04.10.2012 Views

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1326 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

(see, e.g., [17, p 421]) consider<strong>in</strong>g that k(t, s) is cont<strong>in</strong>uous <strong>in</strong> both variables <strong>an</strong>d strictly<br />

monotonic with respect to s. Thisproves <strong>the</strong> <strong>the</strong>orem. �<br />

Note that <strong>the</strong> functions Sδ provided by <strong>the</strong>orem 3.2 are not necessarily monotonic. We<br />

w<strong>ill</strong> evaluate po<strong>in</strong>twise for 0 < t � T <strong>the</strong> error |Sδ (t) − S(t)| <strong>of</strong> <strong>the</strong> cont<strong>in</strong>uous positive<br />

function Sδ (t) with limt→0 Sδ (t) = 0thus obta<strong>in</strong>ed, by us<strong>in</strong>g <strong>the</strong> formula<br />

|S δ � �−1 ∂UBS(X, K, r, t, Sim(t))<br />

(t) − S(t)| =<br />

|u<br />

∂s<br />

δ (t) − u(t)|, (21)<br />

where Sim(t) ∈ [m<strong>in</strong>(Sδ (t), S(t)), max(Sδ (t), S(t))] is a positive <strong>in</strong>termediate function<br />

<strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> error amplification factor<br />

� �−1 ∂UBS(X, K, r, t, Sim(t))<br />

ϕ(t) :=<br />

> 0 (0 < t � T ).<br />

∂s<br />

With limt→0 Sim(t) = 0weobta<strong>in</strong> from formula (6) <strong>in</strong> <strong>the</strong> case X �= K <strong>the</strong> limit conditions<br />

1<br />

lim √<br />

t→0 Sim(t) exp<br />

� X �<br />

[ln( ) + rt]2<br />

K<br />

− = 0<br />

2Sim(t)<br />

<strong>an</strong>d consequently<br />

lim ϕ(t) =∞ (X �= K ) (22)<br />

t→0<br />

for <strong>the</strong> error amplification factor. That me<strong>an</strong>s, <strong>in</strong> <strong>the</strong> case X �= K ,<strong>the</strong><strong>problem</strong> <strong>of</strong> determ<strong>in</strong><strong>in</strong>g<br />

Sδ from data uδ satisfy<strong>in</strong>g <strong>the</strong> assumption 3.1 is <strong>ill</strong> posed <strong>in</strong> a C-space sett<strong>in</strong>g. The <strong>ill</strong>-<strong>posedness</strong><br />

is locally concentrated <strong>in</strong> a neighbourhood <strong>of</strong> t = 0. As a consequence <strong>of</strong> (22), for X �= K<br />

<strong>an</strong>d sufficiently small t, <strong>the</strong>errors |Sδ (t) − S(t)| may rema<strong>in</strong> large, although <strong>the</strong> data errors<br />

�uδ −u�C[0,T ] get arbitrarily small. In practice <strong>the</strong> approximate solutions Sδ (t) tend to osc<strong>ill</strong>ate<br />

for small t <strong>in</strong> such a data situation (see also figures 3 <strong>an</strong>d 4 <strong>in</strong> section 6).<br />

<strong>On</strong> <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d, <strong>the</strong> case X = K is more ambiguous. Namely, <strong>in</strong> that case<br />

√<br />

1<br />

Sim(t) exp(− r 2t 2<br />

2Sim(t) ) tends to <strong>in</strong>f<strong>in</strong>ity as t → 0whenever wehave <strong>an</strong><strong>in</strong>equality <strong>of</strong> <strong>the</strong> form<br />

Sim(t) � Ct2 (0 � t � T ) with a const<strong>an</strong>t C > 0<strong>an</strong>dweget from formula (6) <strong>the</strong> reverse<br />

limit condition<br />

lim ϕ(t) = 0 (X = K ) (23)<br />

t→0<br />

1<br />

for <strong>the</strong> amplification factor. If however lim <strong>in</strong>ft→0 √<br />

Sim(t) exp(− r 2t 2<br />

2Sim(t) ) = 0, <strong>the</strong>n for X = K<br />

we obta<strong>in</strong> lim supt→0 ϕ(t) =∞.<br />

Closely connected with <strong>the</strong> limit jump <strong>in</strong> formula (8) we f<strong>in</strong>d a jump situation by compar<strong>in</strong>g<br />

<strong>the</strong> formulae (22) <strong>an</strong>d (23). At-<strong>the</strong>-money <strong>option</strong>s with X = K represent a s<strong>in</strong>gular situation,<br />

s<strong>in</strong>ce <strong>the</strong> <strong>in</strong>stability <strong>of</strong> <strong>the</strong> outer equation at t = 0for<strong>in</strong>-<strong>the</strong>-money <strong>option</strong>s <strong>an</strong>d out-<strong>of</strong>-<strong>the</strong>money<br />

<strong>option</strong>s expressed by formula (22) disappears if formula (23) holds. Such a s<strong>in</strong>gular<br />

behaviour <strong>of</strong> at-<strong>the</strong>-money <strong>option</strong>s seems to be well known <strong>in</strong> f<strong>in</strong><strong>an</strong>ce. Namely, for a const<strong>an</strong>t<br />

volatility σ ,<strong>the</strong>frequently used <strong>option</strong> measure <strong>the</strong>ta written <strong>in</strong> our terms as<br />

�(t) := d<br />

d(−t) UBS(X, K, r, t, S(t)) with S(t) = σ 2 t<br />

explodes to −∞ as <strong>the</strong> time to maturity t tends to zero if <strong>an</strong>donly if X = K (see figure 13.6<br />

<strong>in</strong> [26, p 321]).<br />

The <strong>ill</strong>-<strong>posedness</strong> effect just described <strong>in</strong> particular for X �= K as well as <strong>the</strong> miss<strong>in</strong>g<br />

monotonicity <strong>of</strong> Sδ c<strong>an</strong> be overcome for <strong>the</strong> outer equation by pos<strong>in</strong>g a fur<strong>the</strong>r assumption.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!