04.10.2012 Views

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS<br />

Inverse Problems 19 (2003) 1319–1338 PII: S0266-5611(03)64786-6<br />

<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong><br />

<strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g<br />

1. Introduction<br />

Torsten He<strong>in</strong> <strong>an</strong>d Bernd H<strong>of</strong>m<strong>an</strong>n<br />

Faculty <strong>of</strong> Ma<strong>the</strong>matics, Technical University Chemnitz, D-09107 Chemnitz, Germ<strong>an</strong>y<br />

E-mail: Torsten.He<strong>in</strong>@ma<strong>the</strong>matik.tu-chemnitz.de <strong>an</strong>d<br />

Bernd.H<strong>of</strong>m<strong>an</strong>n@ma<strong>the</strong>matik.tu-chemnitz.de<br />

Received 11 June 2003, <strong>in</strong> f<strong>in</strong>al form 25 September 2003<br />

Published 24 October 2003<br />

<strong>On</strong>l<strong>in</strong>eat stacks.iop.org/IP/19/1319<br />

Abstract<br />

Inverse <strong>problem</strong>s <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g are frequently regarded as simple <strong>an</strong>d<br />

resolved if a formula <strong>of</strong> Black–Scholes type def<strong>in</strong>es <strong>the</strong> forward operator.<br />

However, precisely because <strong>the</strong> structure <strong>of</strong> such <strong>problem</strong>s is straightforward,<br />

<strong>the</strong>y may serve as benchmark <strong>problem</strong>s for study<strong>in</strong>g <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong><br />

<strong>an</strong>d <strong>the</strong> impact <strong>of</strong> data smoothness <strong>an</strong>d no arbitrage on solution properties. In<br />

this paper, we <strong>an</strong>alyse <strong>the</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> (IP) <strong>of</strong> calibrat<strong>in</strong>g a purely timedependent<br />

volatility function from a term-structure <strong>of</strong> <strong>option</strong> prices by solv<strong>in</strong>g<br />

<strong>an</strong> <strong>ill</strong>-posed nonl<strong>in</strong>ear operator equation <strong>in</strong> spaces <strong>of</strong> cont<strong>in</strong>uous <strong>an</strong>d power<strong>in</strong>tegrable<br />

functions over a f<strong>in</strong>ite <strong>in</strong>terval. The forward operator <strong>of</strong> <strong>the</strong> IP under<br />

consideration is decomposed <strong>in</strong>to <strong>an</strong> <strong>in</strong>ner l<strong>in</strong>ear convolution operator <strong>an</strong>d <strong>an</strong><br />

outer nonl<strong>in</strong>ear Nemytskii operator given by a Black–Scholes function. The<br />

<strong>in</strong>version <strong>of</strong> <strong>the</strong> outer operator leads to <strong>an</strong> <strong>ill</strong>-<strong>posedness</strong> effect localized at<br />

small times, whereas <strong>the</strong> <strong>in</strong>ner differentiation <strong>problem</strong> is <strong>ill</strong> posed <strong>in</strong> a global<br />

m<strong>an</strong>ner. Several aspects <strong>of</strong> regularization <strong>an</strong>d <strong>the</strong>ir properties are discussed. In<br />

particular, a detailed <strong>an</strong>alysis <strong>of</strong> local <strong>ill</strong>-<strong>posedness</strong> <strong>an</strong>d Tikhonov regularization<br />

<strong>of</strong> <strong>the</strong> complete IP <strong>in</strong>clud<strong>in</strong>g convergence rates is given <strong>in</strong> a Hilbert space sett<strong>in</strong>g.<br />

Abrief numerical case study on syn<strong>the</strong>tic data <strong>ill</strong>ustrates <strong>an</strong>d completes <strong>the</strong><br />

paper.<br />

The past ten years c<strong>an</strong> be considered as a very active period <strong>in</strong> develop<strong>in</strong>g <strong>the</strong> practice <strong>of</strong><br />

pric<strong>in</strong>g structured f<strong>in</strong><strong>an</strong>cial <strong>in</strong>struments <strong>in</strong> <strong>the</strong> context <strong>of</strong> modern risk m<strong>an</strong>agement. This<br />

was also <strong>the</strong> reason for a dramatically grow<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> derivative pric<strong>in</strong>g <strong>the</strong>ory as <strong>an</strong><br />

actual part <strong>of</strong> f<strong>in</strong><strong>an</strong>cial ma<strong>the</strong>matics. Proceed<strong>in</strong>g from <strong>the</strong> basic papers <strong>of</strong> Black, Scholes<br />

<strong>an</strong>d Merton [6, 31] stochastic calculus comb<strong>in</strong>ed with adv<strong>an</strong>ced numerical techniques could<br />

be applied successfully for <strong>the</strong> fair price calculation <strong>of</strong> <strong>option</strong>s <strong>an</strong>do<strong>the</strong>rf<strong>in</strong><strong>an</strong>cial derivatives<br />

written on <strong>an</strong> underly<strong>in</strong>g asset <strong>in</strong> arbitrage-free markets (see, for example, [5, 26, 29] <strong>an</strong>d [33]).<br />

0266-5611/03/061319+20$30.00 © 2003 IOP Publish<strong>in</strong>g Ltd Pr<strong>in</strong>ted <strong>in</strong> <strong>the</strong> UK 1319


1320 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

There also occur <strong><strong>in</strong>verse</strong> <strong>option</strong> pric<strong>in</strong>g<strong>problem</strong>s aimed at calibrat<strong>in</strong>g (identify<strong>in</strong>g) not<br />

directly observable volatilities σ <strong>in</strong> general as functions depend<strong>in</strong>g on time τ <strong>an</strong>d current<br />

asset price X from <strong>option</strong> prices u observed at <strong>the</strong> f<strong>in</strong><strong>an</strong>cial market. In particular, <strong>the</strong><br />

ma<strong>the</strong>matical background <strong>of</strong> <strong>the</strong> so-called volatility smile phenomenon <strong>of</strong> strike-dependent<br />

implied volatilities is underconsideration. Research results concern<strong>in</strong>g <strong><strong>in</strong>verse</strong> <strong>problem</strong>s (IPs)<br />

<strong>of</strong> <strong>option</strong> pric<strong>in</strong>g have been <strong>in</strong>tensively published <strong>in</strong> recent years (see, e.g., [3, 7, 8, 10–13]<br />

<strong>an</strong>d [30]). Most <strong>of</strong> <strong>the</strong> papers remark on <strong>an</strong>d motivate <strong>the</strong> fact that <strong>the</strong> IPs under consideration<br />

are <strong>ill</strong> posed <strong>in</strong> Hadamard’s sense. Frequently <strong>the</strong>y discuss regularizationapproaches for stable<br />

solutions <strong>of</strong> <strong>the</strong> IPs without <strong>an</strong>alys<strong>in</strong>g <strong>the</strong> <strong>ill</strong>-<strong>posedness</strong> phenomena <strong>of</strong> such <strong>problem</strong>s <strong>in</strong> detail.<br />

Inverse <strong>problem</strong>s <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g are frequently regarded as simple <strong>an</strong>d resolved if a<br />

formula <strong>of</strong> Black–Scholes type def<strong>in</strong>es <strong>the</strong> forward operator, as <strong>in</strong> <strong>the</strong> case <strong>of</strong> a const<strong>an</strong>t<br />

volatility, where <strong>the</strong> classical Black–Scholes formula holds. Also purely time-dependent<br />

volatility functions <strong>in</strong> comb<strong>in</strong>ation with families <strong>of</strong> maturity-dependent <strong>option</strong> prices do not<br />

seem to be <strong>of</strong> much <strong>in</strong>terest, s<strong>in</strong>ce <strong>the</strong> model is ra<strong>the</strong>r restricted. But precisely because <strong>the</strong><br />

structure <strong>of</strong> such <strong>problem</strong>s is straightforward, <strong>the</strong>y may serve as benchmark <strong>problem</strong>s for<br />

study<strong>in</strong>g several <strong>ill</strong>-<strong>posedness</strong> phenomena occurr<strong>in</strong>g <strong>in</strong> <strong><strong>in</strong>verse</strong> <strong>option</strong> pric<strong>in</strong>g <strong>problem</strong>s. In<br />

this paper, based on <strong>the</strong> prelim<strong>in</strong>ary studies <strong>in</strong> [16] <strong>an</strong>d [21], we try to f<strong>ill</strong> a gap <strong>in</strong> <strong>the</strong> literature<br />

by <strong>an</strong>alys<strong>in</strong>g <strong>ill</strong>-posed situations <strong>an</strong>d additionalconditions enforc<strong>in</strong>g well-posed sub<strong>problem</strong>s<br />

associated with time-dependent <strong>option</strong> price <strong>an</strong>d volatility functions <strong>in</strong> spaces <strong>of</strong> cont<strong>in</strong>uous<br />

<strong>an</strong>d power-<strong>in</strong>tegrable functions over a f<strong>in</strong>ite time <strong>in</strong>terval. This also provides <strong>an</strong> <strong>in</strong>sight <strong>in</strong>to<br />

<strong>the</strong> impact <strong>of</strong> data smoothness <strong>an</strong>d no arbitrage on solution properties <strong>an</strong>d <strong>in</strong>to <strong>the</strong> s<strong>in</strong>gular<br />

character <strong>of</strong> at-<strong>the</strong>-money <strong>option</strong>s. Nei<strong>the</strong>r phenomenon becomes apparent if one considers<br />

asset price-dependent volatilities <strong>an</strong>d strike-dependent <strong>option</strong> prices. We believe that <strong>the</strong><br />

<strong>an</strong>alysis <strong>of</strong> <strong>the</strong> purely time-dependent case is import<strong>an</strong>t as <strong>an</strong> <strong>in</strong>termediary step towards <strong>the</strong><br />

more general<strong>problem</strong> <strong>of</strong> fitt<strong>in</strong>g <strong>the</strong> volatility smile as a whole.<br />

The paper is org<strong>an</strong>ized as follows: <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g part <strong>of</strong> <strong>the</strong> <strong>in</strong>troduction we formulate<br />

<strong>in</strong> <strong>the</strong> context <strong>of</strong> time-dependent functions <strong>the</strong> <strong>option</strong> price formula us<strong>in</strong>g <strong>the</strong> Black–Scholes<br />

function <strong>an</strong>d def<strong>in</strong>e <strong>the</strong> specific IP under consideration. The IP consists <strong>of</strong> solv<strong>in</strong>g a nonl<strong>in</strong>ear<br />

operator equation <strong>in</strong> B<strong>an</strong>ach spaces <strong>of</strong> real functions def<strong>in</strong>ed on a f<strong>in</strong>ite <strong>in</strong>terval. The<br />

solution process is decomposed <strong>in</strong>to solv<strong>in</strong>g a nonl<strong>in</strong>ear outer operator equation by <strong>in</strong>vert<strong>in</strong>g<br />

aNemytskiioperator <strong>an</strong>d solv<strong>in</strong>g a l<strong>in</strong>ear <strong>in</strong>ner operator equation by differentiation. Ma<strong>in</strong><br />

properties <strong>of</strong> <strong>the</strong> used Black–Scholes function <strong>an</strong>d Nemytskii operator are summarized <strong>in</strong><br />

section 2. Based on those properties section 3 deals with <strong>the</strong> solution <strong>of</strong> <strong>the</strong> outer equation<br />

<strong>of</strong> <strong>the</strong> IP for smooth <strong>option</strong> data <strong>in</strong> spaces <strong>of</strong> cont<strong>in</strong>uous functions. Both <strong>ill</strong>-posed <strong>an</strong>d, <strong>in</strong> <strong>the</strong><br />

case <strong>of</strong> arbitrage-free data, well-posed situations occur for this outer equation, whereas <strong>the</strong><br />

<strong>in</strong>ner equation act<strong>in</strong>g as numerical differentiation is always <strong>ill</strong> posed. In section 4 we consider<br />

quasisolutions <strong>of</strong> <strong>the</strong> outer equation <strong>of</strong> <strong>the</strong> IP <strong>an</strong>d <strong>the</strong>ir properties <strong>in</strong> <strong>the</strong> case <strong>of</strong> noisy data <strong>in</strong><br />

L p-spaces. Section 5 is devoted to <strong>the</strong> study <strong>of</strong> local <strong>ill</strong>-<strong>posedness</strong> properties <strong>of</strong> <strong>the</strong> complete<br />

<strong>ill</strong>-posed nonl<strong>in</strong>ear IP <strong>in</strong> a Hilbert space sett<strong>in</strong>g by consider<strong>in</strong>g <strong>the</strong> character <strong>of</strong> convergence<br />

conditions for <strong>the</strong> Tikhonov regularization. A brief case study discussion <strong>of</strong> a discrete approach<br />

<strong>in</strong> section 6 <strong>ill</strong>ustrates <strong>an</strong>d completes <strong>the</strong> paper.<br />

We consider <strong>in</strong> this paper a vari<strong>an</strong>t <strong>of</strong> <strong>the</strong> Black–Scholes model, which is focused on timedependent<br />

functions over <strong>the</strong> <strong>in</strong>terval [0, T ]us<strong>in</strong>gageneralized geometric Browni<strong>an</strong> motion<br />

as stochastic process for <strong>the</strong> price X (τ) > 0<strong>of</strong><strong>an</strong>asset, on which <strong>option</strong>s are written. With<br />

const<strong>an</strong>t drift µ ∈ R, time-dependent volatilities σ(τ) > 0<strong>an</strong>dast<strong>an</strong>dard Wiener process<br />

W(τ), <strong>the</strong>stochastic differential equation<br />

dX (τ)<br />

= µ dτ + σ(τ)dW(τ) (0 � τ � T )<br />

X (τ)


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1321<br />

is assumed to hold. At <strong>the</strong> <strong>in</strong>itial time τ = 0let<strong>the</strong>re exist <strong>an</strong> idealized family <strong>of</strong> Europe<strong>an</strong><br />

v<strong>an</strong><strong>ill</strong>a call <strong>option</strong>s written on <strong>the</strong> asset with current asset price X := X (0) >0, fixed strike<br />

K > 0, fixed risk-free <strong>in</strong>terest rate r � 0<strong>an</strong>drema<strong>in</strong><strong>in</strong>g times to maturity t cont<strong>in</strong>uously<br />

vary<strong>in</strong>g between zero <strong>an</strong>d <strong>the</strong> upper time limit T .<br />

Neglect<strong>in</strong>g <strong>the</strong> role <strong>of</strong> dividends <strong>an</strong>d sett<strong>in</strong>g for simplicity<br />

a(τ) := σ 2 (τ) (0 � τ � T ) <strong>an</strong>d S(t) :=<br />

� t<br />

0<br />

a(τ) dτ (0 � t � T )<br />

it follows from stochastic <strong>an</strong>d <strong>an</strong>alytic considerations (for details see, e.g., [29, p 71f.]) that<br />

fair <strong>option</strong> prices u(t) on arbitrage-free markets are explicitly given by <strong>the</strong> Black–Scholes-type<br />

formula<br />

u(t) = UBS(X, K, r, t, S(t)) (0 � t � T ). (1)<br />

This formula is based on <strong>the</strong> Black–Scholes function UBS,whichwec<strong>an</strong> def<strong>in</strong>e for <strong>the</strong> variables<br />

X > 0, K > 0, r � 0, τ � 0<strong>an</strong>ds� 0as<br />

�<br />

X�(d1) − K e<br />

UBS(X, K, r,τ,s) :=<br />

−rτ �(d2) (s > 0)<br />

max(X − K e −rτ (2)<br />

, 0) (s = 0)<br />

with<br />

d1 :=<br />

ln( X<br />

K<br />

s ) + rτ + 2<br />

√ , d2 := d1 −<br />

s<br />

√ s (3)<br />

<strong>an</strong>d <strong>the</strong> cumulative density function <strong>of</strong> <strong>the</strong> st<strong>an</strong>dard normal distribution<br />

�(z) := 1<br />

√ 2π<br />

� z<br />

−∞<br />

x2<br />

−<br />

e 2 dx. (4)<br />

In <strong>the</strong> follow<strong>in</strong>g we always express <strong>the</strong> volatility term structure <strong>of</strong> <strong>the</strong> underly<strong>in</strong>g asset<br />

by <strong>the</strong> not directly observable volatility function a. Although <strong>the</strong> formulae (1)–(4) were<br />

orig<strong>in</strong>ally derived only for positive <strong>an</strong>d Hölder cont<strong>in</strong>uous functions a, <strong>the</strong>seformulae also<br />

yield well def<strong>in</strong>ed non-negative functions u(t) (0 � t � T ) <strong>in</strong> <strong>the</strong> case <strong>of</strong> not necessarily<br />

cont<strong>in</strong>uous but Lebesgue-<strong>in</strong>tegrable <strong>an</strong>d almost everywhere f<strong>in</strong>ite <strong>an</strong>d non-negative functions<br />

a(τ) (0 � τ � T ). Namely, such functions a have non-negative <strong>an</strong>d absolutely cont<strong>in</strong>uous<br />

primitives S(t) (0 � t � T ), which imply non-negative functions u as a consequence <strong>of</strong> <strong>the</strong><br />

properties <strong>of</strong> <strong>the</strong> function UBS listed <strong>in</strong> lemma 2.1 below.<br />

Now let <strong>the</strong>re be given at time τ = 0adata function u δ (t) (0 � t � T ) <strong>of</strong> observed<br />

call <strong>option</strong> prices as noisy data <strong>of</strong> <strong>the</strong> fair price function u(t) (0 � t � T ) accord<strong>in</strong>g to<br />

formula (1) with a noise level δ � 0. Then we c<strong>an</strong> formulate <strong>the</strong> IP under consideration aimed<br />

at calibrat<strong>in</strong>g <strong>the</strong> volatility function a as follows.<br />

Def<strong>in</strong>ition 1.1 (Inverse <strong>problem</strong>—IP). Under <strong>the</strong> assumptions stated above f<strong>in</strong>d at time<br />

τ = 0 <strong>the</strong> time-dependent volatility function a(τ) (0 � τ � T ) from noisy observations<br />

u δ (t) (0 � t � T ) <strong>of</strong> <strong>the</strong> maturity-dependent fair price function u(t) (0 � t � T ).<br />

2. Black–Scholes function <strong>an</strong>d Nemytskii operators<br />

We first summarize <strong>the</strong> ma<strong>in</strong> properties <strong>of</strong> <strong>the</strong> Black–Scholes function UBS def<strong>in</strong>ed by <strong>the</strong><br />

formulae (2)–(4). The results <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g lemma c<strong>an</strong> be proven straightforwardly by<br />

elementary calculations.


1322 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

Lemma 2.1. Let <strong>the</strong> parameters X > 0, K > 0 <strong>an</strong>d r � 0 be fixed. Then <strong>the</strong> nonnegative<br />

function UBS(X, K, r,τ,s) is cont<strong>in</strong>uous for (τ, s) ∈ [0, ∞) × [0, ∞). Moreover, for<br />

(τ, s) ∈ [0, ∞) × (0, ∞),this function is cont<strong>in</strong>uously differentiable with respect to τ,where<br />

we have<br />

∂UBS(X, K, r,τ,s)<br />

= rKe<br />

∂τ<br />

−rτ �(d2) � 0,<br />

<strong>an</strong>d twice cont<strong>in</strong>uously differentiable with respect to s, where we have with ν := ln(<br />

(5)<br />

X<br />

K )<br />

∂UBS(X, K, r,τ,s)<br />

= �<br />

∂s<br />

′ (d1)X 1<br />

2 √ s<br />

X<br />

=<br />

2 √ 2πs exp<br />

�<br />

[ν + rτ]2 [ν + rτ]<br />

− − −<br />

2s 2<br />

s<br />

�<br />

> 0<br />

8<br />

(6)<br />

<strong>an</strong>d<br />

∂2UBS(X, K, r,τ,s)<br />

∂s 2<br />

=−� ′ (d1)X 1<br />

4 √ �<br />

[ν + rτ]2<br />

−<br />

s s2 + 1<br />

�<br />

1<br />

+<br />

4 s<br />

=−<br />

X<br />

4 √ �<br />

[ν + rτ]2<br />

−<br />

2πs s2 + 1<br />

� �<br />

1 [ν + rτ]2 [ν + rτ]<br />

+ exp − − −<br />

4 s<br />

2s 2<br />

s<br />

�<br />

.<br />

8<br />

(7)<br />

Fur<strong>the</strong>rmore, we f<strong>in</strong>d <strong>the</strong> limit conditions<br />

�<br />

∂UBS(X, K, r,τ,s) ∞<br />

lim<br />

=<br />

s→0 ∂s<br />

0<br />

−rτ (X = K e )<br />

(X �= K e−rτ <strong>an</strong>d<br />

)<br />

(8)<br />

lim<br />

s→∞ UBS(X, K, r,τ,s) = X.<br />

<strong>On</strong> <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d, <strong>the</strong> partial derivative<br />

(9)<br />

∂UBS(X, K, r,τ,s)<br />

=−e<br />

∂ K<br />

−rτ �(d2) 0forall(τ, s) ∈ [0, T ]×(0, ∞)<br />

∂s<br />

<strong>an</strong>d hence <strong>the</strong> follow<strong>in</strong>g lemma.<br />

Lemma 2.2. The Nemytskii operator N def<strong>in</strong>ed by formulae (11) <strong>an</strong>d (12) is <strong>in</strong>jective on its<br />

doma<strong>in</strong> D+.<br />

In general (see, e.g., [1, p 15]), a Nemytskii operator N : v(t) ↦→ k(t,v(t)) applied<br />

to real-valued scalar functions v(t) is def<strong>in</strong>ed by a kernel function k(t, s), wheret varies<br />

<strong>in</strong> a f<strong>in</strong>ite <strong>in</strong>terval I ⊂ R <strong>an</strong>d s varies <strong>in</strong> R. If s ↦→ k(t, s) is cont<strong>in</strong>uous for almost<br />

every t ∈ I <strong>an</strong>d t ↦→ k(t, s) is measurable for all s ∈ R, <strong>the</strong> Nemytskii operator<br />

satisfies <strong>the</strong> Carathéodory condition. If<strong>the</strong>Nemytskii operator moreover satisfies a growth


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1323<br />

condition |k(t, s)| � c1 + c2|s| p/q with positive const<strong>an</strong>ts c1 <strong>an</strong>d c2,<strong>the</strong>n it maps cont<strong>in</strong>uously<br />

from L p (I) to Lq (I) for 1 � p, q < ∞ (see, e,g, [1, <strong>the</strong>orem 2.2]). In <strong>the</strong> context <strong>of</strong><br />

formula (11) we set I := [0, T ]<strong>an</strong>d<br />

k(t, s) := UBS(X, K, r, t, s) (s�0), k(t, s) := UBS(X, K, r, t, 0) (s < 0).<br />

From lemma 2.1 it follows that <strong>the</strong> function UBS(X, K, r, t, s) generat<strong>in</strong>g <strong>the</strong> Nemytskii<br />

operator N is cont<strong>in</strong>uous <strong>an</strong>d uniformly bounded with |UBS(X, K, r, t, s)| < X due to <strong>the</strong><br />

formulae (6) <strong>an</strong>d (9) for all (t, s) ∈ [0, T ] × [0, ∞). Then<strong>the</strong> Carathéodory condition <strong>an</strong>d a<br />

growth condition are satisfied <strong>an</strong>d we have cont<strong>in</strong>uity <strong>of</strong> N between spaces <strong>of</strong> power-<strong>in</strong>tegrable<br />

functions on <strong>the</strong> <strong>in</strong>terval [0, T ]as<strong>the</strong>follow<strong>in</strong>g lemma asserts.<br />

Lemma 2.3. The Nemytskii operator N def<strong>in</strong>ed by formula (11) with doma<strong>in</strong> D+ ∩ L p (0, T )<br />

maps cont<strong>in</strong>uously from L p (0, T ) to L q (0, T ) for all 1 � p, q < ∞.<br />

As obvious throughout this paper we denote by L p (a, b) (1 � p < ∞) <strong>the</strong> B<strong>an</strong>ach<br />

space <strong>of</strong> p-power <strong>in</strong>tegrable real functions x(t) (a � t � b) with <strong>the</strong> norm �x�L p (a,b) :=<br />

( � b<br />

a |x(t)|p dt) 1/p ,byL∞ (a, b) <strong>the</strong> B<strong>an</strong>ach space <strong>of</strong> essentially bounded real functions on<br />

<strong>the</strong> <strong>in</strong>terval (a, b) with <strong>the</strong> norm �x�L ∞ (a,b) := ess sup t∈(a,b) |x(t)| <strong>an</strong>d by C[a, b] <strong>the</strong><br />

B<strong>an</strong>ach space <strong>of</strong> cont<strong>in</strong>uous real functions def<strong>in</strong>ed on [a, b] with <strong>the</strong> norm �x�C[a,b] :=<br />

maxt∈[a,b] |x(t)|.<br />

If we restrict <strong>the</strong> doma<strong>in</strong> <strong>of</strong> N to <strong>the</strong> set<br />

D0 := {v ∈ C[0, T ]:v(0) = 0,v(t) � 0 (0 < t � T )},<br />

<strong>the</strong>n because <strong>of</strong> lemma 2.1 we have<br />

N : D0 ⊂ C[0, T ] −→ D+ ∩ C[0, T ].<br />

Us<strong>in</strong>g <strong>the</strong> substitutions w := � v<br />

t as well as �(t,w) := UBS(X, K, r, t,v) we derive for all<br />

t > 0<strong>an</strong>dw>0<br />

0 < ∂�(t,w)<br />

∂w<br />

= X √ t� ′ ( ¯d1) � X√ t<br />

√ 2π<br />

with<br />

X<br />

w2<br />

ln(<br />

¯d1<br />

K ) + t(r + 2<br />

:= )<br />

√ .<br />

tw<br />

Consequently, for functions v1,v2,w1,w2 ∈ D0 with vi(t) = tw2 i (t) (i = 1, 2) <strong>the</strong>re are<br />

po<strong>in</strong>twise estimations<br />

� �<br />

�<br />

|[N(v1)](t) − [N(v2)](t)| � �<br />

∂�(t,wt) �<br />

�<br />

1<br />

�<br />

�<br />

� ∂w �√<br />

�<br />

t<br />

� v1(t) − � �<br />

�<br />

v2(t) � (0 < t � T )<br />

with <strong>an</strong> <strong>in</strong>termediate value wt between w1(t) <strong>an</strong>d w2(t) <strong>an</strong>d<br />

|[N(v1)](t) − [N(v2)](t)| � X<br />

�<br />

�<br />

√ �<br />

2π<br />

� v1(t) − � �<br />

�<br />

v2(t) � (0 � t � T ). (13)<br />

From (13) we directly obta<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g.<br />

Lemma 2.4. The Nemytskii operator N def<strong>in</strong>ed by formula (11) with doma<strong>in</strong> D0 maps<br />

cont<strong>in</strong>uously from C[0, T ] to C[0, T ].<br />

If we denote by B1, B2 <strong>an</strong>d B3 B<strong>an</strong>ach spaces <strong>of</strong> functions def<strong>in</strong>ed on <strong>the</strong> <strong>in</strong>terval [0, T ],<br />

<strong>the</strong>n we c<strong>an</strong> write <strong>the</strong> IP as a nonl<strong>in</strong>ear operator equation<br />

F(a) = u (a ∈ D(F) ⊂ B1, u ∈ D+ ∩ B2), (14)


1324 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

where <strong>the</strong> nonl<strong>in</strong>ear operator<br />

F = N ◦ J : D(F) ⊂ B1 −→ B2<br />

with doma<strong>in</strong><br />

D(F) := {ã ∈ L 1 (0, T ) ∩ B1 : ã(t) � 0a.e.<strong>in</strong>[0, T ]}<br />

is decomposed <strong>in</strong>to <strong>the</strong> <strong>in</strong>ner l<strong>in</strong>ear convolution operator J : B1 −→ B3 with<br />

[J(h)](t) :=<br />

� t<br />

0<br />

h(τ) dτ (0 � t � T ) (15)<br />

<strong>an</strong>d <strong>the</strong> outer nonl<strong>in</strong>ear Nemytskii operator N : D+ ∩ B3 ⊂ B3 −→ B2 def<strong>in</strong>ed by (11).<br />

Consequently, <strong>the</strong> <strong>problem</strong> <strong>of</strong> solv<strong>in</strong>g <strong>the</strong> operator equation (14) c<strong>an</strong> be decomposed <strong>in</strong>to<br />

solv<strong>in</strong>g, successively, <strong>the</strong> nonl<strong>in</strong>ear outer operator equation<br />

N(S) = u (S ∈ D+ ∩ B3, u ∈ D+ ∩ B2) (16)<br />

<strong>an</strong>d <strong>the</strong> l<strong>in</strong>ear <strong>in</strong>ner operator equation<br />

J(a) = S (a ∈ D(F) ⊂ B1, S ∈ D+ ∩ B3). (17)<br />

For our doma<strong>in</strong> D(F), allfunctions <strong>of</strong> <strong>the</strong> r<strong>an</strong>ge J(D(F)) are absolutely cont<strong>in</strong>uous, nonnegative<br />

<strong>an</strong>d nondecreas<strong>in</strong>g <strong>an</strong>d belong to <strong>the</strong> set<br />

D ↗<br />

0 := {˜S ∈ C[0, T ]: ˜S(0) = 0, ˜S(t1) � ˜S(t2)(0 � t1 < t2 � T )} ⊂D0 ⊂ D+.<br />

Therefore <strong>the</strong> <strong>in</strong>ner equation (17) is only solvable if <strong>the</strong> solution S <strong>of</strong> <strong>the</strong> outer equation (16)<br />

belongs to D ↗<br />

0 .<br />

Note that <strong>the</strong> composition F = N ◦ J under consideration <strong>in</strong> this paper is reverse to <strong>the</strong><br />

situation discussed <strong>in</strong> [27, chapter 7.5], where as occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> case <strong>of</strong> Hammerste<strong>in</strong> <strong>in</strong>tegral<br />

equations nonl<strong>in</strong>ear composite operators ˜F = A ◦ N with <strong>an</strong> <strong>in</strong>ner Nemytskii<strong>an</strong>d <strong>an</strong> outer<br />

bounded l<strong>in</strong>ear operator A are <strong>an</strong>alysed.<br />

To solve forward <strong>problem</strong>s <strong>of</strong> comput<strong>in</strong>g maturity-dependent price functions û(t) :=<br />

UBS( ˆX, ˆK , ˆr, t, S(t)) (0 � t � T ) <strong>of</strong> Europe<strong>an</strong> v<strong>an</strong><strong>ill</strong>a call <strong>option</strong>s with vary<strong>in</strong>g parameters<br />

ˆX, ˆK <strong>an</strong>d ˆr based on <strong>the</strong> solution <strong>of</strong> <strong>the</strong> IP it is sufficient to determ<strong>in</strong>e <strong>the</strong> auxiliary function<br />

S from <strong>the</strong> outer equation (16). In view <strong>of</strong> <strong>the</strong> cont<strong>in</strong>uity <strong>of</strong> Nemytskii operators N under<br />

consideration here (see lemma 2.4), <strong>the</strong> <strong>problem</strong>s <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g û from S are well posed if we<br />

measure <strong>the</strong> deviations <strong>of</strong> S <strong>an</strong>d û <strong>in</strong> <strong>the</strong> maximum norm. <strong>On</strong> <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d, <strong>the</strong> volatility<br />

function a(t) (0 � t � T ) itself is not used explicitly for comput<strong>in</strong>g û. As <strong>the</strong> subsequent<br />

section w<strong>ill</strong> show, this is <strong>an</strong> adv<strong>an</strong>tage. Namely, for arbitrage-free <strong>option</strong> data uδ <strong>of</strong> <strong>the</strong> fair<br />

price function u <strong>the</strong> outer equation (16) is well posed <strong>in</strong> a C-space sett<strong>in</strong>g. However, <strong>the</strong> <strong>in</strong>ner<br />

equation (17) aimed at f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> derivative a(t) = S ′ (t) (0 � t � T ) <strong>of</strong> <strong>the</strong> function S is <strong>ill</strong><br />

posed <strong>in</strong> usual B<strong>an</strong>ach spaces B1 <strong>an</strong>d B3 <strong>of</strong> <strong>in</strong>tegrable or cont<strong>in</strong>uous functions on <strong>the</strong> <strong>in</strong>terval<br />

[0, T ]<strong>an</strong>dleads to <strong>ill</strong>-conditioned <strong>problem</strong>s after discretization (see, e.g., [18]). In <strong>the</strong> Hilbert<br />

space sett<strong>in</strong>g B1 = B3 = L2 (0, T ) <strong>the</strong> differentiation <strong>problem</strong> is weakly <strong>ill</strong> posed <strong>an</strong>d has <strong>an</strong><br />

<strong>ill</strong>-<strong>posedness</strong> degree <strong>of</strong> one (see, e.g., [28, p 235] <strong>an</strong>d [22, p 33ff]).<br />

Note that for <strong>the</strong> practitioners it is preferably <strong>of</strong> <strong>in</strong>terest to solve <strong>the</strong> complete IP, s<strong>in</strong>ce<br />

<strong>the</strong> calibration <strong>of</strong> volatility functions a is required for pric<strong>in</strong>g Americ<strong>an</strong> or exotic <strong>option</strong>s by<br />

solv<strong>in</strong>g <strong>in</strong>itial boundary value <strong>problem</strong>s <strong>of</strong> parabolic PDEs, where <strong>the</strong> volatilities occur as<br />

parameters <strong>in</strong> <strong>the</strong> differential equation. The stable approximate solution <strong>of</strong> <strong>the</strong> overall IP is<br />

discussed <strong>in</strong> section5below.<br />

Throughout this paper we only <strong>an</strong>alyse <strong>the</strong> IP for calls. S<strong>in</strong>ce out-<strong>of</strong>-<strong>the</strong>-money <strong>option</strong><br />

prices are more <strong>in</strong>formative regard<strong>in</strong>g <strong>the</strong> unknown volatilities th<strong>an</strong> <strong>in</strong>-<strong>the</strong>-money <strong>option</strong> prices,<br />

it could be helpful to calibrate fromreal data <strong>of</strong> put <strong>option</strong>s <strong>in</strong> <strong>the</strong> case X > K .S<strong>in</strong>ceforcall<br />

prices ucall <strong>an</strong>d associated put prices uput with fixed parameters X, K, r <strong>an</strong>d <strong>the</strong> same maturity<br />

t <strong>the</strong> usual put–call parity relation uput(t) = ucall(t) − X + K e−rt holds (see, e.g., [29, p 121]),<br />

<strong>the</strong> results <strong>of</strong> <strong>the</strong> call <strong>an</strong>alysis c<strong>an</strong> be easily tr<strong>an</strong>sformed to <strong>the</strong> put case.


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1325<br />

3. Solv<strong>in</strong>g <strong>the</strong> outer equation <strong>of</strong> <strong>the</strong> IP <strong>in</strong> C-spaces for smooth <strong>an</strong>d arbitrage-free <strong>option</strong><br />

data<br />

In this section we are go<strong>in</strong>g to solve with B2 = B3 = C[0, T ]<strong>the</strong>outer equation (16) <strong>of</strong> <strong>the</strong><br />

IP for a given function uδ (t) (0 � t � T ) <strong>of</strong> observed <strong>option</strong> price data that approximate <strong>the</strong><br />

fair price function u = F(a) = N(S). Let <strong>the</strong> admissible volatility functions possess <strong>in</strong> <strong>the</strong><br />

follow<strong>in</strong>g a positive essential <strong>in</strong>fimum, i.e., we assume a ∈ D∗ (F),where<br />

D ∗ (F) := {ã ∈ L 1 (0, T ) :ess<strong>in</strong>fã(t)<br />

>0}.<br />

t∈(0,T )<br />

Moreover, let <strong>the</strong> data uδ satisfy <strong>the</strong> follow<strong>in</strong>g assumption, which is reasonable for data <strong>in</strong> <strong>an</strong><br />

arbitrage-free market (see, e.g., [31]).<br />

Assumption 3.1. The data function uδ (t)(0 � t � T ) is assumed to be cont<strong>in</strong>uous <strong>an</strong>d strictly<br />

<strong>in</strong>creas<strong>in</strong>g with<br />

u δ (0) = max(X − K, 0), max(X − K e −rt , 0) 0<br />

∂t<br />

∂s<br />

is cont<strong>in</strong>uous <strong>in</strong> both variables t <strong>an</strong>d s, nondecreas<strong>in</strong>g with respect to t <strong>an</strong>d strictly <strong>in</strong>creas<strong>in</strong>g<br />

with respect to s for (t, s) ∈ [0, T ] × (0, ∞). Moreover, we have for all t ∈ (0, T ]<br />

lim<br />

s→0 k(t, s) = k(t, 0) = max(X − K e−rt , 0) < lim k(t, s) = X<br />

s→∞<br />

(see <strong>the</strong> formulae (2) <strong>an</strong>d (9)). S<strong>in</strong>ce <strong>the</strong> data uδ with uδ (t) � uδ (T )(0 � t � T ) satisfy <strong>the</strong><br />

condition (18), from <strong>the</strong> family <strong>of</strong> equations<br />

k(t, s) = u δ (t) (20)<br />

<strong>in</strong> s, where<strong>the</strong>parameter t varies <strong>in</strong> <strong>the</strong> <strong>in</strong>terval [0, T ], we f<strong>in</strong>d <strong>in</strong> a unique m<strong>an</strong>ner values<br />

s = S δ (t) >0forallt ∈ (0, T ]<strong>an</strong>ds = S δ (0) = 0fort = 0because <strong>of</strong> k(0, 0) = u δ (0).<br />

The value ¯S satisfy<strong>in</strong>g k(0, ¯S) = u δ (T ) is also uniquely determ<strong>in</strong>ed. From <strong>the</strong> estimation<br />

k(0, S δ (t)) � k(t, S δ (t)) = u δ (t) � u δ (T ) = k(0, ¯S) we get S δ (t) � ¯S. F<strong>in</strong>ally, <strong>the</strong><br />

cont<strong>in</strong>uity <strong>of</strong> <strong>the</strong> function S δ (t) (0 � t � T ) follows from <strong>the</strong> implicit function <strong>the</strong>orem


1326 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

(see, e.g., [17, p 421]) consider<strong>in</strong>g that k(t, s) is cont<strong>in</strong>uous <strong>in</strong> both variables <strong>an</strong>d strictly<br />

monotonic with respect to s. Thisproves <strong>the</strong> <strong>the</strong>orem. �<br />

Note that <strong>the</strong> functions Sδ provided by <strong>the</strong>orem 3.2 are not necessarily monotonic. We<br />

w<strong>ill</strong> evaluate po<strong>in</strong>twise for 0 < t � T <strong>the</strong> error |Sδ (t) − S(t)| <strong>of</strong> <strong>the</strong> cont<strong>in</strong>uous positive<br />

function Sδ (t) with limt→0 Sδ (t) = 0thus obta<strong>in</strong>ed, by us<strong>in</strong>g <strong>the</strong> formula<br />

|S δ � �−1 ∂UBS(X, K, r, t, Sim(t))<br />

(t) − S(t)| =<br />

|u<br />

∂s<br />

δ (t) − u(t)|, (21)<br />

where Sim(t) ∈ [m<strong>in</strong>(Sδ (t), S(t)), max(Sδ (t), S(t))] is a positive <strong>in</strong>termediate function<br />

<strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> error amplification factor<br />

� �−1 ∂UBS(X, K, r, t, Sim(t))<br />

ϕ(t) :=<br />

> 0 (0 < t � T ).<br />

∂s<br />

With limt→0 Sim(t) = 0weobta<strong>in</strong> from formula (6) <strong>in</strong> <strong>the</strong> case X �= K <strong>the</strong> limit conditions<br />

1<br />

lim √<br />

t→0 Sim(t) exp<br />

� X �<br />

[ln( ) + rt]2<br />

K<br />

− = 0<br />

2Sim(t)<br />

<strong>an</strong>d consequently<br />

lim ϕ(t) =∞ (X �= K ) (22)<br />

t→0<br />

for <strong>the</strong> error amplification factor. That me<strong>an</strong>s, <strong>in</strong> <strong>the</strong> case X �= K ,<strong>the</strong><strong>problem</strong> <strong>of</strong> determ<strong>in</strong><strong>in</strong>g<br />

Sδ from data uδ satisfy<strong>in</strong>g <strong>the</strong> assumption 3.1 is <strong>ill</strong> posed <strong>in</strong> a C-space sett<strong>in</strong>g. The <strong>ill</strong>-<strong>posedness</strong><br />

is locally concentrated <strong>in</strong> a neighbourhood <strong>of</strong> t = 0. As a consequence <strong>of</strong> (22), for X �= K<br />

<strong>an</strong>d sufficiently small t, <strong>the</strong>errors |Sδ (t) − S(t)| may rema<strong>in</strong> large, although <strong>the</strong> data errors<br />

�uδ −u�C[0,T ] get arbitrarily small. In practice <strong>the</strong> approximate solutions Sδ (t) tend to osc<strong>ill</strong>ate<br />

for small t <strong>in</strong> such a data situation (see also figures 3 <strong>an</strong>d 4 <strong>in</strong> section 6).<br />

<strong>On</strong> <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d, <strong>the</strong> case X = K is more ambiguous. Namely, <strong>in</strong> that case<br />

√<br />

1<br />

Sim(t) exp(− r 2t 2<br />

2Sim(t) ) tends to <strong>in</strong>f<strong>in</strong>ity as t → 0whenever wehave <strong>an</strong><strong>in</strong>equality <strong>of</strong> <strong>the</strong> form<br />

Sim(t) � Ct2 (0 � t � T ) with a const<strong>an</strong>t C > 0<strong>an</strong>dweget from formula (6) <strong>the</strong> reverse<br />

limit condition<br />

lim ϕ(t) = 0 (X = K ) (23)<br />

t→0<br />

1<br />

for <strong>the</strong> amplification factor. If however lim <strong>in</strong>ft→0 √<br />

Sim(t) exp(− r 2t 2<br />

2Sim(t) ) = 0, <strong>the</strong>n for X = K<br />

we obta<strong>in</strong> lim supt→0 ϕ(t) =∞.<br />

Closely connected with <strong>the</strong> limit jump <strong>in</strong> formula (8) we f<strong>in</strong>d a jump situation by compar<strong>in</strong>g<br />

<strong>the</strong> formulae (22) <strong>an</strong>d (23). At-<strong>the</strong>-money <strong>option</strong>s with X = K represent a s<strong>in</strong>gular situation,<br />

s<strong>in</strong>ce <strong>the</strong> <strong>in</strong>stability <strong>of</strong> <strong>the</strong> outer equation at t = 0for<strong>in</strong>-<strong>the</strong>-money <strong>option</strong>s <strong>an</strong>d out-<strong>of</strong>-<strong>the</strong>money<br />

<strong>option</strong>s expressed by formula (22) disappears if formula (23) holds. Such a s<strong>in</strong>gular<br />

behaviour <strong>of</strong> at-<strong>the</strong>-money <strong>option</strong>s seems to be well known <strong>in</strong> f<strong>in</strong><strong>an</strong>ce. Namely, for a const<strong>an</strong>t<br />

volatility σ ,<strong>the</strong>frequently used <strong>option</strong> measure <strong>the</strong>ta written <strong>in</strong> our terms as<br />

�(t) := d<br />

d(−t) UBS(X, K, r, t, S(t)) with S(t) = σ 2 t<br />

explodes to −∞ as <strong>the</strong> time to maturity t tends to zero if <strong>an</strong>donly if X = K (see figure 13.6<br />

<strong>in</strong> [26, p 321]).<br />

The <strong>ill</strong>-<strong>posedness</strong> effect just described <strong>in</strong> particular for X �= K as well as <strong>the</strong> miss<strong>in</strong>g<br />

monotonicity <strong>of</strong> Sδ c<strong>an</strong> be overcome for <strong>the</strong> outer equation by pos<strong>in</strong>g a fur<strong>the</strong>r assumption.


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1327<br />

Assumption 3.3. In addition to assumption 3.1 <strong>the</strong> data function uδ (t) is assumed tobe<br />

cont<strong>in</strong>uously differentiable for 0 < t � Twith<br />

(u δ ) ′ (t) − Kre −rt � X<br />

ln( K<br />

�<br />

) + rt − Sδ (t) �<br />

2 � � 0 (0 < t � T ), (24)<br />

Sδ (t)<br />

where uδ implies <strong>the</strong> function Sδ ∈ D0 with Sδ (t) >0 for t > 0 via equation (19) <strong>in</strong> a unique<br />

m<strong>an</strong>ner.<br />

The condition (24) is also a consequence <strong>of</strong> <strong>an</strong> arbitrage-free market. Namely, by<br />

compar<strong>in</strong>g appropriate portfolios it c<strong>an</strong> be shown that <strong>option</strong> prices u(K, t) at time τ = 0<br />

considered as differentiable functions <strong>of</strong> strike price K <strong>an</strong>d maturity t satisfy <strong>in</strong>equalities <strong>of</strong><br />

<strong>the</strong> form (see[2,p11])<br />

∂u(K, t) ∂u(K, t)<br />

+ Kr � 0. (25)<br />

∂t<br />

∂ K<br />

For <strong>the</strong> IP we have u(K, t) = UBS(X, K, r, t, S(t)), where ∂u(K,t)<br />

∂t = u′ (t) <strong>an</strong>d with (10)<br />

∂u(K, t)<br />

=<br />

∂ K<br />

∂UBS(X, K, r, t, S(t))<br />

=−e<br />

∂ K<br />

−rt � X<br />

S(t) �<br />

ln( K ) + rt − 2<br />

� √ .<br />

S(t)<br />

Consequently, <strong>the</strong> <strong>in</strong>equality (25) atta<strong>in</strong>s here <strong>the</strong> form (24).<br />

Theorem 3.4. Under <strong>the</strong> assumptions 3.1 <strong>an</strong>d 3.3 <strong>the</strong> uniquely determ<strong>in</strong>ed solution Sδ <strong>of</strong><br />

equation (19) with Sδ (0) = 0 <strong>an</strong>d Sδ (t) >0 (0 < t � T ) is a nondecreas<strong>in</strong>g <strong>an</strong>d absolutely<br />

cont<strong>in</strong>uous function with a cont<strong>in</strong>uous <strong>an</strong>d <strong>in</strong>tegrable derivative (Sδ ) ′ (t) � 0 (0 < t � T ),<br />

where Sδ (t) = � t<br />

0 (Sδ ) ′ (τ) dτ (0 < t � T ) <strong>an</strong>d<br />

(S δ ) ′ (t) = 2�Sδ (t)[(u δ ) ′ (t) − Kre−rt�(d∗ 2 )]<br />

� ′ (d∗ 1 )X<br />

� 0 (0 < t � T ) (26)<br />

with<br />

d ∗ X<br />

ln( K<br />

1 := ) + rt + Sδ (t)<br />

2<br />

� , d<br />

Sδ (t)<br />

∗ 2 := d∗ 1 − � Sδ (t).<br />

Pro<strong>of</strong>. Consider<strong>in</strong>g <strong>the</strong>formulae (5), (6) <strong>an</strong>d (24) for 0 < t � T from <strong>the</strong> implicit<br />

function <strong>the</strong>orem (see, e.g., [17, p 423ff]) we obta<strong>in</strong> cont<strong>in</strong>uous differentiability <strong>of</strong> Sδ with<br />

(Sδ ) ′ (t) � 0<strong>an</strong>dformula (26). Hence Sδ (t) (0 � t � T ) is nondecreas<strong>in</strong>g <strong>an</strong>d based<br />

on [32, <strong>the</strong>orems 4 <strong>an</strong>d 5, p 236f] we have <strong>an</strong> <strong>in</strong>tegrable derivative (Sδ ) ′ ∈ L1 � (0, T ) with<br />

t<br />

0 (Sδ ) ′ (τ) dτ � Sδ (t) − Sδ (0) = Sδ (t)(0 � t � T ). Choos<strong>in</strong>g ε from <strong>the</strong> <strong>in</strong>terval 0


1328 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

Theorem 3.5. Let {un = N(Sn)} ∞ n=1 with N from formula (11) be a sequence <strong>of</strong> arbitragefree<br />

noisy <strong>option</strong> price functions satisfy<strong>in</strong>g <strong>the</strong> assumptions 3.1 <strong>an</strong>d 3.3 that converges <strong>in</strong> <strong>the</strong><br />

B<strong>an</strong>ach space B2 = C[0, T ] to <strong>the</strong> fair <strong>option</strong> price function u = N(S). Then<strong>the</strong> associated<br />

sequence <strong>of</strong> functions {Sn} ∞ n=1 also converges to S <strong>in</strong> <strong>the</strong> B<strong>an</strong>ach space B3 = C[0, T ].<br />

Pro<strong>of</strong>. In view <strong>of</strong> <strong>the</strong> positivity <strong>an</strong>d cont<strong>in</strong>uity <strong>of</strong> <strong>the</strong> partial derivative<br />

∂UBS(X, K, r, t, s)<br />

on <strong>the</strong> doma<strong>in</strong> (t, s) ∈ [0, T ] × (0, ∞) (see lemma 2.1) we have,<br />

∂s<br />

for fixed t ∈ (0, T ],<br />

� �−1 ∂UBS(X, K, r, t, Sim(t))<br />

|Sn(t) − S(t)| �<br />

|un(t) − u(t)|<br />

∂s<br />

with <strong>in</strong>termediate values Sim(t) between <strong>the</strong> positive values Sn(t) <strong>an</strong>d S(t). Now, for given<br />

sufficiently small ε>0wechoose tε ∈ (0, T ]suchthat S(tε) = ε<br />

4 .S<strong>in</strong>ce<strong>the</strong> function UBS is<br />

<strong>in</strong>creas<strong>in</strong>g with respect to s > 0, <strong>the</strong> functions Sn <strong>an</strong>d S are <strong>in</strong>creas<strong>in</strong>g for t ∈ [tε, T ]<strong>an</strong>d<strong>the</strong>re<br />

holds limn→∞ un(tε) = u(tε) >max(X − K ertε , 0) as well as limn→∞ un(T ) = u(T )0 (0 < t � T ).


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1329<br />

4. Solv<strong>in</strong>g <strong>the</strong> outer equation <strong>of</strong> <strong>the</strong> IP <strong>in</strong> L p -spaces for noisy <strong>option</strong> data<br />

In this section we measure deviations <strong>of</strong> <strong>the</strong> functions u δ <strong>an</strong>d S δ from u <strong>an</strong>d S on <strong>the</strong><br />

<strong>in</strong>terval [0, T ]byme<strong>an</strong>s <strong>of</strong> L p -norms. We consider <strong>the</strong> B<strong>an</strong>ach spaces B2 = L q (0, T ) <strong>an</strong>d<br />

B3 = L p (0, T ) with 1 � p, q < ∞ for <strong>the</strong> outer equation (16) <strong>of</strong> <strong>the</strong> IP.<br />

The positive data function u δ (t)(0 � t � T ) <strong>of</strong> observed maturity-dependent <strong>option</strong><br />

prices is not necessarily smooth <strong>an</strong>d arbitrage free <strong>in</strong> <strong>the</strong> sense <strong>of</strong> assumptions 3.1 <strong>an</strong>d 3.3, but<br />

it satisfies assumption 4.1.<br />

Assumption 4.1. The non-negative data function uδ ∈ Lq approximated by <strong>the</strong> estimate<br />

(0, T ) (1 � q < ∞) is<br />

�u δ − u�L q (0,T ) � δ (27)<br />

<strong>the</strong> fair <strong>option</strong> price function u = F(a) = N(S) for a given noise level δ>0. Moreover, let<br />

a ∈ L∞ (0, T ) hold for <strong>the</strong> volatility function, where we assume <strong>an</strong> upper bound ¯c � �a�L ∞ (0,T )<br />

imply<strong>in</strong>g 0 � S(t) � κ(0� t � T ) with κ := ¯cT.<br />

We apply a vari<strong>an</strong>t <strong>of</strong> <strong>the</strong> method <strong>of</strong> quasisolutions exploit<strong>in</strong>g <strong>the</strong> fact that<br />

D κ + :={˜S ∈ D+ :0� ˜S(t) � κ(0� t � T ), ˜S(t1) � ˜S(t2) (0 � t1 < t2 � T )}<br />

is a compactum <strong>in</strong> <strong>the</strong> B<strong>an</strong>ach space L p (0, T )(1 � p < ∞) (see, e.g., [4, example 3, p 26]).<br />

As <strong>an</strong> approximate solution <strong>of</strong> <strong>the</strong> outer equation (16) we use a quasisolution associated with<br />

<strong>the</strong> data uδ ,whichisam<strong>in</strong>imizer Sδ ∈ Dκ + <strong>of</strong> <strong>the</strong> extremal <strong>problem</strong><br />

�N( ˜S) − u δ �L q (0,T ) −→ m<strong>in</strong>, subject to ˜S ∈ D κ + .<br />

Then we c<strong>an</strong> prove <strong>the</strong> follow<strong>in</strong>g convergence assertion.<br />

Theorem 4.2. Let {Sδn ∞ } n=1 be a sequence <strong>of</strong> quasisolutions associated with a sequence <strong>of</strong><br />

data {uδn ∞ } n=1 satisfy<strong>in</strong>g <strong>the</strong> <strong>in</strong>equality (27), where δn → 0 as n →∞.Then<strong>the</strong> convergence<br />

properties<br />

lim<br />

n→∞ �Sδn − S�L p (0,T ) = 0 (1 � p < ∞) (28)<br />

<strong>an</strong>d<br />

lim<br />

n→∞ �Sδn − S�L ∞ (0,γ ) = 0 for all 0


1330 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

for arbitrarily small values β>0. For <strong>an</strong>y given ε>0<strong>the</strong>reisavalueβ0 > 0suchthat<br />

S(β0) < ε<br />

4 ,s<strong>in</strong>ce limβ→0 S(β) = 0. For sufficiently large n we moreover have with (30)<br />

�Sδn − S�L ∞ (β0,γ ) < ε<br />

2 <strong>an</strong>d hence �Sδn − S�L ∞ (0,γ ) 0}<br />

t∈(0,T )<br />

with agiven uniform positive lower bound c. S<strong>in</strong>ce J : L2 (0, T ) → L2 (0, T ) def<strong>in</strong>ed by<br />

formula (15) is a compact l<strong>in</strong>ear operator (see, e.g., [28, p 235]) <strong>an</strong>d N : D+ ∩ L2 (0, T ) ⊂<br />

L2 (0, T ) → L2 (0, T ) def<strong>in</strong>ed by formula (11) is a cont<strong>in</strong>uous nonl<strong>in</strong>ear operator as a<br />

consequence <strong>of</strong> lemma 2.3, <strong>the</strong> composite nonl<strong>in</strong>ear operator F = N ◦ J : D † (F) ⊂<br />

L2 (0, T ) → L2 (0, T ) is also compact <strong>an</strong>d cont<strong>in</strong>uous. Then based on results <strong>of</strong> section 2<br />

we have <strong>the</strong> follow<strong>in</strong>g lemma.<br />

Lemma 5.1. The nonl<strong>in</strong>ear operator F : D † (F) ⊂ L 2 (0, T ) → L 2 (0, T ) possess<strong>in</strong>g a convex<br />

<strong>an</strong>d weakly closed doma<strong>in</strong> D † (F) is <strong>in</strong>jective, compact, cont<strong>in</strong>uous, weakly cont<strong>in</strong>uous <strong>an</strong>d<br />

consequently weakly closed, <strong>an</strong>d <strong>the</strong> <strong><strong>in</strong>verse</strong> operator F −1 def<strong>in</strong>ed on F(D † (F)) exists.<br />

Then proposition A.3 <strong>of</strong> [15] applies <strong>an</strong>d we c<strong>an</strong> formulate <strong>the</strong> follow<strong>in</strong>g as a corollary <strong>of</strong><br />

lemma 5.1.<br />

Corollary 5.2. Foragiven right-h<strong>an</strong>d side u ∈ F(D † (F)) <strong>the</strong> operator equation (31) has a<br />

uniquely determ<strong>in</strong>ed solution a ∈ D † (F). For<strong>an</strong>y ball Br(a) with centre a <strong>an</strong>d radius r > 0<br />

<strong>the</strong>re existsasequence {<strong>an</strong>} ∞ n=1 ⊂ Br(a) ∩ D † (F) with<br />

<strong>an</strong> ⇀ a but<strong>an</strong> �→ a <strong>an</strong>d F(<strong>an</strong>) → u <strong>in</strong> L 2 (0, T ) as n →∞.<br />

Thus, equation (31) is locally <strong>ill</strong> posed <strong>in</strong> <strong>the</strong> sense <strong>of</strong> [25, def<strong>in</strong>ition 2] <strong>an</strong>d F −1 is not<br />

cont<strong>in</strong>uous <strong>in</strong> u.


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1331<br />

Consequently, a regularization is required for <strong>the</strong> stable approximate solution <strong>of</strong> (31). We<br />

consider for data uδ with<br />

�u δ − u�L 2 (0,T ) � δ<br />

<strong>an</strong>d a fixed <strong>in</strong>itial guess a ∗ ∈ L 2 (0, T ) Tikhonov regularized solutions a δ α<br />

as m<strong>in</strong>imizers <strong>of</strong><br />

�F(ã) − u δ � 2<br />

L2 (0,T ) + α�ã − a∗� 2<br />

L2 (0,T ) −→ m<strong>in</strong>, subject to ã ∈ D† (F),<br />

which exist for all regularization parameters α > 0<strong>an</strong>dstablydepend on <strong>the</strong> data uδ (see [15, <strong>the</strong>orem 2.1]). Moreover, for<br />

αn = αn(δn) → 0 <strong>an</strong>d<br />

δ2 n<br />

αn(δn) → 0 asδn→0 forn→∞ <strong>an</strong>y sequence {aδn αn }∞ n=1 converges to a <strong>in</strong> L2 (0, T ) (see [15, <strong>the</strong>orem 2.3]).<br />

Now we <strong>an</strong>alyse <strong>the</strong> usual sufficient conditions for obta<strong>in</strong><strong>in</strong>g a convergence rate<br />

�a δ α − a�L 2 (0,T ) = O( √ δ). (32)<br />

Us<strong>in</strong>g a well known modification <strong>of</strong> <strong>the</strong>orem 2.4 <strong>in</strong> [15] we have <strong>the</strong> follow<strong>in</strong>g proposition.<br />

Proposition 5.3. Under <strong>the</strong> conditions stated above we obta<strong>in</strong> for <strong>the</strong> parameter choice α ∼ δ<br />

aconvergence rate (32) <strong>of</strong> <strong>the</strong> Tikhonov regularization if <strong>the</strong>re exists a cont<strong>in</strong>uous l<strong>in</strong>ear<br />

operator<br />

G : L 2 (0, T ) → L 2 (0, T )<br />

with adjo<strong>in</strong>t G∗ <strong>an</strong>d a positive const<strong>an</strong>t L such that<br />

(i) �F(ã) − F(a) − G(ã − a)�L 2 (0,T ) � L<br />

2 �ã − a�2 L2 (0,T ) for all ã ∈ D† (F),<br />

(ii) <strong>the</strong>re exists a function w ∈ L2 (0, T ) satisfy<strong>in</strong>g a − a∗ = G∗w <strong>an</strong>d<br />

(iii) L�w�L 2 (0,T ) < 1.<br />

If <strong>the</strong>re exists a cont<strong>in</strong>uous l<strong>in</strong>ear operator G mapp<strong>in</strong>g <strong>in</strong> L2 (0, T ) <strong>an</strong>d satisfy<strong>in</strong>g condition<br />

(i) <strong>in</strong> proposition 5.3, <strong>the</strong>n it c<strong>an</strong> be considered as <strong>the</strong> Fréchet derivative ˜F ′ (a) at <strong>the</strong> po<strong>in</strong>t a<br />

<strong>of</strong> <strong>an</strong> operator ˜F, forwhichFis <strong>the</strong> restriction to <strong>the</strong> doma<strong>in</strong> D † (F) with <strong>an</strong> empty <strong>in</strong>terior<br />

<strong>in</strong> <strong>the</strong> sense <strong>of</strong> [14, remark 10.30]. Follow<strong>in</strong>g <strong>the</strong> ideas <strong>of</strong> [23], <strong>in</strong> particular <strong>the</strong> strength <strong>of</strong><br />

requirements (ii) <strong>an</strong>d (iii) yields <strong>in</strong>formation about <strong>the</strong> possibly locally vary<strong>in</strong>g <strong>ill</strong>-<strong>posedness</strong><br />

character <strong>of</strong> <strong>the</strong> IP. If <strong>the</strong> derivative G at <strong>the</strong> po<strong>in</strong>t a ∈ D † (F) exists <strong>in</strong> <strong>the</strong> case <strong>of</strong> equation (31),<br />

it is compact as a consequence <strong>of</strong> <strong>the</strong> compactness <strong>of</strong> F (cf [9, p 101]). Then <strong>the</strong> decay rate<br />

<strong>of</strong> <strong>the</strong> ordered s<strong>in</strong>gular values θi(G) <strong>of</strong> G to zero as i →∞determ<strong>in</strong>es <strong>the</strong> local degree <strong>of</strong><br />

<strong>ill</strong>-<strong>posedness</strong> (cf [25, section 3]) <strong>of</strong> (31) at <strong>the</strong> po<strong>in</strong>t a.<br />

The operator G c<strong>an</strong> be derived as a (formal) Gâteaux derivative by <strong>the</strong> limits<br />

[F(a + εh)](t) − [F(a)](t)<br />

[G(h)](t) = lim<br />

ε→0<br />

ε<br />

a.e. on [0, T ] for ε > 0 <strong>an</strong>d admissible directions h ∈ L2 (0, T ). With k(t, s) =<br />

UBS(X, K, r, t, s) we c<strong>an</strong> write that limit for 0 < t � T as<br />

[F(a + εh)](t) − [F(a)](t)<br />

lim<br />

ε→0<br />

ε<br />

∂k(t,S<br />

k(t, S(t) + ε[J(h)](t)) − k(t, S(t))<br />

= lim<br />

= lim<br />

ε→0<br />

ε<br />

ε→0<br />

ε im (t))<br />

∂s ε[J(h)](t)<br />

ε<br />

�<br />

∂k(t, S<br />

= lim<br />

ε→0<br />

ε im (t))<br />

�<br />

∂k(t, S(t))<br />

[J(h)](t) = [J(h)](t),<br />

∂s<br />

∂s


1332 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

where Sε im is <strong>an</strong> <strong>in</strong>termediate function satisfy<strong>in</strong>g <strong>the</strong> <strong>in</strong>equalities<br />

m<strong>in</strong>(S(t), S(t) + ε[J(h)](t)) � S ε im (t) � max(S(t), S(t) + ε[J(h)](t)).<br />

This limit<strong>in</strong>g process leads to a composition G = M ◦ J <strong>of</strong> <strong>the</strong> convolution operator J with a<br />

multiplication operatorM described by a multiplier function m <strong>in</strong> <strong>the</strong> form<br />

[G(h)](t) = m(t)[J(h)](t) (0�t�T, h ∈ L 2 (0, T )). (33)<br />

The multiplier function atta<strong>in</strong>s <strong>the</strong> form<br />

m(0) = 0, m(t) = ∂UBS(X, K, r, t, S(t))<br />

> 0 (0 < t � T ) (34)<br />

∂s<br />

with S = J(a) <strong>an</strong>d we c<strong>an</strong> prove <strong>the</strong> follow<strong>in</strong>g.<br />

Theorem 5.4. In <strong>the</strong> case X �= K,<strong>the</strong>l<strong>in</strong>ear operator G def<strong>in</strong>ed by <strong>the</strong> formulae (33) <strong>an</strong>d (34)<br />

maps cont<strong>in</strong>uously <strong>in</strong> L2 (0, T ) with m ∈ L∞ (0, T ). Then condition (i) <strong>of</strong> proposition 5.3 is<br />

satisfied with aconst<strong>an</strong>t<br />

�<br />

�<br />

L = TC2, where C2 := sup �<br />

∂<br />

�<br />

(t,s)∈Mc<br />

2UBS(X, K, r, t, s)<br />

∂s 2<br />

�<br />

�<br />

�<br />

� < ∞<br />

is determ<strong>in</strong>ed from <strong>the</strong> set<br />

Mc := {(t, s) ∈ R 2 : s � ct, 0 < t � T }.<br />

Pro<strong>of</strong>. To prove <strong>the</strong> cont<strong>in</strong>uity <strong>of</strong> G = M ◦ J <strong>in</strong> L2 (0, T ) with <strong>the</strong> cont<strong>in</strong>uous convolution<br />

operator J,itissufficient to show m ∈ L∞ (0, T ),s<strong>in</strong>ce <strong>the</strong>n <strong>the</strong> multiplication operator M is<br />

also cont<strong>in</strong>uous <strong>in</strong> L2 (0, T ). Fromformula (6) we obta<strong>in</strong> for (t, s) ∈ [0, T ] × (0, ∞) <strong>in</strong> <strong>the</strong><br />

case X �= K <strong>the</strong> estimate<br />

�<br />

�<br />

�<br />

�<br />

∂UBS(X, K, r, t, s) �<br />

�<br />

� ∂s � �<br />

� � X �<br />

XK 1 [ln( K ) + rt]2<br />

√ exp − .<br />

8π s 2s<br />

This implies for (t, s) ∈ Mc<br />

�<br />

�<br />

�<br />

�<br />

∂UBS(X, K, r, t, s) �<br />

�<br />

� ∂s � �<br />

� � � r �<br />

XK K c X<br />

1 [ln( K<br />

√s exp −<br />

8π X<br />

)]2<br />

�<br />

. (35)<br />

2s<br />

The right-h<strong>an</strong>d expression <strong>in</strong> <strong>in</strong>equality (35) is cont<strong>in</strong>uous with respect to s ∈ (0, ∞) <strong>an</strong>d tends<br />

∂UBS(X,K,r,t,s)<br />

to zero as s → 0<strong>an</strong>dass →∞.With a f<strong>in</strong>ite const<strong>an</strong>t C1 := sup | (t,s)∈Mc ∂s | < ∞<br />

we have m ∈ L∞ (0, T ),where�m�L∞ (0,T ) � C1 comes from <strong>the</strong> <strong>in</strong>equality S(t) � ct (0 � t �<br />

T ), whichisaconsequence <strong>of</strong> a ∈ D † (F). Inorder to prove condition (i) <strong>of</strong> proposition 5.3<br />

we verify <strong>the</strong> structure <strong>of</strong> <strong>the</strong> second derivative ∂ 2 UBS(X,K,r,t,s)<br />

∂s 2 from formula (7). Similar<br />

considerations as <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> first derivative also show <strong>the</strong> existence <strong>of</strong> a const<strong>an</strong>t<br />

C2 := sup (t,s)∈Mc | ∂ 2UBS(X,K,r,t,s) ∂s 2 | < ∞. Thenwec<strong>an</strong> estimate with S = J(a), ˜S = J(ã) <strong>an</strong>d<br />

a, ã ∈ D † (F) for all t ∈ (0, T ]:<br />

|[F(ã) − F(a) − G(ã − a)](t)|<br />

�<br />

�<br />

= �<br />

�UBS(X, K, r, t, ˜S(t)) − UBS(X, K, r, t, S(t))<br />

− ∂UBS(X,<br />

�<br />

K, r, t, S(t))<br />

�<br />

( ˜S(t) − S(t)) �<br />

∂s<br />

�<br />

= 1<br />

�<br />

�<br />

�<br />

∂<br />

2 �<br />

2UBS(X, K, r, t, Sim(t))<br />

∂s 2<br />

( ˜S(t) − S(t)) 2<br />

� ��<br />

�<br />

t<br />

�2 C2 �<br />

� � (ã(τ) − a(τ)) dτ ,<br />

2<br />

0


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1333<br />

where Sim with m<strong>in</strong>( ˜S(t), S(t)) � Sim(t) � max( ˜S(t), S(t)) for 0 < t � T is <strong>an</strong> <strong>in</strong>termediate<br />

function such that <strong>the</strong> pairs <strong>of</strong> real numbers (t, ˜S(t)), (t, S(t)) <strong>an</strong>d (t, Sim(t)) all belong to <strong>the</strong><br />

set Mc. Byapply<strong>in</strong>g Schwarz’s <strong>in</strong>equality this provides<br />

�F(ã) − F(a) − G(ã − a)�L 2 (0,T ) � TC2<br />

�ã − a�2 L 2 2 (0,T )<br />

<strong>an</strong>d hence <strong>the</strong> required condition (i), which proves <strong>the</strong> <strong>the</strong>orem. �<br />

For X �= K <strong>the</strong> <strong>nature</strong> <strong>of</strong> local <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> (31) at a po<strong>in</strong>t a ∈ D † (F) arises from two<br />

components, namely from <strong>the</strong> global decay rate <strong>of</strong> s<strong>in</strong>gular values θi(J) ∼ 1/i <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear<br />

<strong>in</strong>tegral operator J form<strong>in</strong>g <strong>the</strong> compact part <strong>in</strong> G <strong>an</strong>d from <strong>the</strong> local decay rate <strong>of</strong> m(t) → 0as<br />

t tends to zero <strong>of</strong> <strong>the</strong> multiplication operator M as <strong>the</strong> noncompact part <strong>in</strong> G. Both components<br />

w<strong>ill</strong> occur aga<strong>in</strong> <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g if we consider <strong>the</strong> source condition (ii) <strong>an</strong>d <strong>the</strong> closeness<br />

condition (iii) <strong>of</strong> proposition 5.3.<br />

In orderto<strong>in</strong>terpret <strong>the</strong> conditions (ii) <strong>an</strong>d (iii) <strong>in</strong> <strong>the</strong> case X �= K ,wewrite (ii) as<br />

(a − a ∗ )(t) =<br />

� T<br />

t<br />

m(τ)w(τ) dτ (0 � t � T, w∈ L 2 (0, T )) (36)<br />

us<strong>in</strong>g <strong>the</strong> equations G∗ = J ∗ ◦ M∗ = J ∗ ◦ M <strong>an</strong>d [J ∗ (h)](t) = � T<br />

t h(τ) dτ (0� t � T ).<br />

Formula (36) directly implies<br />

(a − a ∗ )(T ) = 0 <strong>an</strong>d<br />

(a − a∗ ) ′<br />

∈ L<br />

m<br />

2 (0, T ) (37)<br />

with a difference a−a ∗ ∈ H 1 (0, T ),forwhich<strong>the</strong> generalized derivative belongs to a weighted<br />

L2-space with a weight 1<br />

m �∈ L∞ (0, T ). The closeness condition (iii) <strong>the</strong>n atta<strong>in</strong>s <strong>the</strong> form<br />

�<br />

�<br />

�<br />

(a − a<br />

�<br />

∗ ) ′ �<br />

�<br />

�<br />

m � <<br />

L2 (0,T )<br />

1<br />

. (38)<br />

L<br />

The right-h<strong>an</strong>d condition <strong>in</strong> (37) <strong>an</strong>d condition (38) express <strong>the</strong> character <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong><br />

<strong>of</strong> (31) at <strong>the</strong> po<strong>in</strong>t a as smoothness <strong>an</strong>d smallness requirements on <strong>the</strong> difference a − a∗ .<br />

Follow<strong>in</strong>g <strong>the</strong> concept <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> rates developed <strong>in</strong> [24, section 4] for IPs <strong>in</strong>clud<strong>in</strong>g<br />

multiplication operators it should be noted that we have <strong>an</strong> exponential growth rate <strong>of</strong><br />

1<br />

m(t) →∞as t → 0. Based on formula (6) we derive for X �= K<br />

1<br />

m(t) = K � S(t) exp(ψ(t)) (0 < t � T )<br />

with a const<strong>an</strong>t K > 0<strong>an</strong>d<br />

ψ(t) = ν2<br />

2S(t) + r 2t 2<br />

� �<br />

νrt ν rt S(t)<br />

X<br />

+ + + + , ν := ln �= 0.<br />

2S(t) S(t) 2 2 8 K<br />

For S ∈ I (D † (F)) we have ct � S(t) � ¯c √ t (0 � t � T ) with ¯c := �a�L2 (0,T ). Thisimplies<br />

for positive const<strong>an</strong>ts K <strong>an</strong>d ¯K <strong>the</strong> estimates<br />

K √ � 2 ν<br />

t exp<br />

2 ¯c √ �<br />

�<br />

t<br />

1<br />

m(t) � ¯K 4√ � 2 �<br />

ν<br />

t exp<br />

(0 < t � T ) (39)<br />

2ct<br />

below <strong>an</strong>d above. S<strong>in</strong>ce, for fixed ν �= 0, <strong>the</strong> function 1<br />

m(t) exponentially grows to <strong>in</strong>f<strong>in</strong>ity as<br />

t → 0, <strong>the</strong> condition (38) on <strong>the</strong> difference a − a∗ is very rigorous with respect to small t.<br />

Formula (39) also shows that for X − K → 0imply<strong>in</strong>g ν → 0<strong>the</strong>norm �m�L ∞ (0,T ) tends to<br />

<strong>in</strong>f<strong>in</strong>ity.<br />

Here we also see that at-<strong>the</strong>-money <strong>option</strong>s with X = K represent a s<strong>in</strong>gular situation <strong>in</strong><br />

our purely time-dependent model, s<strong>in</strong>ce we derive from (6) <strong>an</strong>d (7) for ν = 0<strong>the</strong>formulae


1334 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

∂UBS(X,K,r,t,s)<br />

limt→0 m(t) = ∞,sup (t,s)∈Mc ∂s = ∞ <strong>an</strong>d sup (t,s)∈Mc | ∂ 2UBS(X,K,r,t,s) ∂s 2 | = ∞.<br />

Hence, <strong>the</strong> multiplication operator M def<strong>in</strong>ed by <strong>the</strong> formulae (34) fails to be bounded <strong>in</strong><br />

L2 (0, T ) <strong>in</strong> that case <strong>an</strong>d condition (i) <strong>of</strong> proposition 5.3 c<strong>an</strong>not be verified along <strong>the</strong> l<strong>in</strong>es <strong>of</strong><br />

<strong>the</strong>pro<strong>of</strong> <strong>of</strong> <strong>the</strong>orem 5.4. This s<strong>in</strong>gularity <strong>of</strong> X = K disappears if a variety <strong>of</strong> strike prices K<br />

is used as done <strong>in</strong> <strong>the</strong> sophisticated paper [12] present<strong>in</strong>g a Tikhonov regularization <strong>an</strong>alysis<br />

for <strong>the</strong> more general IP <strong>of</strong> <strong>option</strong> pric<strong>in</strong>g that comb<strong>in</strong>es <strong>the</strong> time- <strong>an</strong>d price-dependent case.<br />

We note, however, that <strong>the</strong> considerations <strong>of</strong> [12] with H 1-solutions a <strong>an</strong>d data u from a<br />

non-Hilberti<strong>an</strong> Sobolev space do not implicate <strong>the</strong> L2-results <strong>of</strong> this section.<br />

6. The discrete approach<strong>an</strong>dsome case studies<br />

F<strong>in</strong>ally, we brieflyaddress <strong>the</strong> situation where we have <strong>option</strong> data uδ j := uδ (t j) approximat<strong>in</strong>g<br />

fair prices u j := u(t j) only for adiscrete set <strong>of</strong> maturities t0 = 0 < t1 < t2 < ··· < tk = T<br />

(for fur<strong>the</strong>r studies see [20]). We assume accord<strong>in</strong>g to formula (18)<br />

u δ 0 = max(X − K, 0), max(X − K e−rtj δ<br />

) 0, due to (6), (9) <strong>an</strong>d (40) all values<br />

Sδ j are uniquely determ<strong>in</strong>ed from (41). The second step conta<strong>in</strong>s a numerical differentiation,<br />

which is regularized accord<strong>in</strong>g to<br />

�J a − S δ � 2 2 + α�L a�2 2 −→ m<strong>in</strong>, subject to a ∈ Rk + ,<br />

with a m<strong>in</strong>imiz<strong>in</strong>g vector aα = (aα 1 , ...,aα k )T ∈ Rk + ,whereα > 0is<strong>the</strong>regularization<br />

parameter, �·�2 denotes <strong>the</strong> Euclide<strong>an</strong> norm, J is a discretization <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear Volterra <strong>in</strong>tegral<br />

operator J <strong>an</strong>d �L a�2 2 expresses <strong>the</strong> usual discretization <strong>of</strong> <strong>the</strong> L2-norm square �a ′′ �2 L2 (0,T ) <strong>of</strong><br />

<strong>the</strong> second derivative <strong>of</strong> <strong>the</strong> function a.<br />

For a case study with computer-generated <strong>option</strong> price data we use <strong>the</strong> values X = 0.6,<br />

K = 0.5, r = 0.05, T = 1, t j = j<br />

k ( j = 1, ...,k = 20) <strong>an</strong>d <strong>the</strong> convex function<br />

σ(t) = (t − 0.5) 2 +0.1 (0 � t � 1).<br />

The exact data u = (u1, ...,uk) T are computed by us<strong>in</strong>g <strong>the</strong> generalized Black–Scholes<br />

formula (1)–(4). Perturbed with a r<strong>an</strong>dom noise vector η = (η1, ...,ηk) T ∈ Rk <strong>the</strong>y yield<br />

noisy data <strong>in</strong> <strong>the</strong> form<br />

u δ j = u j + δ �u�2<br />

η j ( j = 1, ...,k)<br />

�η�2<br />

for a given relative error δ>0. Some results <strong>of</strong> <strong>the</strong> case study are presented by figures 1<br />

<strong>an</strong>d 2 show<strong>in</strong>g on <strong>the</strong> one h<strong>an</strong>d <strong>the</strong> exact solution as a solid curve <strong>an</strong>d on <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d <strong>the</strong><br />

l<strong>in</strong>early <strong>in</strong>terpolated approximate solution as a dashed curve. Figure 1 <strong>ill</strong>ustrates <strong>the</strong> osc<strong>ill</strong>at<strong>in</strong>g<br />

character <strong>of</strong> <strong>the</strong> unregularized volatility reconstruction, although <strong>the</strong> data error is ra<strong>the</strong>r small<br />

(δ = 0.1%). For <strong>the</strong> same situation a quite good regularized solution is presented <strong>in</strong> figure 2,<br />

where <strong>the</strong> regularization parameter choice is based on H<strong>an</strong>sen’s L-curve criterion (see [19]).<br />

As shown <strong>in</strong> section 3, arbitrage-free <strong>option</strong> data uδ yield <strong>in</strong> a unique <strong>an</strong>d stable m<strong>an</strong>ner<br />

non<strong>in</strong>creas<strong>in</strong>g functions Sδ . If, however, <strong>the</strong> noisy discrete <strong>option</strong> data uδ j are not necessarily<br />

arbitrage free, <strong>the</strong>n for very small δ <strong>the</strong> monotonicity may also be lost for values Sδ j obta<strong>in</strong>ed


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1335<br />

volatility<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

maturity<br />

estimated volatility<br />

exact volatility<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 1. Unregularized solution (δ = 0.001, α = 0).<br />

volatility<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

maturity<br />

estimated volatility<br />

exact volatility<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 2. Regularized solution (δ = 0.001, α = 7.1263 × 10 −7 from <strong>the</strong> L-curve method).<br />

by a po<strong>in</strong>twise <strong>in</strong>version <strong>of</strong> <strong>the</strong> Nemytskii operator N. Inparticular, if <strong>the</strong> rema<strong>in</strong><strong>in</strong>g time to<br />

maturity t j <strong>of</strong> <strong>the</strong> <strong>option</strong> is small, <strong>the</strong> correspond<strong>in</strong>g values Sδ j tend to osc<strong>ill</strong>ate (see figure 3).<br />

This phenomenon is a consequence <strong>of</strong> <strong>the</strong> fact that Sδ (t) tends to zero for small t. Namely,<br />

as shown <strong>in</strong> figure 4, <strong>the</strong> error amplification factor ϕ(t) approximated by ( ∂UBS(X,K,r,t,S(t))<br />

∂s ) −1<br />

grows to <strong>in</strong>f<strong>in</strong>ity as t tends to zero.


1336 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

7. Conclusions<br />

0.015<br />

0.01<br />

0.005<br />

estimated S–function<br />

exact S–function<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2<br />

maturity<br />

Figure 3. Po<strong>in</strong>twise reconstruction <strong>of</strong> S δ (t) (δ = 0.001, k = 50 grids on [0, 0.2]).<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

error factor<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

maturity<br />

0.6 0.7 0.8 0.91 Figure 4. Behaviour <strong>of</strong><br />

� �−1 ∂UBS(X,K,r,t,S(t))<br />

∂s approximat<strong>in</strong>g <strong>the</strong> error factor ϕ(t).<br />

By study<strong>in</strong>g <strong>the</strong> <strong>problem</strong> <strong>of</strong> calibrat<strong>in</strong>g a time-dependent volatility function from a termstructure<br />

<strong>of</strong> <strong>option</strong> prices <strong>an</strong>d its <strong>ill</strong>-<strong>posedness</strong> phenomena <strong>the</strong> paper tries to f<strong>ill</strong> a gap <strong>in</strong> <strong>the</strong><br />

literature <strong>of</strong> IPs <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g. The explicitly available structure <strong>of</strong> <strong>the</strong> forward operator <strong>in</strong><br />

<strong>the</strong> purely time-dependent case as a composition <strong>of</strong> <strong>an</strong> <strong>in</strong>ner l<strong>in</strong>ear convolution operator <strong>an</strong>d <strong>an</strong><br />

outer nonl<strong>in</strong>ear Nemytskii operator allows us to <strong>an</strong>alyse <strong>in</strong> detail <strong>the</strong> occurr<strong>in</strong>g <strong>ill</strong>-<strong>posedness</strong><br />

phenomena <strong>an</strong>d ways <strong>of</strong> regularization. For <strong>the</strong> outer IP treated <strong>in</strong> a C-space sett<strong>in</strong>g <strong>the</strong><br />

use <strong>of</strong> arbitrage-free data acts as a specific regularizer. In <strong>an</strong>y case, however, <strong>the</strong> <strong>in</strong>ner classic


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1337<br />

deconvolution (differentiation)<strong>problem</strong> requires <strong>an</strong> additional regularization. To overcome <strong>the</strong><br />

local <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>the</strong> completeIP, Tikhonov regularization<strong>in</strong> L 2 is applicable, convergence<br />

rates c<strong>an</strong> be proven <strong>an</strong>d source conditions c<strong>an</strong> be evaluated. It is po<strong>in</strong>ted out that at-<strong>the</strong>-money<br />

<strong>option</strong>s represent a s<strong>in</strong>gular situation, <strong>in</strong> which <strong>in</strong>stability effects occurr<strong>in</strong>g for small times<br />

<strong>in</strong> <strong>the</strong> cases <strong>of</strong> <strong>in</strong>-<strong>the</strong>-money <strong>an</strong>d out-<strong>of</strong>-<strong>the</strong>-money <strong>option</strong>s may disappear <strong>an</strong>d properties <strong>of</strong><br />

<strong>the</strong> forward operator may degenerate. Although, due to <strong>the</strong> completely different <strong>problem</strong><br />

structure, <strong>the</strong> ma<strong>the</strong>matical <strong>an</strong>alysis used <strong>in</strong> this paper c<strong>an</strong>not be generalized to <strong>the</strong> case<br />

<strong>of</strong> calibrat<strong>in</strong>g price-dependent volatility functions, <strong>the</strong> observed <strong>ill</strong>-<strong>posedness</strong> effects also<br />

<strong>in</strong>fluence <strong>the</strong> ch<strong>an</strong>ces <strong>of</strong> <strong>the</strong> most import<strong>an</strong>t practical <strong>problem</strong> <strong>of</strong> fitt<strong>in</strong>g <strong>the</strong> volatility smile as<br />

awhole.<br />

Acknowledgments<br />

The authors are very grateful to Pr<strong>of</strong>essors Ra<strong>in</strong>er Kress (Gött<strong>in</strong>gen) <strong>an</strong>d Ulrich Tautenhahn<br />

(Zittau) <strong>an</strong>d two <strong>an</strong>onymous referees for <strong>the</strong>ir valuable suggestions, that improved <strong>the</strong> paper<br />

subst<strong>an</strong>tially.<br />

References<br />

[1] Ambrosetti A <strong>an</strong>d Prodi G 1993 APrimer<strong>of</strong>Nonl<strong>in</strong>ear Analysis (Cambridge: Cambridge University Press)<br />

[2] Andersen L B G <strong>an</strong>d Bro<strong>the</strong>rton-Ratcliffe R 1998 The equity <strong>option</strong> volatility smile: <strong>an</strong> implicit f<strong>in</strong>ite-difference<br />

approach J. Comput. F<strong>in</strong><strong>an</strong>ce 1 5–37<br />

[3] Avell<strong>an</strong>eda M, Friedm<strong>an</strong> C, Holmes R <strong>an</strong>d Samperi D 1997 Calibrat<strong>in</strong>g volatility surfaces via relative entropy<br />

m<strong>in</strong>imization Appl. Math. F<strong>in</strong><strong>an</strong>ce 4 3–64<br />

[4] Bakush<strong>in</strong>sky A <strong>an</strong>d Goncharsky A 1994 Ill-Posed Problems: Theory <strong>an</strong>d Applications (Dordrecht: Kluwer)<br />

[5] B<strong>in</strong>der A, Engl H W <strong>an</strong>d Schatz A 2003 Adv<strong>an</strong>ced Numerical Techniques for F<strong>in</strong><strong>an</strong>cial Eng<strong>in</strong>eer<strong>in</strong>g (L<strong>in</strong>z:<br />

MathConsult)<br />

[6] Black F <strong>an</strong>d Scholes M 1973 The pric<strong>in</strong>g <strong>of</strong> <strong>option</strong>s <strong>an</strong>d corporate liabilities J. Political Econom. 81 637–54<br />

[7] Bouchouev I <strong>an</strong>d Isakov V 1997 The <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>of</strong> <strong>option</strong> pric<strong>in</strong>g Inverse Problems 13 L11–7<br />

[8] Bouchouev I <strong>an</strong>d Isakov V 1999 Uniqueness, stability <strong>an</strong>d numerical methods for <strong>the</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> that arises<br />

<strong>in</strong> f<strong>in</strong><strong>an</strong>cial markets Inverse Problems 15 R95–116<br />

[9] Colton D <strong>an</strong>d Kress R 1992 Inverse Acoustic <strong>an</strong>d Electromagnetic Scatter<strong>in</strong>g Theory (Berl<strong>in</strong>: Spr<strong>in</strong>ger)<br />

[10] Cont R 2003 Inverse Problems <strong>in</strong> F<strong>in</strong><strong>an</strong>cial Model<strong>in</strong>g (Lecture Series) (Berl<strong>in</strong>: Humboldt-Universität)<br />

[11] Crépey S 2003 Calibration <strong>of</strong> <strong>the</strong> local volatility <strong>in</strong> a tr<strong>in</strong>omial tree us<strong>in</strong>g Tikhonov regularization Inverse<br />

Problems 19 91–127<br />

[12] Crépey S 2003 Calibration <strong>of</strong> <strong>the</strong> local volatility <strong>in</strong> a generalized Black–Scholes model us<strong>in</strong>g Tikhonov<br />

regularization SIAM J. Math. Anal. 34 1183–206<br />

[13] Dupire B 1994 Pric<strong>in</strong>g with a smile Risk 7 18–20<br />

[14] Engl H W, H<strong>an</strong>ke M <strong>an</strong>d Neubauer A 1996 Regularization <strong>of</strong> Inverse Problems (Dordrecht: Kluwer)<br />

[15] Engl H W, Kunisch K <strong>an</strong>d Neubauer A 1989 Convergence rates for Tikhonov regularization <strong>of</strong> non-l<strong>in</strong>ear<br />

<strong>ill</strong>-posed <strong>problem</strong>s Inverse Problems 5 523–40<br />

[16] Emvudu Y, He<strong>in</strong> T <strong>an</strong>d H<strong>of</strong>m<strong>an</strong>n B 2001 Some approach for solv<strong>in</strong>g <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>option</strong> pric<strong>in</strong>g <strong>problem</strong> Prepr<strong>in</strong>t<br />

2001-7 Technische Universität, Fakultät für Ma<strong>the</strong>matik, Chemnitz<br />

[17] Fichtenholz G M 1970 Differential- und Integralrechnung 5th edn, vol 1 (Berl<strong>in</strong>: Deutsche)<br />

[18] H<strong>an</strong>ke M <strong>an</strong>d Scherzer O 2001 Inverse <strong>problem</strong>s light: numerical differentiation Am. Math. Mon. 108 512–21<br />

[19] H<strong>an</strong>sen P C 1998 R<strong>an</strong>k-Deficient <strong>an</strong>d Discrete Ill-Posed Problems—Numerical Aspects <strong>of</strong> L<strong>in</strong>ear Inversion<br />

(Philadelphia, PA: SIAM)<br />

[20] He<strong>in</strong> T 2003 Numerische Studie zu e<strong>in</strong>em <strong><strong>in</strong>verse</strong>n Problem der Optionspreisbildung im zeitabhängigen Fall<br />

Prepr<strong>in</strong>t 2003-2 Technische Universität, Fakultät für Ma<strong>the</strong>matik, Chemnitz<br />

[21] He<strong>in</strong> T <strong>an</strong>d H<strong>of</strong>m<strong>an</strong>n B 2003 <strong>On</strong> <strong>the</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>of</strong> <strong>option</strong> pric<strong>in</strong>g <strong>in</strong> <strong>the</strong> time-dependent case Prepr<strong>in</strong>t<br />

2003-1 Technische Universität, Fakultät für Ma<strong>the</strong>matik, Chemnitz<br />

[22] H<strong>of</strong>m<strong>an</strong>n B 1986 Regularization for Applied Inverse <strong>an</strong>d Ill-Posed Problems (Leipzig: Teubner)<br />

[23] H<strong>of</strong>m<strong>an</strong>n B 1994 <strong>On</strong> <strong>the</strong> degree <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> for nonl<strong>in</strong>ear <strong>problem</strong>s J. Inv. Ill-Posed Problems 2 61–76


1338 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

[24] H<strong>of</strong>m<strong>an</strong>n B <strong>an</strong>d Fleischer G 1999 Stability rates for l<strong>in</strong>ear <strong>ill</strong>-posed <strong>problem</strong>s with compact <strong>an</strong>d non-compact<br />

operators Z. Anal. Anw. 18 267–86<br />

[25] H<strong>of</strong>m<strong>an</strong>n B <strong>an</strong>d Scherzer O 1994 Factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> nonl<strong>in</strong>ear <strong>problem</strong>s Inverse Problems<br />

10 1277–97<br />

[26] Hull J C 2000 Options, Futures <strong>an</strong>d O<strong>the</strong>r Derivatives 4th edn (London: Prentice-Hall)<br />

[27] Krasnoselskii M A 1995 Asymptotics <strong>of</strong> Nonl<strong>in</strong>earities <strong>an</strong>d Operator Equations (Basle: Birkhäuser)<br />

[28] Kress R 1989 L<strong>in</strong>ear Integral Equations (Berl<strong>in</strong>: Spr<strong>in</strong>ger)<br />

[29] Kwok Y K 1998 Ma<strong>the</strong>matical Models <strong>of</strong> F<strong>in</strong><strong>an</strong>cial Derivatives (S<strong>in</strong>gapore: Spr<strong>in</strong>ger)<br />

[30] Lish<strong>an</strong>g J <strong>an</strong>d Yoush<strong>an</strong> T 2001 Identify<strong>in</strong>g <strong>the</strong> volatility <strong>of</strong> underly<strong>in</strong>g assets from <strong>option</strong> prices Inverse Problems<br />

17 137–55<br />

[31] Merton R C 1973 Theory <strong>of</strong> rational <strong>option</strong> pric<strong>in</strong>g Bell J. Econom. M<strong>an</strong>ag. Sci. 4 141–83<br />

[32] Nat<strong>an</strong>son I P 1975 Theorie der Funktionen e<strong>in</strong>erreellen Veränderlichen (Berl<strong>in</strong>: Akademie)<br />

[33] Wilmott P, Dewynne J <strong>an</strong>d Howison S 1998 The Ma<strong>the</strong>matics <strong>of</strong> F<strong>in</strong><strong>an</strong>cial Derivatives (Cambridge: Cambridge<br />

University Press)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!