04.10.2012 Views

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1321<br />

is assumed to hold. At <strong>the</strong> <strong>in</strong>itial time τ = 0let<strong>the</strong>re exist <strong>an</strong> idealized family <strong>of</strong> Europe<strong>an</strong><br />

v<strong>an</strong><strong>ill</strong>a call <strong>option</strong>s written on <strong>the</strong> asset with current asset price X := X (0) >0, fixed strike<br />

K > 0, fixed risk-free <strong>in</strong>terest rate r � 0<strong>an</strong>drema<strong>in</strong><strong>in</strong>g times to maturity t cont<strong>in</strong>uously<br />

vary<strong>in</strong>g between zero <strong>an</strong>d <strong>the</strong> upper time limit T .<br />

Neglect<strong>in</strong>g <strong>the</strong> role <strong>of</strong> dividends <strong>an</strong>d sett<strong>in</strong>g for simplicity<br />

a(τ) := σ 2 (τ) (0 � τ � T ) <strong>an</strong>d S(t) :=<br />

� t<br />

0<br />

a(τ) dτ (0 � t � T )<br />

it follows from stochastic <strong>an</strong>d <strong>an</strong>alytic considerations (for details see, e.g., [29, p 71f.]) that<br />

fair <strong>option</strong> prices u(t) on arbitrage-free markets are explicitly given by <strong>the</strong> Black–Scholes-type<br />

formula<br />

u(t) = UBS(X, K, r, t, S(t)) (0 � t � T ). (1)<br />

This formula is based on <strong>the</strong> Black–Scholes function UBS,whichwec<strong>an</strong> def<strong>in</strong>e for <strong>the</strong> variables<br />

X > 0, K > 0, r � 0, τ � 0<strong>an</strong>ds� 0as<br />

�<br />

X�(d1) − K e<br />

UBS(X, K, r,τ,s) :=<br />

−rτ �(d2) (s > 0)<br />

max(X − K e −rτ (2)<br />

, 0) (s = 0)<br />

with<br />

d1 :=<br />

ln( X<br />

K<br />

s ) + rτ + 2<br />

√ , d2 := d1 −<br />

s<br />

√ s (3)<br />

<strong>an</strong>d <strong>the</strong> cumulative density function <strong>of</strong> <strong>the</strong> st<strong>an</strong>dard normal distribution<br />

�(z) := 1<br />

√ 2π<br />

� z<br />

−∞<br />

x2<br />

−<br />

e 2 dx. (4)<br />

In <strong>the</strong> follow<strong>in</strong>g we always express <strong>the</strong> volatility term structure <strong>of</strong> <strong>the</strong> underly<strong>in</strong>g asset<br />

by <strong>the</strong> not directly observable volatility function a. Although <strong>the</strong> formulae (1)–(4) were<br />

orig<strong>in</strong>ally derived only for positive <strong>an</strong>d Hölder cont<strong>in</strong>uous functions a, <strong>the</strong>seformulae also<br />

yield well def<strong>in</strong>ed non-negative functions u(t) (0 � t � T ) <strong>in</strong> <strong>the</strong> case <strong>of</strong> not necessarily<br />

cont<strong>in</strong>uous but Lebesgue-<strong>in</strong>tegrable <strong>an</strong>d almost everywhere f<strong>in</strong>ite <strong>an</strong>d non-negative functions<br />

a(τ) (0 � τ � T ). Namely, such functions a have non-negative <strong>an</strong>d absolutely cont<strong>in</strong>uous<br />

primitives S(t) (0 � t � T ), which imply non-negative functions u as a consequence <strong>of</strong> <strong>the</strong><br />

properties <strong>of</strong> <strong>the</strong> function UBS listed <strong>in</strong> lemma 2.1 below.<br />

Now let <strong>the</strong>re be given at time τ = 0adata function u δ (t) (0 � t � T ) <strong>of</strong> observed<br />

call <strong>option</strong> prices as noisy data <strong>of</strong> <strong>the</strong> fair price function u(t) (0 � t � T ) accord<strong>in</strong>g to<br />

formula (1) with a noise level δ � 0. Then we c<strong>an</strong> formulate <strong>the</strong> IP under consideration aimed<br />

at calibrat<strong>in</strong>g <strong>the</strong> volatility function a as follows.<br />

Def<strong>in</strong>ition 1.1 (Inverse <strong>problem</strong>—IP). Under <strong>the</strong> assumptions stated above f<strong>in</strong>d at time<br />

τ = 0 <strong>the</strong> time-dependent volatility function a(τ) (0 � τ � T ) from noisy observations<br />

u δ (t) (0 � t � T ) <strong>of</strong> <strong>the</strong> maturity-dependent fair price function u(t) (0 � t � T ).<br />

2. Black–Scholes function <strong>an</strong>d Nemytskii operators<br />

We first summarize <strong>the</strong> ma<strong>in</strong> properties <strong>of</strong> <strong>the</strong> Black–Scholes function UBS def<strong>in</strong>ed by <strong>the</strong><br />

formulae (2)–(4). The results <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g lemma c<strong>an</strong> be proven straightforwardly by<br />

elementary calculations.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!