04.10.2012 Views

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1322 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

Lemma 2.1. Let <strong>the</strong> parameters X > 0, K > 0 <strong>an</strong>d r � 0 be fixed. Then <strong>the</strong> nonnegative<br />

function UBS(X, K, r,τ,s) is cont<strong>in</strong>uous for (τ, s) ∈ [0, ∞) × [0, ∞). Moreover, for<br />

(τ, s) ∈ [0, ∞) × (0, ∞),this function is cont<strong>in</strong>uously differentiable with respect to τ,where<br />

we have<br />

∂UBS(X, K, r,τ,s)<br />

= rKe<br />

∂τ<br />

−rτ �(d2) � 0,<br />

<strong>an</strong>d twice cont<strong>in</strong>uously differentiable with respect to s, where we have with ν := ln(<br />

(5)<br />

X<br />

K )<br />

∂UBS(X, K, r,τ,s)<br />

= �<br />

∂s<br />

′ (d1)X 1<br />

2 √ s<br />

X<br />

=<br />

2 √ 2πs exp<br />

�<br />

[ν + rτ]2 [ν + rτ]<br />

− − −<br />

2s 2<br />

s<br />

�<br />

> 0<br />

8<br />

(6)<br />

<strong>an</strong>d<br />

∂2UBS(X, K, r,τ,s)<br />

∂s 2<br />

=−� ′ (d1)X 1<br />

4 √ �<br />

[ν + rτ]2<br />

−<br />

s s2 + 1<br />

�<br />

1<br />

+<br />

4 s<br />

=−<br />

X<br />

4 √ �<br />

[ν + rτ]2<br />

−<br />

2πs s2 + 1<br />

� �<br />

1 [ν + rτ]2 [ν + rτ]<br />

+ exp − − −<br />

4 s<br />

2s 2<br />

s<br />

�<br />

.<br />

8<br />

(7)<br />

Fur<strong>the</strong>rmore, we f<strong>in</strong>d <strong>the</strong> limit conditions<br />

�<br />

∂UBS(X, K, r,τ,s) ∞<br />

lim<br />

=<br />

s→0 ∂s<br />

0<br />

−rτ (X = K e )<br />

(X �= K e−rτ <strong>an</strong>d<br />

)<br />

(8)<br />

lim<br />

s→∞ UBS(X, K, r,τ,s) = X.<br />

<strong>On</strong> <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d, <strong>the</strong> partial derivative<br />

(9)<br />

∂UBS(X, K, r,τ,s)<br />

=−e<br />

∂ K<br />

−rτ �(d2) 0forall(τ, s) ∈ [0, T ]×(0, ∞)<br />

∂s<br />

<strong>an</strong>d hence <strong>the</strong> follow<strong>in</strong>g lemma.<br />

Lemma 2.2. The Nemytskii operator N def<strong>in</strong>ed by formulae (11) <strong>an</strong>d (12) is <strong>in</strong>jective on its<br />

doma<strong>in</strong> D+.<br />

In general (see, e.g., [1, p 15]), a Nemytskii operator N : v(t) ↦→ k(t,v(t)) applied<br />

to real-valued scalar functions v(t) is def<strong>in</strong>ed by a kernel function k(t, s), wheret varies<br />

<strong>in</strong> a f<strong>in</strong>ite <strong>in</strong>terval I ⊂ R <strong>an</strong>d s varies <strong>in</strong> R. If s ↦→ k(t, s) is cont<strong>in</strong>uous for almost<br />

every t ∈ I <strong>an</strong>d t ↦→ k(t, s) is measurable for all s ∈ R, <strong>the</strong> Nemytskii operator<br />

satisfies <strong>the</strong> Carathéodory condition. If<strong>the</strong>Nemytskii operator moreover satisfies a growth

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!