03.06.2013 Views

(lolium perenne) and meadow fescue (festuca pratensis) - Poznań

(lolium perenne) and meadow fescue (festuca pratensis) - Poznań

(lolium perenne) and meadow fescue (festuca pratensis) - Poznań

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

University of Technology <strong>and</strong> Life Sciences in Bydgoszcz, Bydgoszcz, Pol<strong>and</strong><br />

OCCURRENCE AND ANTAGONISTIC PROPERTIES<br />

OF PERENNIAL RYEGRASS (LOLIUM PERENNE)<br />

AND MEADOW FESCUE (FESTUCA PRATENSIS)<br />

ENDOPHYTIC FUNGI<br />

D. Pańka <strong>and</strong> M. Jeske<br />

Abstract<br />

The objectives of the research were (i) to select perennial ryegrass <strong>and</strong> <strong>meadow</strong><br />

<strong>fescue</strong> ecotypes colonized by Neotyphodium lolii <strong>and</strong> N. uncinatum respectively, (ii) to<br />

determine colonisation of selected ecotypes by other endophytic fungi, <strong>and</strong> (iii) to<br />

evaluate antagonistic properties of N. lolii <strong>and</strong> N. uncinatum towards chosen fungi in<br />

dual cultures assays. Neotyphodium spp. were endophytes most often isolated from<br />

perennial ryegrass <strong>and</strong> <strong>meadow</strong> <strong>fescue</strong> ecotypes. Acremonium spp. was the second<br />

most frequently isolated group of endophytes in <strong>meadow</strong> <strong>fescue</strong>. These fungi occurred<br />

in 52.3% of ecotypes. Acremonium spp. <strong>and</strong> Paecilomyces spp. were second<br />

most often detected fungi (21.4%) in perennial ryegrass ecotypes. The level of infection<br />

with other fungi was low <strong>and</strong> did not exceed 14.2% (Fusarium graminearum)<br />

in perennial ryegrass ecotypes <strong>and</strong> 23.8% (Phialophora-like sp.) in <strong>meadow</strong> <strong>fescue</strong><br />

ecotypes. No antagonistic interaction between N. lolii, N. uncinatum isolates <strong>and</strong><br />

endophytic fungi from the genus Acremonium <strong>and</strong> F. graminearum was detected.<br />

Growth inhibition zones were observed in combinations with Neotyphodium spp.<br />

<strong>and</strong> following test fungi: F. solani, F. culmorum <strong>and</strong> Phialophora-like sp.<br />

Key words: endophytes, Neotyphodium spp., perennial ryegrass, <strong>meadow</strong> <strong>fescue</strong>,<br />

ecotypes, dual culture<br />

Introduction<br />

Grasses have developed many symbiotic associations with fungi during their<br />

evolution. It includes both endo- <strong>and</strong> ectomycorrhizas <strong>and</strong> relationships in which<br />

fungi systemically infect grass shoots. Fungi that live their entire life inside the<br />

Phytopathologia 52: 29–40<br />

© The Polish Phytopathological Society, <strong>Poznań</strong> 2009<br />

ISSN 2081-1756


30 D. Pańka <strong>and</strong> M. Jeske<br />

over ground part of the host grass belong to the latter group. They are called<br />

endophytes. These fungi form nonpathogenic, systemic <strong>and</strong> usually intercellular<br />

associations (Bacon <strong>and</strong> DeBattista 1991). The most important <strong>and</strong> the best<br />

known grass endophytes belong to the Neotyphodium/Epichloë genera of the tribe<br />

Balansieae (Clavicipitaceae, Ascomycetes). They are often called e-endophytes. The<br />

most widely known fungi from this group are Neotyphodium lolii – the endophyte of<br />

perennial ryegrass, N. uncinatum – a symbiont of <strong>meadow</strong> <strong>fescue</strong> <strong>and</strong> N. coenophialum<br />

that colonizes tall <strong>fescue</strong> (Glenn et al. 1996). E-endophytes are not the only group<br />

of symptomless, seed-borne fungal symbionts of grasses. Two other discovered<br />

groups are called p-endophytes <strong>and</strong> a-endophytes. The former consists of closely<br />

related Gliocladium-like endophytes in perennial ryegrass <strong>and</strong> Phialophora-like<br />

endophytes in <strong>fescue</strong>s (Latch et al. 1984, Philipson 1991, An et al. 1993). They are<br />

not related to e-endophytes <strong>and</strong> differ from them in many ways. The latter has been<br />

proposed to accommodate endophytes from the Acremonium genera (Naffaa et al.<br />

1998). Different endophytes may occur symbiotically in the same host plant (Latch<br />

et al. 1984, Philipson 1991). They interact with each other <strong>and</strong> can significantly influence<br />

the plant. Intensive research on Neotyphodium/Epichloë endophytes has allowed<br />

gathering ample information about associations they form. Effects of other<br />

endophytes on growth <strong>and</strong> development of the host plant are much less known.<br />

The aim of the study was to determine the occurrence of endophytic fungi in perennial<br />

ryegrass <strong>and</strong> <strong>meadow</strong> <strong>fescue</strong> ecotypes <strong>and</strong> their antagonistic properties.<br />

Materials <strong>and</strong> methods<br />

Perennial ryegrass <strong>and</strong> <strong>meadow</strong> <strong>fescue</strong> plants investigated in the study originated<br />

from various regions of Pol<strong>and</strong> <strong>and</strong> were maintained in the ecotype collection<br />

at the Mochełek Research Station, University of Technology <strong>and</strong> Life Sciences,<br />

Bydgoszcz, Pol<strong>and</strong>. Plants from the collection were screened for presence of<br />

Neotyphodium lolii <strong>and</strong> N. uncinatum in their tissues. The Phytoscreen Neotyphodium<br />

immunoblot kits (Agrinostics, Ltd. Co., Watkinsville, Georgia, USA) were used for<br />

this purpose. Cross sections of tiller bases were placed on a nitrocellulose membrane<br />

wetted with extraction buffer. After incubation overnight at 4°C, the membrane<br />

was blocked <strong>and</strong> monoclonal antibodies were added. After washing, second<br />

antibodies specific for the monoclonal antibodies were added. The membrane was<br />

washed again <strong>and</strong> protein-A with an alkaline phosphatase enzyme conjugate was<br />

added to complete the stacking effect. Then, the chromogen solution was added<br />

<strong>and</strong> a dark pink colour developed wherever the membrane bounded Neotyphodium<br />

spp. specific proteins (Phot. 1).<br />

Sixteen perennial ryegrass (LP) <strong>and</strong> 19 <strong>meadow</strong> <strong>fescue</strong> (FP) ecotypes infected<br />

with N. lolii <strong>and</strong> N. uncinatum, respectively, were chosen for further tests. Multiple<br />

isolations of endophytic fungi from plants were carried out. Three, 20 mm long,<br />

pieces of tiller base sampled from each ecotype were used for isolation of<br />

endophytic fungi in culture. The obtained pieces were divided into four cross sec-


Occurrence <strong>and</strong> antagonistic properties of perennial ryegrass... 31<br />

Phot. 1. Identification of Neotyphodium spp. in grass tillers using Agrinostics Phytoscreen<br />

immunoblot assay. Red marks on a nitrocellulose membrane indicate the endophyte presence<br />

(photo by D. Pańka)<br />

tions each. Surface sterilization was done by washing with 75% ethanol for 1 min<br />

<strong>and</strong> in 5% sodium hypochlorite for 1 min followed by three rinses in sterile distilled<br />

water for 2 min. Each part was then split further into a few small pieces<br />

which were placed on 9 cm Petri plates containing potato dextrose agar (PDA) medium<br />

(Difco) amended with 100 mg of penicillin G <strong>and</strong> 100 mg of dihydrostreptomycin<br />

sulphate to eliminate bacterial growth. Tissue segments were slightly<br />

pressed onto the surface of PDA medium. Petri plates were incubated at 22°C in<br />

darkness for 4–28 days. Fungi growing out from the inocula were transferred into<br />

fresh PDA medium, purified if needed <strong>and</strong> then transferred into PDA slants. Identification<br />

of endophytic fungal populations was performed on the basis of morphology<br />

of spores <strong>and</strong> fruiting bodies <strong>and</strong> cultural characteristics. Pathogenicity of<br />

some isolated fungi, potentially active as biological control agents (BCA), to perennial<br />

ryegrass <strong>and</strong> <strong>meadow</strong> <strong>fescue</strong> plants was checked.<br />

Antagonistic properties of N. lolii <strong>and</strong> N. uncinatum strains towards other<br />

endophytic or nonpathogenic fungi (test fungi): Acremonium sp., Fusarium solani, F.<br />

culmorum, F. graminearum <strong>and</strong> Phialophora-like sp. were tested in dual-culture assays<br />

in Petri plates with PDA medium. Three-week-old mycelial disks (5 mm of diameter)<br />

of N. lolii <strong>and</strong> N. uncinatum were placed on the surface of PDA in Petri plates<br />

about 3 cm from the edge of the plate <strong>and</strong> incubated for three–four weeks at 22°C<br />

in darkness (until colonies reached 10–15 mm of diameter). Then five 14-day-old<br />

mycelial discs of test fungi (5 mm of diameter) were placed in the Petri plates with<br />

N. lolii or N. uncinatum colony, keeping 2 cm distance between the fungal discs.<br />

There were four replicates for each combination. In control plates, only discs of the<br />

test fungi were placed centrally on PDA plate. Plates were incubated at 25°C in


32 D. Pańka <strong>and</strong> M. Jeske<br />

darkness up to 28 days, depending on growth rate of the test fungi. Width of<br />

growth inhibition zone (Christensen 1996) between fungal cultures on a plate <strong>and</strong><br />

individual biotic effect (Mańka 1974) for each assay were estimated. Measurements<br />

<strong>and</strong> observations were taken when colonies in control combinations<br />

reached the edge of the Petri plates. An average width of inhibition zone calculated<br />

from four replicates indicated the scale of inhibition in a combination. Two series<br />

of dual culture assays were performed.<br />

Results<br />

From each ecotype of perennial ryegrass <strong>and</strong> <strong>meadow</strong> <strong>fescue</strong> endophytic fungi<br />

from the genus Neotyphodium: N. lolii <strong>and</strong> N. uncinatum have been isolated respectively<br />

(Tables 1 <strong>and</strong> 2). Additionally, six species of other fungi colonizing perennial<br />

ryegrass have been obtained (Table 1). Second, most often isolated group of<br />

endophytes were Acremonium spp. <strong>and</strong> Paecilomyces spp. These fungi occurred in<br />

21.4% <strong>and</strong> 21.4% of the perennial ryegrass ecotypes, respectively. The perennial<br />

ryegrass infection with other fungi did not exceed 14.2%. Two Fusarium species: F.<br />

culmorum <strong>and</strong> F. graminearum were isolated from the perennial ryegrass ecotypes.<br />

Table 1<br />

Fungi isolated from perennial ryegrass (Lolium <strong>perenne</strong>) ecotypes<br />

Isolated fungi<br />

LP1 LP2 LP3 LP4<br />

Perennial ryegrass ecotypes<br />

LP5 LP6 LP7 LP8 LP9 LP10 LP11 LP12 LP13 LP14<br />

Neotyphodium lolii + + + + + + + + + + + + + +<br />

Acremonium spp. – – + + – – – – – – – – + –<br />

Fusarium culmorum – – – – – – – + – – – – – –<br />

Fusarium graminearum + – – – + – – – – – – – – –<br />

Paecilomyces spp. + – + + – – – – – – – – – –<br />

Colletotrichum<br />

graminicola<br />

– – + – – – – – – – – – – –<br />

Chaetomium spp. – – – – – – + – – – – – – –<br />

“+” – fungus presence in the ecotype, “ – ” – lack of the fungus in the ecotype.<br />

The level of <strong>meadow</strong> <strong>fescue</strong> infection with endophytic fungi was higher than that<br />

of perennial ryegrass (Table 2). Fungi from the genus Acremonium consisted the largest<br />

group (52.3%) of the isolated endophytes. The mycelium of Phialophora-like sp.<br />

was detected in five ecotypes of <strong>meadow</strong> <strong>fescue</strong>. Four Fusarium spp. were present:<br />

F. culmorum, F. graminearum, F. solani <strong>and</strong> F. poae but infection level of the <strong>meadow</strong><br />

<strong>fescue</strong> ecotypes with these fungi did not exceed 9.5%.<br />

No antagonistic interactions between N. lolii, N. uncinatum isolates <strong>and</strong> the<br />

endophytic fungi from the genus Acremonium were detected (Table 3). Individual<br />

biotic effect in these combinations was neutral (value: 0). Therefore, there was no<br />

competition for space <strong>and</strong> nutrients between Neotyphodium spp. <strong>and</strong> Acremonium


Occurrence <strong>and</strong> antagonistic properties of perennial ryegrass... 33<br />

Table 2<br />

Fungi isolated from <strong>meadow</strong> <strong>fescue</strong> (Festuca <strong>pratensis</strong>) ecotypes<br />

Meadow <strong>fescue</strong> ecotypes<br />

FP1 FP2 FP3 FP4 FP5 FP6 FP7 FP8 FP9 FP10 FP11 FP12 FP13 FP14 FP15 FP16 FP17 FP18 FP19 FP20 FP21<br />

Isolated fungi<br />

Neotyphodium uncinatum + + + + + + + + + + + + + + + + + + + + +<br />

Acremonium spp. + + + + – – – + – – + + – + – + – – + + –<br />

Phialophora-like sp. – – + – – – – – – + – – – + – – – – – + +<br />

Fusarium culmorum – – – + – – – – – – – – – – – – – – – – –<br />

Fusarium graminearum – – + – – – – – – – – – + – – – – – – – –<br />

Fusarium poae – – – – – – – – – – – – – – + – – – – – –<br />

Fusarium solani – – – + – – – – – – – – – – – – – – – – –<br />

Paecilomyces spp. + – – – – – – – – – – – – – – – – – – – –<br />

Gliomastix murorum – + – – – – – – – – – – – – – – – – – – –<br />

Chaetomium spp. – – – – – – – – – – + – – – – – – – – – –<br />

“+”–funguspresenceintheecotype,“–”–lackofthefungusintheecotype.


34 D. Pańka <strong>and</strong> M. Jeske<br />

Table 3<br />

Antagonistic properties of Neotyphodium spp. isolates towards other fungi<br />

isolated from grasses – individual biotic effect of Neotyphodium spp. isolates<br />

Neotyphodium<br />

spp. isolate<br />

Acremonium spp.<br />

Fusarium<br />

solani<br />

Test fungi<br />

Fusarium<br />

culmorum<br />

Fusarium<br />

graminearum<br />

Phialophora-like<br />

sp.<br />

LP1 0 +1<br />

Perennial ryegrass<br />

+2 +4 +3<br />

LP2 0 +1 +2 +4 +3<br />

LP3 0 +1 +4 +4 +3<br />

LP4 0 +1 +4 +4 +3<br />

LP5 0 +1 +4 +3 +4<br />

LP6 0 +1 +4 +4 +3<br />

LP7 0 +2 +2 +4 +3<br />

LP8 0 +1 +4 +4 +4<br />

LP9 0 +2 +3 +4 +3<br />

LP10 0 +1 +3 +4 +3<br />

LP11 0 +2 +3 +3 +3<br />

LP12 0 +1 +2 +3 +3<br />

LP13 0 +1 +4 +4 +4<br />

LP14 0 +1 +3<br />

Meadow <strong>fescue</strong><br />

+4 +3<br />

FP1 0 +2 +4 +4 +3<br />

FP2 0 +1 +4 +4 +3<br />

FP3 0 +1 +3 +4 +4<br />

FP4 0 +2 +4 +3 +3<br />

FP5 0 +1 +2 +4 +3<br />

FP6 0 +1 +3 +4 +3<br />

FP7 0 +1 +2 +4 +3<br />

FP8 0 +2 +4 +4 +4<br />

FP9 0 +1 +3 +3 +3<br />

FP10 0 +1 +3 +4 +3<br />

FP11 0 +1 +3 +4 +3<br />

FP12 0 +1 +4 +3 +2<br />

FP13 0 +1 +2 +3 +3<br />

FP14 0 +2 +4 +3 +4<br />

FP15 0 +1 +4 +4 +3<br />

FP16 0 +2 +3 +4 +3<br />

FP17 0 +1 +3 +4 +3<br />

FP18 0 +1 +3 +4 +3<br />

FP19 0 +1 +2 +4 +3<br />

FP20 0 +1 +2 +3 +3<br />

FP21 0 +1 +2 +4 +2


Occurrence <strong>and</strong> antagonistic properties of perennial ryegrass... 35<br />

Table 4<br />

Effect of Neotyphodium spp. isolates on in vitro growth of other fungi isolated<br />

from grasses – average width of the inhibition zone between Neotyphodium spp.<br />

<strong>and</strong> test fungi (mm)<br />

Neotyphodium<br />

spp. isolate<br />

Acremonium spp.<br />

Fusarium<br />

solani<br />

Fusarium<br />

culmorum<br />

Test fungi<br />

Fusarium<br />

graminearum<br />

Phialophora-like<br />

sp.<br />

LP1 0 3<br />

Perennial ryegrass<br />

2 0 3<br />

LP2 0 4 2 0 3<br />

LP3 0 4 2 0 1<br />

LP4 0 2 2 0 3<br />

LP5 0 4 2 0 1<br />

LP6 0 4 1 0 3<br />

LP7 0 5 1 0 1<br />

LP8 0 4 2 0 2<br />

LP9 0 4 1 0 3<br />

LP10 0 3 3 0 2<br />

LP11 0 4 2 0 1<br />

LP12 0 2 2 0 2<br />

LP13 0 2 2 0 3<br />

LP14 0 4 2<br />

Meadow <strong>fescue</strong><br />

0 3<br />

FP1 0 4 3 0 2<br />

FP2 0 4 2 0 3<br />

FP3 0 3 2 0 2<br />

FP4 0 4 2 0 3<br />

FP5 0 2 1 0 3<br />

FP6 0 4 1 0 3<br />

FP7 0 4 2 0 1<br />

FP8 0 5 2 0 2<br />

FP9 0 4 2 0 3<br />

FP10 0 4 3 0 3<br />

FP11 0 3 2 0 1<br />

FP12 0 4 2 0 3<br />

FP13 0 5 2 0 2<br />

FP14 0 4 1 0 2<br />

FP15 0 4 2 0 2<br />

FP16 0 4 2 0 3<br />

FP17 0 4 3 0 3<br />

FP18 0 3 3 0 3<br />

FP19 0 4 2 0 3<br />

FP20 0 3 2 0 3<br />

FP21 0 4 2 0 3


36 D. Pańka <strong>and</strong> M. Jeske<br />

spp. The widest growth inhibition zones were measured in combinations with N.<br />

lolii, N. uncinatum <strong>and</strong> F. solani isolates (Table 4). LP7 <strong>and</strong> FP13 isolates were most<br />

effective in inhibiting the growth of F. solani. Development of Phialophora-like sp.<br />

was less inhibited. In most cases, the width of growth inhibition zone between colonies<br />

of this fungus <strong>and</strong> those of N. lolii <strong>and</strong> N. uncinatum reached 3 mm. In most<br />

cases, inhibition zones both for N. lolii <strong>and</strong> N. uncinatum combinations with F.<br />

culmorum did not exceed 2 mm. Growth of F. graminearum endophyte was not affected<br />

either by N. lolii or N. uncinatum isolates. Moreover, in combinations with<br />

this fungus the highest values of the individual biotic effect were noted. Lower values<br />

of this parameter were noted in combinations with F. culmorum <strong>and</strong> Phialophora-like sp.<br />

Discussion<br />

Endophytes – microorganisms living within plant tissues without causing visible<br />

symptoms have been found in almost all plants to date (Schulz et al. 1993). The<br />

role which some of them play inside a plant is still unknown but there is a huge<br />

group of endophytes affecting plants in different ways. They can change physiological<br />

activities of host plants influencing enhancements of biotic <strong>and</strong> abiotic stress<br />

(Carroll 1988, Hallmann <strong>and</strong> Sikora 1996, Sturz <strong>and</strong> Nowak 2000). Depending on<br />

plant species, different endophytes species are considered most important. The<br />

main symbionts of many grasses are fungi from Neotyphodium <strong>and</strong> Epichloë genera<br />

(Malinowski <strong>and</strong> Belesky 2000, Fribourg <strong>and</strong> Waller 2005, Zabalgogeazcoa <strong>and</strong><br />

Bony 2005). In our study N. lolii <strong>and</strong> N. uncinatum were the most frequently isolated<br />

endophytic fungi from perennial ryegrass <strong>and</strong> <strong>meadow</strong> <strong>fescue</strong> ecotypes, respectively.<br />

High level of wild grasses infection with Neotyphodium spp. endophytes is<br />

well known <strong>and</strong> documented (Lewis et al. 1997, Faeth et al. 2001, Wäli et al. 2001,<br />

Pańka 2008). Low isolation level of these fungi occurs usually in commercial<br />

cultivars due to a long storage period under conditions unfavorable for endophytes<br />

(Rolston et al. 1986, Clay <strong>and</strong> Leuchtmann 1987, Cappelli <strong>and</strong> Buonaurio 2001,<br />

Pańka <strong>and</strong> Łukanowski 2001, Pańka <strong>and</strong> Sadowski 2002).<br />

Second most often isolated group of endophytic fungi in our experiments were<br />

Acremonium spp. in both grass species. This group of endophytes is not often isolated<br />

from grasses. They were found, for example, in Lolium multiflorum <strong>and</strong> Festuca<br />

paniculata, <strong>and</strong> are similar to Acremonium chilense – an endophyte of orchardgrass<br />

(Dactylis glomerata; Naffaa et al. 1996, 1998, Morgan-Jones et al. 1990).<br />

Gliocladium-like endophytes were not found in perennial ryegrass but Phialophora-like<br />

fungi were detected in some <strong>meadow</strong> <strong>fescue</strong> ecotypes tested in our study. An et al.<br />

(1993) detected p-endophytes in F. <strong>pratensis</strong>, F. gigantea <strong>and</strong> F. arizonica. In these<br />

grass species, these endophytes lived in cosymbiosis with Neotyphodium spp.<br />

endophytes. Moreover, serological analyses <strong>and</strong> PCR assay indicated that these<br />

p-endophytes <strong>and</strong> other two found in perennial ryegrass <strong>and</strong> tall <strong>fescue</strong> were<br />

closely related. In some reports p-endophytes are listed as relatively common<br />

cosymbionts of e-endophytes in many grass species (Latch et al. 1984, Gams et al.


Occurrence <strong>and</strong> antagonistic properties of perennial ryegrass... 37<br />

1990, Philipson 1991, Siegel et al. 1995). On the contrary, Koga et al. (1994) did<br />

not detected Phialophora-like endophyte in <strong>meadow</strong> <strong>fescue</strong> ecotypes. Siegel <strong>and</strong><br />

Latch (1991) reported that Phialophora-like endophyte from tall <strong>fescue</strong> showed an<br />

activity towards wide spectrum of pathogens in agar cultures. So, it may also have a<br />

positive effect on host fitness. Martyniuk (1986) observed higher resistance of cereals<br />

colonized with Phialophora spp. towards Gaeumannomyces graminis. This author<br />

isolated Phialophora spp. from grasses <strong>and</strong> cereals very often.<br />

Fungi other than Neotyphodium spp., Acremonium spp. <strong>and</strong> Phialophora-like were<br />

isolated only in a few cases in our experiment. Neotyphodium spp. as “strong”<br />

endophytes are usually present as the first ones inside a plant <strong>and</strong> could deter development<br />

of other fungi either by antagonistic activity or competitiveness for<br />

space <strong>and</strong> nutrients in a tiller base. This can be the reason for low detection level of<br />

these fungi. In our study, such antagonistic effect was observed in dual culture assays<br />

with test fungi: F. solani <strong>and</strong> F. culmorum.<br />

Neotyphodium lolii <strong>and</strong> N. uncinatum did not affect Acremonium spp. growth in dual<br />

culture assay. Moreover, the latter group of fungi was isolated relatively often.<br />

Therefore, the coexistence of different endophyte types can be probably found in<br />

many grass species in nature. The results obtained <strong>and</strong> literature data suggest that<br />

the positive effect observed in grasses infected with Neotyphodium spp. can be due<br />

not only to its contribution but to the presence in the same plant of other fungal<br />

endophytes <strong>and</strong> their synergistic activities in host protection (An et al. 1993). It is<br />

possible that, in many earlier tests of Neotyphodium benefits, it was unknown<br />

whether these endophytes were present alone in a plant or together with other<br />

endophytes. Therefore, it will be important to determine endophyte status of a<br />

plant prior an experiment in the future.<br />

Conclusions<br />

1. Perennial ryegrass <strong>and</strong> <strong>meadow</strong> <strong>fescue</strong> ecotypes tested in this study<br />

were commonly colonized with Neotyphodium lolii <strong>and</strong> N. uncinatum, respectively.<br />

2. Fungi from the genus Acremonium were the second most often isolated<br />

group of endophytes from <strong>meadow</strong> <strong>fescue</strong> ecotypes <strong>and</strong> Acremonium spp.,<br />

Paecilomyces spp. – from perennial ryegrass ecotypes.<br />

3. Neotyphodium spp. did not show antagonistic activity towards Acremonium<br />

spp. or Fusarium graminearum in dual culture assay.<br />

4. Fungi from the genus Neotyphodium inhibited the growth of Fusarium<br />

solani, F. culmorum <strong>and</strong> Phialophora-like fungi in dual culture assay.


38 D. Pańka <strong>and</strong> M. Jeske<br />

Streszczenie<br />

WYSTĘPOWANIE I WŁAŚCIWOŚCI ANTAGONISTYCZNE GRZYBÓW<br />

ENDOFITYCZNYCH ŻYCICY TRWAŁEJ (LOLIUM PERENNE)<br />

I KOSTRZEWY ŁĄKOWEJ (FESTUCA PRATENSIS)<br />

Celem badań było wyselekcjonowanie ekotypów życicy trwałej i kostrzewy<br />

łąkowej zasiedlonych przez, odpowiednio, Neotyphodium lolii i N. uncinatum oraz<br />

inne grzyby endofityczne oraz określenie właściwości antagonistycznych wyizolowanych<br />

endofitów rodzaju Neotyphodium w stosunku do wybranych grzybów.<br />

Najczęściej z badanych ekotypów życicy trwałej i kostrzewy łąkowej izolowano<br />

grzyby endofityczne rodzaju Neotyphodium (N. lolii i N. uncinatum). Drugą najczęściej<br />

izolowaną z kostrzewy łąkowej grupą endofitów były grzyby rodzaju Acremonium.<br />

Grzyby te występowały w 52,3% ekotypów. Acremonium spp. i Paecilomyces spp. były<br />

z kolei drugą co do wielkości grupą grzybów (21,4%) wykrywanych w ekotypach<br />

życicy trwałej. Poziom zasiedlenia przez inne gatunki grzybów był stosunkowo niski<br />

i nie przekraczał 14,2% (Fusarium graminearum) w ekotypach życicy trwałej i<br />

23,8% (gatunki podobne do Phialophora) w kostrzewie łąkowej. Nie zaobserwowano<br />

żadnych reakcji antagonistycznych między izolatami N. lolii i N. uncinatum aendofitami<br />

rodzaju Acremonium oraz F. graminearum. Strefy zahamowania wzrostu<br />

zanotowano na płytkach z Neotyphodium spp. i następującymi grzybami testowymi:<br />

F. solani, F. culmorum oraz gatunkami podobnymi do Phialophora.<br />

Literature<br />

An Z.-Q., Siegel M.R., Hollin W., Tsai H.-F., Schmidt D., Schardl C.L., 1993: Relationships among<br />

non-Acremonium sp. fungal endophytes in five grass species. Appl. Environ. Microbiol. 59, 5:<br />

1540–1548.<br />

Bacon C.W., DeBattista J., 1991: Endophytic fungi of grasses. In: H<strong>and</strong>book of applied mycology. Eds.<br />

D.K. Arora et al. Vol. 1. Soil <strong>and</strong> plants. Dekker, New York: 231–256.<br />

Cappelli C., Buonaurio R., 2001: Occurrence of endophytic fungi in grass seeds <strong>and</strong> plants in Italy. In:<br />

Proceedings of the 4 th International Neotyphodium/Grass Interactions Symposium, Soest, Germany,<br />

27–29 September 2000. Eds. V.H. Paul, P.D. Dapprich. Universität Paderborn, Paderborn:<br />

131–137.<br />

Carroll G., 1988: Fungal endophytes in stems <strong>and</strong> leaves: from latent pathogens to mutualistic symbionts.<br />

Ecology 69: 2–9.<br />

Christensen M.J., 1996: Antifungal activity in grasses infected with Acremonium <strong>and</strong> Epichloe<br />

endophytes. Australas. Plant Pathol. 25, 3: 186–191.<br />

Clay K., Leuchtmann A., 1987: Infection of woodl<strong>and</strong> grasses by fungal endophytes. Mycologia 81:<br />

805–811.<br />

Faeth S.H., Sullivan T.J., Hamilton C.E., 2001: What maintains high levels of Neotyphodium endophytes<br />

in native grasses? A dissenting view <strong>and</strong> alternative hypotheses. In: Proceedings of the 4 th International<br />

Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000.<br />

Eds. V.H. Paul, P.D. Dapprich. Universität Paderborn, Paderborn: 65–69.<br />

Fribourg H.A., Waller J.C., 2005: Neotyphodium research <strong>and</strong> application in the USA. In: Neotyphodium in<br />

cool-season grasses. Eds. C.A. Roberts, C.P. West, D.E. Spiers. Blackwell, Ames: 3–22.<br />

Gams W., Petrini O., Schmidt D., 1990: Acremonium uncinatum, a new endophyte in Festuca <strong>pratensis</strong>.<br />

Mycotaxon 37: 67–71.


Occurrence <strong>and</strong> antagonistic properties of perennial ryegrass... 39<br />

Glenn A.E., Bacon C.W., Price R., Hanlin R.T., 1996: Molecular phylogeny of Acremonium <strong>and</strong> its taxonomic<br />

implications. Mycologia 88: 369–383.<br />

Hallmann J., Sikora R.A., 1996: Toxicity of fungal endophyte secondary metabolites to plant parasitic<br />

nematodes <strong>and</strong> soil-borne plant pathogenic fungi. Eur. J. Plant Pathol. 102: 155–162.<br />

Koga H., Tsukiboshi T., Uematsu T., 1994: Incidence of the endophytic fungus, Acremonium uncinatum,<br />

in <strong>meadow</strong> <strong>fescue</strong> (Festuca <strong>pratensis</strong>) ecotypes in Hokkaido. Bull. Natl. Grassl. Res. Inst. 49: 35–41.<br />

Latch G.C.M., Christensen M.J., Samuels G.J., 1984: Five endophytes of Lolium <strong>and</strong> Festuca in New Zeal<strong>and</strong>.<br />

Mycotaxon 20: 535–550.<br />

Lewis G.C., Ravel C., Naffaa W., Astier C., Charmet G., 1997: Occurrence of Acremonium-endophytes of<br />

wild populations of Lolium spp. in European countries <strong>and</strong> a relationship between level of infection<br />

<strong>and</strong> climate in France. Ann. Appl. Biol. 130: 227–238.<br />

Malinowski D.P., Belesky D.P., 2000: Adaptations of endophyte-infected cool-season grasses to environmental<br />

stresses: mechanisms of drought <strong>and</strong> mineral stress tolerance. Crop Sci. 40: 923–940.<br />

Mańka K., 1974: Zbiorowiska grzybów jako kryterium oceny wpływu środowiska na choroby roślin.<br />

Zesz. Probl. Post. Nauk Roln. 160: 9–23.<br />

Martyniuk S., 1986: Ekologia i właściwości fitopatogena korzeni zbóż Gaeumannomyces graminis i<br />

grzybów pokrewnych z rodzaju Phialophora. IUNG Ser. R 208.<br />

Morgan-Jones G., White J.F., Piontelli E.L., 1990: Endophyte-host associations in forage grasses. XIII<br />

Acremonium chilense, an undiscribed endophyte occurring in Dactylis glomerata in Chile. Mycotaxon<br />

39: 441–454.<br />

Naffaa W., Ravel C., Guillaumin J.J., 1996: Morphological <strong>and</strong> molecular variability among Acremonium<br />

isolates from 22 species of Poaceae in France. In: Proceedings of the 2nd International Conference<br />

on Harmful <strong>and</strong> Beneficial Microorganisms in Grassl<strong>and</strong>, Pastures <strong>and</strong> Turf, Paderborn, Germany,<br />

22–24 November 1995. Eds. K. Krohn, V.H. Paul. OILB/WPRS Bull. 19, 7: 185–200.<br />

Naffaa W., Ravel C., Guillaumin J.J., 1998: A new group of endophytes in European grasses. Ann. Appl.<br />

Biol. 132: 211–226.<br />

Pańka D., 2008: Occurrence of Neotyphodium lolii <strong>and</strong> its antifungal properties. Phytopathol. Pol. 48:<br />

5–12.<br />

Pańka D., Łukanowski A., 2001: Occurrence of Acremonium lolii in perennial ryegrass (Lolium <strong>perenne</strong> L.)<br />

cultivated in the Kujawy <strong>and</strong> Pomerania region of Pol<strong>and</strong>. In: Proceedings of the 4 th<br />

International<br />

Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000. Eds. V.H.<br />

Paul, P.D. Dapprich. Universität Paderborn, Paderborn: 419–421.<br />

Pańka D., Sadowski Cz., 2002: Occurrence of fungal endophytes in perennial ryegrass (Lolium <strong>perenne</strong><br />

L.) cultivars in Pol<strong>and</strong>. Grassl. Sci. Eur. 7 (Multi-function grassl<strong>and</strong>s, quality forages, animal<br />

products <strong>and</strong> l<strong>and</strong>scapes. Eds. J.L. Dur<strong>and</strong>, J.C. Emile, C. Huyghe, G. Lemaire): 540–541.<br />

Philipson M.N., 1991: Ultrastructure of the Gliocladium-like endophyte of perennial ryegrass (Lolium<br />

<strong>perenne</strong> L.). I. Vegetative phase <strong>and</strong> leaf blade sporulation. New Phytol. 117: 271–280.<br />

Rolston M.P., Hare M.D., Moore K.K., Christensen M.J., 1986: Viability of Lolium endophyte fungus in<br />

seed stored at different moisture contents <strong>and</strong> temperatures. N. Z. J. Exp. Agric. 14: 297–300.<br />

Schulz B., Wanke U., Draeger S., 1993: Endophytes from herbaceous <strong>and</strong> shrubs: effectiveness of surface<br />

sterilization methods. Mycol. Res. 97: 1447–1450.<br />

Siegel M.R., Latch G.C.M., 1991: Expression of antifungal activity in agar culture by isolates of grass<br />

endophytes. Mycologia 83: 525–537.<br />

Siegel M.R., Schardl C.L., Philips T.D., 1995: Incidence <strong>and</strong> compatibility of nonclavicipitaceous fungal<br />

endophytes in Festuca <strong>and</strong> Lolium grass species. Mycologia 87: 196–202.<br />

Sturz A.V., Nowak J., 2000: An endophytic community of rhizobacteria <strong>and</strong> the strategies requires to<br />

create yield enhancing associations with crops. Appl. Soil Ecol. 15: 183–190.<br />

Wäli P.R., Saikkonen K., Hel<strong>and</strong>er M., Lehtimäki S., Lehtonen P., 2001: Seed transmitted endophytic<br />

fungi in wild grass populations in Finl<strong>and</strong>. In: Proceedings of the 4 th<br />

International Neotyphodium/Grass<br />

Interactions Symposium, Soest, Germany, 27–29 September 2000. Eds. V.H. Paul,<br />

P.D. Dapprich. Universität Paderborn, Paderborn: 93–96.<br />

Zabalgogeazcoa I., Bony S., 2005: Neotyphodium research <strong>and</strong> application in Europe. In: Neotyphodium in<br />

cool-season grasses. Eds. C.A. Roberts, C.P. West, D.E. Spiers. Blackwell, Ames: 23–33.


40 D. Pańka <strong>and</strong> M. Jeske<br />

Authors’ address:<br />

Dr. Dariusz Pańka, Dr. Małgorzata Jeske, Department of Phytopathology,<br />

University of Technology <strong>and</strong> Life Sciences in Bydgoszcz, ul. Kordeckiego 20,<br />

85-225 Bydgoszcz, Pol<strong>and</strong>, e-mail: panka@utp.edu.pl<br />

Accepted for publication: 11.06.2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!