04.10.2012 Views

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1332 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

where Sε im is <strong>an</strong> <strong>in</strong>termediate function satisfy<strong>in</strong>g <strong>the</strong> <strong>in</strong>equalities<br />

m<strong>in</strong>(S(t), S(t) + ε[J(h)](t)) � S ε im (t) � max(S(t), S(t) + ε[J(h)](t)).<br />

This limit<strong>in</strong>g process leads to a composition G = M ◦ J <strong>of</strong> <strong>the</strong> convolution operator J with a<br />

multiplication operatorM described by a multiplier function m <strong>in</strong> <strong>the</strong> form<br />

[G(h)](t) = m(t)[J(h)](t) (0�t�T, h ∈ L 2 (0, T )). (33)<br />

The multiplier function atta<strong>in</strong>s <strong>the</strong> form<br />

m(0) = 0, m(t) = ∂UBS(X, K, r, t, S(t))<br />

> 0 (0 < t � T ) (34)<br />

∂s<br />

with S = J(a) <strong>an</strong>d we c<strong>an</strong> prove <strong>the</strong> follow<strong>in</strong>g.<br />

Theorem 5.4. In <strong>the</strong> case X �= K,<strong>the</strong>l<strong>in</strong>ear operator G def<strong>in</strong>ed by <strong>the</strong> formulae (33) <strong>an</strong>d (34)<br />

maps cont<strong>in</strong>uously <strong>in</strong> L2 (0, T ) with m ∈ L∞ (0, T ). Then condition (i) <strong>of</strong> proposition 5.3 is<br />

satisfied with aconst<strong>an</strong>t<br />

�<br />

�<br />

L = TC2, where C2 := sup �<br />

∂<br />

�<br />

(t,s)∈Mc<br />

2UBS(X, K, r, t, s)<br />

∂s 2<br />

�<br />

�<br />

�<br />

� < ∞<br />

is determ<strong>in</strong>ed from <strong>the</strong> set<br />

Mc := {(t, s) ∈ R 2 : s � ct, 0 < t � T }.<br />

Pro<strong>of</strong>. To prove <strong>the</strong> cont<strong>in</strong>uity <strong>of</strong> G = M ◦ J <strong>in</strong> L2 (0, T ) with <strong>the</strong> cont<strong>in</strong>uous convolution<br />

operator J,itissufficient to show m ∈ L∞ (0, T ),s<strong>in</strong>ce <strong>the</strong>n <strong>the</strong> multiplication operator M is<br />

also cont<strong>in</strong>uous <strong>in</strong> L2 (0, T ). Fromformula (6) we obta<strong>in</strong> for (t, s) ∈ [0, T ] × (0, ∞) <strong>in</strong> <strong>the</strong><br />

case X �= K <strong>the</strong> estimate<br />

�<br />

�<br />

�<br />

�<br />

∂UBS(X, K, r, t, s) �<br />

�<br />

� ∂s � �<br />

� � X �<br />

XK 1 [ln( K ) + rt]2<br />

√ exp − .<br />

8π s 2s<br />

This implies for (t, s) ∈ Mc<br />

�<br />

�<br />

�<br />

�<br />

∂UBS(X, K, r, t, s) �<br />

�<br />

� ∂s � �<br />

� � � r �<br />

XK K c X<br />

1 [ln( K<br />

√s exp −<br />

8π X<br />

)]2<br />

�<br />

. (35)<br />

2s<br />

The right-h<strong>an</strong>d expression <strong>in</strong> <strong>in</strong>equality (35) is cont<strong>in</strong>uous with respect to s ∈ (0, ∞) <strong>an</strong>d tends<br />

∂UBS(X,K,r,t,s)<br />

to zero as s → 0<strong>an</strong>dass →∞.With a f<strong>in</strong>ite const<strong>an</strong>t C1 := sup | (t,s)∈Mc ∂s | < ∞<br />

we have m ∈ L∞ (0, T ),where�m�L∞ (0,T ) � C1 comes from <strong>the</strong> <strong>in</strong>equality S(t) � ct (0 � t �<br />

T ), whichisaconsequence <strong>of</strong> a ∈ D † (F). Inorder to prove condition (i) <strong>of</strong> proposition 5.3<br />

we verify <strong>the</strong> structure <strong>of</strong> <strong>the</strong> second derivative ∂ 2 UBS(X,K,r,t,s)<br />

∂s 2 from formula (7). Similar<br />

considerations as <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> first derivative also show <strong>the</strong> existence <strong>of</strong> a const<strong>an</strong>t<br />

C2 := sup (t,s)∈Mc | ∂ 2UBS(X,K,r,t,s) ∂s 2 | < ∞. Thenwec<strong>an</strong> estimate with S = J(a), ˜S = J(ã) <strong>an</strong>d<br />

a, ã ∈ D † (F) for all t ∈ (0, T ]:<br />

|[F(ã) − F(a) − G(ã − a)](t)|<br />

�<br />

�<br />

= �<br />

�UBS(X, K, r, t, ˜S(t)) − UBS(X, K, r, t, S(t))<br />

− ∂UBS(X,<br />

�<br />

K, r, t, S(t))<br />

�<br />

( ˜S(t) − S(t)) �<br />

∂s<br />

�<br />

= 1<br />

�<br />

�<br />

�<br />

∂<br />

2 �<br />

2UBS(X, K, r, t, Sim(t))<br />

∂s 2<br />

( ˜S(t) − S(t)) 2<br />

� ��<br />

�<br />

t<br />

�2 C2 �<br />

� � (ã(τ) − a(τ)) dτ ,<br />

2<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!