase by RDF<br />

Intrinsic offset by VT Mismatch<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 30


<strong>DRAM</strong> Scaling<br />

• Scaling Methods<br />

• Scaling Challenges


Target of Bit growth<br />

[Source : WSTS ]<br />

We should keep the cost-down to<br />

36% every year.<br />

Therefore, Bit growth should be<br />

more than 50% (considering Costdown<br />

and investments) for each<br />

technology generation.<br />

the number of net die can increase<br />

about 40% as the technology shrinks<br />

about 20%.<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 32


Scaling<br />

1. Design Rule<br />

. 80nm → 60nm → 40nm<br />

. Resolution<br />

2. Cell Layout<br />

. 16F 2 → 8F 2 → 6F 2 → 4F 2<br />

3. Chip Design<br />

. Cell Efficiency<br />

. Chip Architecture<br />

Wavelength Wavelength (nm) (nm)<br />

436<br />

365<br />

365<br />

248<br />

248<br />

193<br />

193<br />

Optical<br />

(Ultraviolet)<br />

DUV : Deep Ultraviolet<br />

VUV : Vacuum Ultraviolet<br />

EUV : Extreme Ultraviolet<br />

157<br />

126<br />

광원의 g-line i-line i-line line KrF KrF<br />

종류<br />

ArF ArF F 2 Ar 2<br />

DUV VUV<br />

13<br />

Non-Optical<br />

1 4x10-3 5x10-5 1 4x10-3 5x10-5 EUV XRL EPL IPL<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 33


Cell Area Factor<br />

toward more compact<br />

Unit Cell Area 8F 2 6F 2 4F 2<br />

Schematic<br />

Special<br />

Feature<br />

Normal Twist Tr Vertical Tr<br />

Sensing Folded Open Open<br />

Cell Cap. Area 4F 2 3F 2 2F 2<br />

S/A Pitch 4 BL Pitch 2 BL Pitch 2 BL pitch<br />

Merits<br />

WL<br />

BL<br />

SNC BLC<br />

2F<br />

Noise immunity<br />

Large Cs<br />

Demerits Large cell size<br />

Active area<br />

4F<br />

2F<br />

WL<br />

BL<br />

3F<br />

Medium cell<br />

Small Cb<br />

WL<br />

2F<br />

Large noise<br />

BL<br />

Integration difficulty<br />

2F<br />

Small cell<br />

Small Cb<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 34


Folded vs. Open BL Scheme<br />

SA<br />

Scheme<br />

Folded<br />

Bit line<br />

(8F 2 )<br />

Open<br />

Bit line<br />

(4/6F 2 )<br />

SA<br />

SA<br />

SA<br />

Cell Architecture<br />

6F 2<br />

Layout<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 35


Types of Transistors<br />

Type of<br />

Transistor<br />

Applied<br />

Voltage<br />

Gate Oxide<br />

Thickness<br />

Gate Length<br />

Contact<br />

Key<br />

Requirements<br />

Cell Transistor<br />

VPP ( ~ 3.0V) VDD (1.5V @DDR3)<br />

Peripheral Transistors<br />

Normal Transistor BLSA Latch Transistor SWD Transistor<br />

Vcore<br />

( 1.0~1.3V @DDR3)<br />

VPP (~3.0V)<br />

Thick Oxide Slim Oxide Thick Oxide<br />

Minimum Feature Size<br />

(ex. 45nm)<br />

Self-aligned contact<br />

with minimum gate<br />

spacer<br />

Low Junction leakage<br />

Short channel margin<br />

High operating current<br />

Minimum Lg in the<br />

peripheral circuit<br />

(ex. ≥ 80nm)<br />

Maximize Lg within<br />

pitched layout<br />

(ex. ≥ 120nm)<br />

Maximize Lg within<br />

pitched layout<br />

(ex. ≥ 140nm)<br />

Hole or Slit contact <br />

High Speed<br />

Short channel margin<br />

Small local variation Good Reliability<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 36


<strong>DRAM</strong> <strong>Technology</strong> Node<br />

Scaling Challenges of <strong>DRAM</strong> <strong>Technology</strong><br />

50nm<br />

40nm<br />

30nm<br />

20nm<br />

10nm<br />

Patterning<br />

Cell Capacitor<br />

Retention Time<br />

Sensing Margin<br />

Parasitic resistance<br />

Gate Oxide of Peri Tr<br />

Big Challenges !<br />

2008 2009 2010 2011 2012 2013 2014 2015<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 37<br />

Year


Shrink Limitations : Transistor<br />

Cell Tr<br />

Peri Tr<br />

Planar<br />

WSix<br />

N+<br />

BC-PMOS<br />

Recessed Fin Vertical Nanowire<br />

WSix<br />

P+<br />

SC-PMOS<br />

P+<br />

100 100 80 80 60 40 40 20 1020<br />

W<br />

W-SC<br />

<strong>Technology</strong> (nm)<br />

<strong>Technology</strong> Node (nm)<br />

W<br />

P+<br />

Strained<br />

/ ESD<br />

Fin<br />

/HKMG<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 38


Cell Transistor : Considerations on Scaling<br />

Lower Retention time caused<br />

by increased electric field.<br />

Lower On-Current caused by<br />

decreased dimension.<br />

Higher Off-Leakage current<br />

caused by short channel effect.<br />

[Source : S.Y. Cha(Hynix), VLSI Short Course 2011]<br />

Process margin<br />

D/R<br />

Refresh Time<br />

On-Current<br />

Off-Leakage<br />

Scale down<br />

How to increase retention time ?<br />

How to increase on-current ?<br />

How to improve short channel margin ?<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 39


Cell Transistor : History & Future Trends<br />

Cell Area [um2]<br />

0.2<br />

0.1<br />

0.05<br />

0.01<br />

0.005<br />

0.003<br />

0.002<br />

Planar Cell<br />

C-Halo<br />

Recess Gate<br />

8F2<br />

8F2<br />

Sphere RG<br />

150 120 100 80 60 50 40 30 20<br />

6F2<br />

6F2<br />

Gate<br />

Active<br />

Saddle Fin FET<br />

Buried Gate<br />

4F2<br />

Vertical Gate<br />

4F2<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 40


Why Scaling ?<br />

T<br />

pd<br />

<br />

CV<br />

I<br />

<br />

C ox WLV<br />

W<br />

eff C ox<br />

L<br />

( V <br />

V th ) <br />

Lateral scaling<br />

Iop ↑, Cap. ↓<br />

Higher density<br />

Higher performance<br />

Low Power<br />

Vertical scaling<br />

Vt ↓/ St ↑/△Vt↑/μ↓ Ig↑/Cj↑/Rs↑<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 41


Conventional Scaling Method for Peri Tr.<br />

Power<br />

Jn↓<br />

Vth↓<br />

Tox↓<br />

Lg↓<br />

+<br />

New<br />

<strong>Technology</strong><br />

Goal<br />

High performance<br />

Low power<br />

Performance<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 42


MOSFET Scaling Method<br />

S<br />

Wd<br />

eff COX<br />

W<br />

IOP GS <br />

2 L<br />

<br />

TSC<br />

2 V V<br />

V by DIBL <br />

l <br />

T<br />

G<br />

Lg<br />

Sub<br />

Vgs<br />

Tox<br />

Vds<br />

L<br />

/ 2l<br />

L<br />

/ l<br />

2( V 2 ) V<br />

e 2e<br />

<br />

bi<br />

t<br />

<br />

si oxWd<br />

ox<br />

<br />

B<br />

As gate length & width are scaling down,<br />

Tox should be also scaled by 1/k<br />

in order to maintain the same Iop & DIBL.<br />

DS<br />

D<br />

I<br />

'<br />

op<br />

<br />

l<br />

eff<br />

' <br />

C<br />

2<br />

Scaling factor k<br />

Gate Length (L) 1/k<br />

Gate Width (W) 1/k<br />

Gate Oxide (t ox) 1/k<br />

Depletion width (W d) 1/k<br />

'<br />

Voltage (V)<br />

W '<br />

L'<br />

Iop 1<br />

Power<br />

2 ' '<br />

V <br />

OX V<br />

GS T<br />

t<br />

' '<br />

si Wd<br />

<br />

ox<br />

ox<br />

<br />

'<br />

Iop Iop<br />

G<br />

S D<br />

Wd<br />

k<br />

1<br />

1<br />

Lg<br />

k<br />

Sub<br />

k<br />

k<br />

Vgs<br />

k<br />

Tox<br />

k<br />

' '<br />

& L / l L / l<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 43<br />

Vds<br />

k


How to Increase the Transistor Performance?<br />

COX<br />

W<br />

I D GS <br />

2 L<br />

<br />

(1) VDD 증가<br />

I D<br />

0 V T<br />

On Current 증가<br />

2 V V<br />

V GS<br />

T<br />

(2) Vt 감소<br />

I D<br />

Off Current 증가<br />

0 V T<br />

On Current 증가<br />

V GS<br />

(3) Width 증가<br />

I D<br />

Off Current 증가<br />

0 V T<br />

VDD는 감소 추세 Stand-by Power 증가 면적 증가<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 44<br />

On Current 증가<br />

V GS


How to Increase the Transistor Performance?<br />

COX<br />

W<br />

I D GS <br />

2 L<br />

<br />

(4) Gate Length 감소<br />

I D<br />

0 V T<br />

On Current 증가<br />

Off Current 증가<br />

2 V V<br />

V GS<br />

T<br />

(5) Gate Oxide thickness 감소<br />

I D<br />

Off Current 감소<br />

0 V T<br />

On Current 증가<br />

Transistor margin 열화 Best Practice !!<br />

V GS<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 45


New Approaches for Peripheral Tr.<br />

Structural<br />

Change<br />

Material<br />

Change<br />

Substrate<br />

Change<br />

eff COX<br />

W<br />

IOP GS <br />

2 L<br />

<br />

▶ Elevated S/D<br />

▶ FinFET<br />

▶ Multi-channel MOSFET<br />

▶ SOI Wafer<br />

▶ Hybrid Oriented Substrate<br />

▶ High Mobility Substrate<br />

▶ High-k / Metal Gate<br />

▶ Strained Si<br />

2 V V<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 46<br />

T


Homework<br />

1. “Peripheral Transistor Scaling” 하기위한 많은 Paper 들이 있습니다.<br />

다양한 Paper들 중 위 내용에 해당되는 Paper 한 개를 선택하여 요약 하십시오.<br />

- Title<br />

- Author<br />

- Journal name (IEDM, SOVT 등)<br />

- 기존 문제 및 연구 목적<br />

- 목적을 달성하기 위한 기본 원리 (무엇을 개선하기 위해 어떤 기술을 사용했는지)<br />

- 결과 (무엇이 얼마나 개선되었는지)<br />

- A4 1~2 Page 분량<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 47


Thank you

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!