03.06.2013 Views

Investigation of retention mechanisms in HILIC chromatography ...

Investigation of retention mechanisms in HILIC chromatography ...

Investigation of retention mechanisms in HILIC chromatography ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

<strong>Investigation</strong> <strong>of</strong> <strong>retention</strong> <strong>mechanisms</strong> <strong>in</strong><br />

<strong>HILIC</strong> <strong>chromatography</strong>: Important<br />

considerations for robust method<br />

development<br />

• Anders Fridström<br />

• Sigma- Aldrich GMBH<br />

<strong>Investigation</strong> <strong>of</strong> Retention Mechanisms <strong>in</strong> <strong>HILIC</strong> Chromatography: Important Considerations for Robust Method<br />

Development<br />

Anders Fridström 1 , David S. Bell 2<br />

1 Sigma-Aldrich, Buchs SG/Switzerland, 2 Supelco/Sigma-Aldrich, Bellefonte/USA<br />

Anders.fridstrom@sial.com<br />

Hydrophilic <strong>in</strong>teraction liquid <strong>chromatography</strong> (<strong>HILIC</strong>), especially <strong>in</strong> conjunction with mass spectrometry (MS), has<br />

become a powerful tool for the analysis <strong>of</strong> a wide variety <strong>of</strong> challeng<strong>in</strong>g analytes. Applications <strong>of</strong> the technique have<br />

<strong>in</strong>creased dramatically over the past decade, especially for the analysis <strong>of</strong> polar analytes where reversed-phase<br />

<strong>chromatography</strong> suffers. <strong>HILIC</strong> conditions employ a high percentage <strong>of</strong> acetonitrile which enables facilitated solvent<br />

evaporation <strong>in</strong> LC/MS sources and thus <strong>of</strong>ten an <strong>in</strong>crease <strong>in</strong> analyte response when compared to more aqueous based<br />

systems. The <strong>in</strong>creased <strong>retention</strong> <strong>of</strong> polar analytes afforded by <strong>HILIC</strong> provides improved selectivity and decreases the<br />

impact <strong>of</strong> endogenous species, <strong>of</strong>ten lead<strong>in</strong>g to improved qualitative and quantitative analyses [1].<br />

Although <strong>HILIC</strong> has proven useful, it has also been thwarted with complications <strong>in</strong>clud<strong>in</strong>g difficulties <strong>in</strong> method<br />

development and method robustness.<br />

In this presentation, studies <strong>in</strong>vestigat<strong>in</strong>g the underly<strong>in</strong>g <strong>retention</strong> <strong>mechanisms</strong> dom<strong>in</strong>ant <strong>in</strong> <strong>HILIC</strong> <strong>chromatography</strong> are<br />

presented and discussed. Along with reversed-partition<strong>in</strong>g <strong>HILIC</strong> is well known to exhibit, ion-exchange and the <strong>in</strong>terplay<br />

<strong>of</strong> the dom<strong>in</strong>ant <strong>mechanisms</strong> are unveiled and used to develop a model <strong>of</strong> overall <strong>retention</strong> and selectivity. Interactions<br />

that operate us<strong>in</strong>g different stationary phase chemistries and conditions are presented. The impact <strong>of</strong> analyte polarity and<br />

charge as well as the variations caused by high percentages <strong>of</strong> organic on these physiochemical parameters are<br />

highlighted. Throughout the discussion, examples <strong>of</strong> use and misuse <strong>of</strong> <strong>HILIC</strong> are employed to illustrate these important<br />

concepts to build a solid fundamental foundation for efficient and effective use <strong>of</strong> this powerful technique.<br />

24/10/2012<br />

1


Agenda<br />

Introduction<br />

Factors affect<strong>in</strong>g the <strong>HILIC</strong> Separation<br />

Modell<strong>in</strong>g Ionic <strong>in</strong>teractions on polar stationary phases <strong>in</strong> <strong>HILIC</strong><br />

Introduction<br />

• <strong>HILIC</strong> Hydrophilic Interaction LIquid Chromatography<br />

Retention<br />

5-40 % Water<br />

24/10/2012<br />

2


Factors effect<strong>in</strong>g the <strong>HILIC</strong> systems<br />

• Column<br />

• Mobile Phase<br />

• pH<br />

• Buffer Concentration<br />

• Analytes<br />

• pKa<br />

• Log P OW or Log D OW<br />

(Temperature)<br />

Sample<br />

Columns<br />

• Ascentis Express Fused Core Particle Columns<br />

• <strong>HILIC</strong> (Si)<br />

• OH5 (Pentalol) Branched hydroxylated alkane New!!<br />

• F5 (PFP)<br />

24/10/2012<br />

3


pH Effect <strong>of</strong> Acetonitrile on pH <strong>of</strong> Ammonium Acetate [4]<br />

A Note on Buffer pH<br />

s<br />

pH w<br />

pH Measured Follow<strong>in</strong>g Addition <strong>of</strong> Organic<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

pKa<br />

2<br />

2 4 6 8 10 12<br />

pH Measured Prior to Addition <strong>of</strong> Organic<br />

w<br />

pH<br />

w<br />

Measurements were taken at 25ºC.<br />

Triangle: 90.0% ACN,<br />

Square: 75% ACN,<br />

Diamond: 50% ACN,<br />

Circle: 32.5% ACN<br />

• Analyte pK a values have also been shown to be impacted by the<br />

presence <strong>of</strong> organic modifiers<br />

• Figure 2 shows the results <strong>of</strong> an NMR experiment conducted that<br />

explored the chemical shift <strong>of</strong> a proton near the ionizable group for<br />

amitriptyl<strong>in</strong>e <strong>in</strong> 90% acetonitrile. From data such as this, effective pK a<br />

values can be established for a variety <strong>of</strong> compounds.<br />

• Table 1 shows the results for several basic pharmaceutical compounds.<br />

The data <strong>in</strong>dicates that the effective pK a value for a basic analyte <strong>in</strong> 90%<br />

acetonitrile is approximately 1 pK a unit less than the aqueous-based<br />

value<br />

24/10/2012<br />

4


Chemical Shift (ppm)<br />

Determ<strong>in</strong>ation <strong>of</strong> pK a Values us<strong>in</strong>g 1 H NMR [4]<br />

Amitriptyl<strong>in</strong>e Chemical Shift as a Function <strong>of</strong> pH at 90% Acetonitrile<br />

2.70<br />

2.60<br />

2.50<br />

2.40<br />

2.30<br />

2.20<br />

2.10<br />

2.00<br />

3 4 5 6 7 8 9 10 11 12 13<br />

pH<br />

Table 1: Determ<strong>in</strong>ation <strong>of</strong> pK a Values us<strong>in</strong>g NMR<br />

[4]<br />

Amitriptyl<strong>in</strong>e<br />

s<br />

w<br />

% Acetonitrile pK a Correlation<br />

(R 2 )<br />

25 9.32 0.9997<br />

50 9.02 0.9996<br />

75 8.88 0.9956<br />

90 8.34 0.9923<br />

• pK a values for bases decrease with<br />

<strong>in</strong>creas<strong>in</strong>g acetonitrile<br />

• At 90% each analyte exhibited a<br />

pK a value about 1 full pH unit less<br />

than the literature pK a value<br />

Analyte Literature pKa pKa Correlation<br />

(R2 s<br />

w<br />

)<br />

Amitriptyl<strong>in</strong>e 9.4 8.34 0.9923<br />

Nortriptyl<strong>in</strong>e 9.7 8.92 0.9920<br />

Diphenhydram<strong>in</strong>e 9.0 8.33 0.9978<br />

Verapamil 8.9 7.98 0.9976<br />

Alprenolol 9.7 8.73 0.9855<br />

24/10/2012<br />

5


<strong>Investigation</strong> <strong>of</strong> Retention Mechanisms on<br />

Different <strong>HILIC</strong> Phases<br />

• <strong>in</strong>teraction differences for three different <strong>HILIC</strong> stationary phases: PFPP (F5), bare<br />

silica (<strong>HILIC</strong>) and a new pentalol phase (OH5)<br />

• Us<strong>in</strong>g ephedr<strong>in</strong>e as a probe molecule, <strong>retention</strong> as a function <strong>of</strong> buffer<br />

concentration was collected and <strong>in</strong>terpreted.<br />

• Related compounds and dom<strong>in</strong>ant <strong>in</strong>teractions prevalent us<strong>in</strong>g each phase is<br />

studied<br />

Selected Probes<br />

HO<br />

C<br />

H 3<br />

C<br />

H 3<br />

C<br />

H 3<br />

C<br />

H 3<br />

NH<br />

NH<br />

OH<br />

OH<br />

HN<br />

CH 3<br />

OH<br />

ACD/Labs, PhysChemProp, v. 12<br />

Structure pKa(MB) LogD(8.0) LogP MW name<br />

9.38 -0.37 1.08 165.23 pseudoephedr<strong>in</strong>e<br />

9.38 -0.37 1.08 165.23 ephedr<strong>in</strong>e<br />

9.37 -1.35 0.13 167.21 synephr<strong>in</strong>e<br />

24/10/2012<br />

6


Experimental<br />

• Conditions:<br />

• Instrument: #9, Waters 2690/Micromass ZQ s<strong>in</strong>gle quadrupole <strong>in</strong>terfaced via ESI<br />

operat<strong>in</strong>g <strong>in</strong> pos. ion mode<br />

• Columns:<br />

• Ascentis Express Pentalol (OH5), 10 cm x 3.0 mm<br />

• Ascentis Express <strong>HILIC</strong>, 10 cm c 3.0 mm,<br />

• Ascentis Express F5, 10 cm x 3.0 mm,<br />

Mobile Phase A: 10 mM ammonium acetate (pH unadjusted) <strong>in</strong> 10:90<br />

water:acetonitrile<br />

• Mobile Phase B: 10:90 water:acetonitrile<br />

• Mixtures <strong>of</strong> A and B were run at 0%B, 20%B, 40%B, 60%B and 80%B<br />

correspond<strong>in</strong>g to 10 mM, 8 mM, 2 mM, 4 mM and 2 mM buffer<br />

concentrations, respectively<br />

• Flow rate: 0.4 mL/m<strong>in</strong><br />

• Temperature: ambient<br />

• Detection: MS, ESI, pos ion mode, scan m/z 125 – 300<br />

• Injection volume: 2 uL<br />

Calculation for ion exchange impact <strong>in</strong> <strong>HILIC</strong><br />

• Samples were <strong>in</strong>jected <strong>in</strong> triplicate at each buffer concentration us<strong>in</strong>g each <strong>of</strong> the<br />

phases. A sample <strong>of</strong> ephedr<strong>in</strong>e only was also <strong>in</strong>jected under each condition to<br />

discrim<strong>in</strong>ate from pseudoephedr<strong>in</strong>e <strong>in</strong> the mix.<br />

• Log k = -log[C + ] m + log IEX<br />

• [C + ] m concentration <strong>of</strong> the compet<strong>in</strong>g ion <strong>in</strong> the mobile phase and<br />

• IEXC constant for a given system<br />

• phase ratio,<br />

• ion-exchange capacity <strong>of</strong> the stationary phase ion-exchange equilibrium constant.<br />

• Log k Retention<br />

• A plot <strong>of</strong> log k vs log [C + ] m will thus yield a slope <strong>of</strong> -1 when ion-exchange is solely<br />

responsible for <strong>retention</strong>,<br />

• The plot would yield a slope <strong>of</strong> 0 where ion-exchange is not present.<br />

24/10/2012<br />

7


log k'<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

Response <strong>of</strong> Ephedr<strong>in</strong>e Retention on Buffer<br />

Concentration on Three <strong>HILIC</strong> Phases<br />

y = -0.6525x + 1.2104<br />

R 2 = 0.9984<br />

y = -0.8187x + 1.1259<br />

R 2 = 1<br />

y = -0.2199x + 0.2455<br />

R 2 = 0.9934<br />

0.00<br />

0.00 0.20 0.40 0.60 0.80 1.00 1.20<br />

log buffer concentration (mM)<br />

OH5 <strong>HILIC</strong> F5 L<strong>in</strong>ear (<strong>HILIC</strong>) L<strong>in</strong>ear (F5) L<strong>in</strong>ear (OH5)<br />

<strong>HILIC</strong> OH5 column at 10 and 2 mM ammonium<br />

acetate<br />

10 mM - 3<br />

A1849_032_A005 Sm (Mn, 2x3) 1: Scan ES+<br />

3.05<br />

166<br />

2.91e8<br />

%<br />

1<br />

Time<br />

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00<br />

2 mM - 3<br />

A1849_032_A025 Sm (Mn, 2x3) 1: Scan ES+<br />

6.49<br />

168<br />

7.84e7<br />

%<br />

1<br />

10 mM<br />

2 mM<br />

1, 2<br />

1, 2<br />

3<br />

Time<br />

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00<br />

More polar synephr<strong>in</strong>e elutes last<br />

= partition<br />

Little response <strong>of</strong> <strong>retention</strong> on<br />

buffer conc.<br />

3<br />

1. Ephedr<strong>in</strong>e<br />

2. Pseudoephedr<strong>in</strong>e<br />

3. Synephr<strong>in</strong>e<br />

24/10/2012<br />

8


4 mM - 1<br />

A1849_032_A044 Sm (Mn, 2x3) 1: Scan ES+<br />

11.49<br />

166<br />

1.59e8<br />

%<br />

2<br />

Time<br />

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00<br />

2 mM - 3<br />

A1849_032_A051 Sm (Mn, 2x3) 1: Scan ES+<br />

16.89<br />

166<br />

1.77e8<br />

%<br />

2<br />

<strong>HILIC</strong> (bare silica) column at 4 and 2 mM<br />

ammonium acetate<br />

Synephr<strong>in</strong>e still last<br />

1<br />

3<br />

More Rt change<br />

2<br />

12.27<br />

Both partition and IEX<br />

Time<br />

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00<br />

1<br />

2<br />

17.90<br />

3<br />

4 mM<br />

2 mM<br />

1. Ephedr<strong>in</strong>e<br />

2. Pseudoephedr<strong>in</strong>e<br />

3. Synephr<strong>in</strong>e<br />

F5 column at 8 and 2 mM ammonium acetate<br />

8 mM - 1<br />

A1849_032_A060 Sm (Mn, 2x3) 1: Scan ES+<br />

5.16<br />

166<br />

1.91e8<br />

%<br />

2<br />

Time<br />

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00<br />

2 mM - 1<br />

A1849_032_A075 Sm (Mn, 2x3) 1: Scan ES+<br />

12.74<br />

166<br />

1.93e8<br />

%<br />

3<br />

3<br />

1<br />

3<br />

5.46<br />

Time<br />

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00<br />

2<br />

1<br />

13.33<br />

2<br />

8 mM<br />

2 mM<br />

Synephr<strong>in</strong>e early!<br />

Rt change with Buffer<br />

Little or no partition,<br />

IEX present<br />

1. Ephedr<strong>in</strong>e<br />

2. Pseudoephedr<strong>in</strong>e<br />

3. Synephr<strong>in</strong>e<br />

24/10/2012<br />

9


Proposed Model for Different <strong>HILIC</strong> Stationary Phases<br />

OH5<br />

Aqueous Layer<br />

Aqueous Layer<br />

- - - - - - -<br />

-<br />

Conclusions<br />

Aqueous-Organic Mobile Phase<br />

Silica<br />

Polar Stationary Phase<br />

• Columns described <strong>in</strong> this presentation<br />

• Pentalol (OH5)– dom<strong>in</strong>ated by partition<br />

• Bare silica (<strong>HILIC</strong>)– both partition and IEX<br />

• Pentafluorophenylpropyl – ma<strong>in</strong>ly IEX<br />

• In order to develop robust and reliable methods us<strong>in</strong>g <strong>HILIC</strong><br />

<strong>chromatography</strong> thefollow<strong>in</strong>g factors should be considered<br />

• pH changes <strong>in</strong> high % organics<br />

• pKa <strong>of</strong> analytes <strong>in</strong> high % organics<br />

• Mobile phase modifiers concentrations<br />

F5<br />

24/10/2012<br />

10


Method Development and Optimization Chart<br />

References<br />

1. Hydrophilic Interaction Liquid Chromatography (<strong>HILIC</strong>) and Advanced<br />

Applications, Wang Perry G., He Weixuan, CRC Press, Taylor & Francis Group.<br />

2. Needham, S.R., Bell, D., J. Chromatogr., A. 2000, 869, 159-170.<br />

3. McCalley, D. V., J. Chromatogr., A. 2010, 1217, 3408-3417.<br />

4. D<strong>in</strong>h, N. P., Jonsson T., Irgum K., J. Chromatogr., A. 2010, 1217, 3408-3417.<br />

5. W. Naidong, Journal <strong>of</strong> Chromatography B 796 (2003) 209.<br />

6. D.S. Bell, Jones, A. Daniel, Journal <strong>of</strong> Chromatography A 1073 (2005) 99.<br />

7. D.S. Bell, Brandes, Hillel K., <strong>in</strong> 30th International Symposium and Exhibit on High<br />

Performance Liquid Phase Separations and Related Techniques, San Francisco,<br />

California USA, 2006.<br />

8. D.S. Bell, Solute Attributes and Molecular Interactions Contribut<strong>in</strong>g to Retention<br />

on a Fluor<strong>in</strong>ated High-Performance Liquid Chromatography Stationary Phase,<br />

Thesis, The Pennsylvania State University, 2005<br />

9. ACD PhysChem, v. 12, Advanced Chemistry Development, Toronto, ON Canada<br />

21<br />

24/10/2012<br />

11


Acknowledgements<br />

• Dave Bell<br />

• Hugh Cramer<br />

• Craig Aurand<br />

• Wayne Way<br />

• Gaurang Parmar<br />

Thanks!<br />

23<br />

24/10/2012<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!