01.06.2013 Views

thermal cracking of ethylene, propylene and light hydrocarbon

thermal cracking of ethylene, propylene and light hydrocarbon

thermal cracking of ethylene, propylene and light hydrocarbon

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Thermal <strong>cracking</strong> <strong>of</strong> <strong>ethylene</strong>, <strong>propylene</strong> <strong>and</strong><br />

<strong>light</strong> <strong>hydrocarbon</strong> mixtures<br />

.?roment G.F., Van De Steene B.O.<br />

Laboratorium voor Petrochenische Sechniek, Rijksuniversiteit,<br />

3ent, Belgium.<br />

;oossens A.G.<br />

Kinetics Technology International, B.Y., The Hague,The Netherl<strong>and</strong>s.<br />

1. Introduction<br />

There are quite a few publications dealing with the <strong>thermal</strong><br />

<strong>cracking</strong> <strong>of</strong> <strong>ethylene</strong>, <strong>of</strong> <strong>propylene</strong> <strong>and</strong> <strong>of</strong> their mixtures with<br />

alkanes (1,2,3,4,5), but most <strong>of</strong> them are confined to rather<br />

narrow ranges <strong>of</strong> the process variables. Further, there is little<br />

agreement as to the product distribution <strong>and</strong> the kinetics <strong>of</strong> the<br />

overall reaction, although it would seem that a gradual transition<br />

between polymerization <strong>and</strong> decomposition processes could explain<br />

some <strong>of</strong> the contradictions.<br />

The <strong>thermal</strong> <strong>cracking</strong> <strong>of</strong> ethane, propane, n <strong>and</strong> i-butane has been<br />

investigated rather intensively, but the <strong>thermal</strong> <strong>cracking</strong> <strong>of</strong> binary<br />

<strong>and</strong> ternary nixtures has received far less attention. Although<br />

industrial practice generally deals with mixtures, there are no<br />

guiding lines to day for the prediction <strong>of</strong> reaction rates <strong>and</strong><br />

product distributions <strong>of</strong> mixtures <strong>cracking</strong> from data on the<br />

<strong>cracking</strong> <strong>of</strong> individual components. The question v~hetlier or not<br />

the reaction partners sioificantly interact to alter the product<br />

distributions from those calculated from pure additivity has not<br />

been settled yet.<br />

The work reported in t!:e present paper aiiaed at determining<br />

kinetics <strong>and</strong> product distributions <strong>of</strong> the <strong>thermal</strong> <strong>cracking</strong> <strong>of</strong><br />

<strong>ethylene</strong>, <strong>propylene</strong>, <strong>of</strong> mixtures <strong>of</strong> ethane-prooylene <strong>and</strong> <strong>of</strong> binary<br />

.3nd ternary mixtures <strong>of</strong> ethane, propane, n- <strong>and</strong> i-butane from an<br />

experimental program covering wide ranges <strong>of</strong> process variables<br />

<strong>and</strong> carried out in a pilot plant. Further, it aimed at reconciling<br />

some <strong>of</strong> the above mentioned contradictions in olefins <strong>cracking</strong> <strong>and</strong><br />

at derivin:: some general rules for mixtures <strong>cracking</strong>.<br />

2. Sxperiniental program<br />

The pilot plant 118s been described in detail by Van Damme et a1<br />

(6) <strong>and</strong> Froinelit et a1 (7).<br />

b . S thylene<br />

The <strong>ethylene</strong> :7as high purity Lwade (Air Liquide CEI25) <strong>and</strong> contained<br />

less than 0.2 wt :,1 c H<br />

The yocess variobleb 3 \,ere 6' varied over the followin!: ranges :<br />

Variable Ra.nge<br />

<strong>ethylene</strong> flow rate (kg/hr) 0.5 - 3<br />

dilution (lcz stc,?in/lcg <strong>hydrocarbon</strong>)<br />

0.4 - 4<br />

Xeynolds number 4,500-8,000<br />

exit teriperature ("C) G25-850<br />

exit $resmu-i: (atm.abs.) 1.2-2.3<br />

pressure drop (atm.) 0.1-0.5<br />

134


The majority <strong>of</strong> the 150 experi1:ients were grouped into 5 classes<br />

depending upon the partial <strong>and</strong> the total pressure.<br />

class exit pressure dilution inlet partial pressure<br />

(atm.abs.) kg/ kg ) ( atm)<br />

1.5 0.4<br />

1.5 1<br />

2.0 0.4<br />

2.0 1<br />

1 a5 4<br />

0.92<br />

0.59<br />

1.36<br />

0.77<br />

0.235<br />

B. Proleslene<br />

The <strong>propylene</strong> was also high purity grade, containing less than<br />

0.2 wt 5: C5+. The operating conditions were similar to those<br />

described above, except for the inlet partial pressure, which was<br />

varied between 0.164 <strong>and</strong> 1.16 atm.abs. <strong>and</strong> for the temperature<br />

range, which extended from 625 to 87OOC.<br />

~~I3inarz_an~-ternary-~~~r~~~r~~I3in-~~~~~~~<br />

Ethane-<strong>propylene</strong> mixtures containing from 25 to 75 wt $ <strong>of</strong> <strong>propylene</strong><br />

were investigated under class l conditions in a temperature<br />

range from 675 to 85OoC <strong>and</strong> with <strong>hydrocarbon</strong> flow rates ranging<br />

from 2 to 3.6 Icg/hr. Similar conditions were chosen for the<br />

lnvestigation <strong>of</strong> ethane-propane, n.butane-propane, n.butanei.butane<br />

<strong>and</strong> ethane-n.butane mixtures.<br />

Finally, the following ternary mixtures were investigated under<br />

these conditions :<br />

ethane propane<br />

20. GI<br />

41.39<br />

30 * 63<br />

42.23<br />

70.61<br />

67<br />

37.53<br />

11<br />

18.40<br />

18.45<br />

n.butane (wt %)<br />

11.65<br />

20.78<br />

58 32<br />

39.35<br />

10.93<br />

3. Product Distributions.<br />

A. Ther"al_crack~n~-o~-~~~y~~~~.<br />

The main products <strong>of</strong> <strong>ethylene</strong> <strong>cracking</strong> are H2, CH4, C2H2, C2H6,<br />

C3Hs, 1,3C H6 <strong>and</strong> a C +-fraction.<br />

Figures 1 ?o 5 show tze yields <strong>of</strong> some <strong>of</strong> these products. The<br />

results are plotted versus the <strong>ethylene</strong> conversion with the partial<br />

pressure <strong>of</strong> the <strong>hydrocarbon</strong> <strong>and</strong> the total pressure as parameters.<br />

Plotted in this way, there is practically no influence <strong>of</strong> temperature.<br />

From these figures it is clear that the range <strong>of</strong> investigated<br />

partial pressures has to be split in an area with $2H4<<br />

0.6 atm, i.e. the class 5 experiments, <strong>and</strong> an area with pC2H ><br />

0.6 atm, i.e. the experililents <strong>of</strong> the classes 1 to 4. This wit1 be<br />

explained in the last section, in which the location <strong>of</strong> the border<br />

line between polymerization <strong>and</strong> decomposition zone is discussed.<br />

Table 1 surmiiaiuizes the influences <strong>of</strong> partial <strong>and</strong> total pressure<br />

on the product yields. The Cz+ yield is favored by an increase in<br />

partial <strong>and</strong> total pressure, ut there was also a stron<br />

<strong>of</strong> the temperature : high temperatures lead to hi& c5 $ ylelds. inf1uence<br />

At temperatures below 800°C most <strong>of</strong> the C5+ formed were heavier<br />

thl toluene, but at the higher temperatures the product spectra<br />

shifts towards <strong>light</strong>er C5+ products.<br />

135


TABLS 1<br />

Influence <strong>of</strong> the partial pressure <strong>of</strong> <strong>ethylene</strong> <strong>and</strong> the total<br />

pressurc on the yields.<br />

component<br />

H2<br />

CH4<br />

c2112<br />

C2H6<br />

C-€1 2 6<br />

13C41-rg<br />

-<br />

increase <strong>of</strong> pastial pressure<br />

increase <strong>of</strong> total<br />

~ ~ 0 atm . 6 p>0.6 atm pressure<br />

, I d d<br />

r .1 none<br />

/ i d<br />

r no none<br />

no none<br />

f<br />

f little or none s<strong>light</strong> decrease<br />

3. Yliermal <strong>cracking</strong> <strong>of</strong> prg@zne<br />

Figures 5 to 11 siiovr the yields <strong>of</strong> the different products in<br />

<strong>propylene</strong> <strong>cracking</strong>.<br />

The prinlary products <strong>of</strong> <strong>propylene</strong> <strong>cracking</strong> are H2, CH4? C2lI4,<br />

1,x4~' ana C5+. Considering only classes 1 to 4, the initial<br />

selectivities <strong>of</strong> these nroducts are indeDendent <strong>of</strong> partial <strong>and</strong><br />

total pressure. Tie foliowing values were found : %=.oj ;<br />

CHqz.15 ; C2H - 15 . 1,3C H -.05 ; C5+=.6 .<br />

In the class $-&ei*i,nent! the initial C5+ <strong>and</strong> 1,3c411~ selectivities<br />

are lovrer <strong>and</strong> the initial H2 selectivity is higher, however.<br />

Table 2 sumiiarizes the influence <strong>of</strong> partial - <strong>and</strong> total pressure<br />

on the product spectrum.<br />

TABLE 2<br />

irilliuence <strong>of</strong> partial pressure <strong>of</strong> the <strong>hydrocarbon</strong> <strong>and</strong> <strong>of</strong> the total<br />

gressure on product yields for <strong>propylene</strong> <strong>cracking</strong>.<br />

component<br />

C2€14<br />

'2"6<br />

C2H2<br />

3'8<br />

1C411g .<br />

increase <strong>of</strong> partial increase <strong>of</strong> total<br />

pressure pressure<br />

none<br />

f<br />

c<br />

t<br />

none<br />

f<br />

r<br />

I<br />

none<br />

no-ne<br />

none<br />

f<br />

II<br />

f<br />

none<br />

C . ;hemal <strong>cracking</strong> <strong>of</strong> hipzx <strong>and</strong> tepnary-hxdrocarbon mixtures<br />

Figure 12 shows the experimental selectivitics for the different<br />

products in ethane-<strong>propylene</strong> mixtures, versus the feed composition.<br />

136<br />

f<br />

t


The selectivity <strong>of</strong> a component I in the <strong>cracking</strong> <strong>of</strong> a mixture<br />

A-B is defined as :<br />

mol9 <strong>of</strong> I from A + mols <strong>of</strong> I from B<br />

YI = mols <strong>of</strong> A cracked + mois <strong>of</strong> B cracked<br />

When there is no interaction, Froment et (7) showed that<br />

equation 1 is identical with :<br />

This predicted value <strong>of</strong> the selectivity will be called the non-<br />

interaction selectivity. *<br />

The pure additivity selectivity : yI = yI,*YA + yI,Bph 3), used<br />

in the literature so far, is obviously a very special case <strong>of</strong> 2)<br />

valid only for xA,jJ = x ~ , ~ ~ .<br />

It is clear from Fig.rce 12 that 2) allows a far better prediction<br />

<strong>of</strong> the experimental results than 3). Analogous figures were plotted<br />

for different conversions <strong>and</strong> for all binary mixtures mentioned in<br />

the experimental program. From all these curves, the following<br />

rule can be deduced : "The experimental selectivities deviate from<br />

the pure additivity lines in the same direction as the non-interaction<br />

selectivitiesll. This means that the effect <strong>of</strong> interaction<br />

can be predicted when the selectivities from the individual<br />

Conponents <strong>and</strong> the relative rates <strong>of</strong> <strong>cracking</strong> are Icno~m.<br />

The selectivities for <strong>cracking</strong> <strong>of</strong> ternary mixtures may be represented<br />

in diagrams <strong>of</strong> the type shown in figure 13,. In this figure<br />

the <strong>ethylene</strong> selectivity at conversions ~~,]\,~=40 F, $ ;<br />

x ,-88 $ is plotted with respect to the ternary feed composition.<br />

i'ttfi-ternary mixtures the pure additivity, non interaction <strong>and</strong><br />

experimental lines <strong>of</strong> Pig. 12 become surfaces. Here too the experimental<br />

selectivities deviate from the pure additivity surface<br />

in the same sense as the non-interaction surface.<br />

4. Kinetics<br />

The kinetics <strong>of</strong> the <strong>cracking</strong> <strong>of</strong> a component X, are derived from<br />

the experiments by means <strong>of</strong> its continuity equation. For ethane<br />

in a binary mixture ethane-<strong>propylene</strong> e.g., cracked in a tubular<br />

reactor with plug flow conditions, the continuity equation may be<br />

written :<br />

n<br />

E<br />

FE,OdxE,p = A e d - m ) . ( C E , p ) dV 4)<br />

E =expansion=<br />

(total molar flow rate)exj-t-(mols G 2II 6 +molsC<br />

mols C kI cracked + iiiols C3F16 cracked<br />

2 6<br />

6 = molar ratio <strong>propylene</strong>/etilylene<br />

= dilation factor : mols 112O/mol <strong>hydrocarbon</strong><br />

In 4) the experimental temperature <strong>and</strong> total preswwe pr<strong>of</strong>ile<br />

are also accounted for.<br />

Tlie kinetics can now be derived froin 4) as such or by inaking use<br />

<strong>of</strong> the equivalent reactoz volume concept.<br />

137


* The-es_ulval,en4_reac4or_volwne_conceEt<br />

In this approach, the non-iso<strong>thermal</strong>, non-isobaric data are first<br />

reduced to iso<strong>thermal</strong>ity <strong>and</strong> constant pressure. This leads to an<br />

e uivalent reactorvolume V- rather than the physical volume V in<br />

47,while T(z) is replaced gy a reference temperature <strong>and</strong> pt(Z) by<br />

a reference pressure (6,7,8). The kinetic parameters <strong>of</strong> the<br />

<strong>thermal</strong> <strong>cracking</strong> <strong>of</strong> individual alkanes were determined by means<br />

<strong>of</strong> this concept. Figure 14 shows the Arrhenius plot <strong>of</strong> the first<br />

order rate constants for ethane, propane, n.butane <strong>and</strong> i.butane.<br />

The concept was also used to calculate the kinetic coefficients <strong>of</strong><br />

the <strong>cracking</strong> <strong>of</strong> the individual components in the mixture, assuming<br />

first order. The integration <strong>of</strong> 4) then requires a relation<br />

xp E'f(XE p). From the experimental data, this relation was found<br />

in'all caees to be parabolic, so that equation 4 could be integra-<br />

ted analytically. Figure 15 shows the value <strong>of</strong> kE p versus the<br />

feed composition. The inhibiting effect <strong>of</strong> propylkne on the ethane<br />

rate coefficient is very pronounced. The same procedure was<br />

followed to calculate the individual rate coefficients for all the<br />

components <strong>of</strong> the different feed mixtures.<br />

Table 3 summarizes the relative influences, caused by cocrackinr.<br />

TABLE 3<br />

Effect <strong>of</strong> the addition <strong>of</strong> various components on the rate coeffi-<br />

cient for the <strong>cracking</strong> <strong>of</strong> ethane, propane, n.butane, i.butane<br />

<strong>and</strong> <strong>propylene</strong>.<br />

I I Effect on rate coefficient<br />

Bddi t ion<br />

I Of<br />

C&<br />

',<br />

C3HB<br />

nC4H1 0<br />

iC4H,0<br />

C3H6<br />

I kC2H6 kC3H8 I knC4H10 1 kiC4H10 1 kC3H6<br />

- r r no data .r<br />

4 - .1 no data f<br />

.1 .1 .I no data<br />

no data no data f - no data<br />

J no data no data -<br />

1<br />

The individual rate coefficients in the ternary mixture ethane-<br />

propane-n.butane were calculated in an analogous way. Figure 16<br />

shows the effect on the rate coefficient for ethane <strong>cracking</strong> <strong>of</strong><br />

the addition <strong>of</strong> one or two components in various ratios. Analogous<br />

diagrams could be shown for kp Ti <strong>and</strong> kN M. All three <strong>of</strong> them<br />

clearly illustrate the effect bn the rate coefficients <strong>of</strong> inter-<br />

action between reaction partners.<br />

The equivalent reactorvolume concept requires an initial guess <strong>of</strong><br />

the activation energy, valid over the whole range <strong>of</strong> investigated<br />

temperatures. This is no problem with alkanes but, as will be<br />

discussed in the next section, the <strong>ethylene</strong> <strong>and</strong> <strong>propylene</strong> <strong>cracking</strong><br />

experiments cover a transition zone in which polymerization<br />

processes with activation energies <strong>of</strong> 2 35 kcal/mol <strong>and</strong> decompo-<br />

sition processes with activation energies <strong>of</strong> 2 70 kcal/mol<br />

simultaneously occur. In such cases it is preferable to resort<br />

138<br />

N


to the non-iso<strong>thermal</strong> non-isobaric approach used by Van Damme et<br />

a1 (6). Equation<br />

‘<br />

4, with the experimental tenperature <strong>and</strong> pressure<br />

Pr<strong>of</strong>ile included, was integrate numerically <strong>and</strong> the residual sum<br />

Of squares 9 (Xexp-xcalculated<br />

)$ was minimized with A, E <strong>and</strong> n as<br />

Parmeters, using Liarquardt’s search routine (22). The results are<br />

shown in Table 4,5,6 <strong>and</strong> 7 respectively, from which it follows that<br />

there is a strong influence <strong>of</strong> temperature, partial <strong>and</strong> total<br />

Pressure on the kinetic parameters in both <strong>ethylene</strong> <strong>and</strong> Propylene<br />

<strong>cracking</strong>.<br />

TABm 4<br />

Influence <strong>of</strong> the temperature on the kinetic parameters <strong>of</strong> the<br />

overall <strong>ethylene</strong> disappearance.<br />

1.61 2 0.025<br />

1.46 + 0.122<br />

1.43 z 0.042<br />

800 1.39 10 1.19 + 0.034<br />

825 1.22 0.042<br />

~~ ~~~ ~<br />

TABU 5<br />

Influence <strong>of</strong> the temperature on the kinetic par-ametcrs <strong>of</strong><br />

<strong>propylene</strong> <strong>cracking</strong><br />

9.42 1012<br />

4.43 IO1,<br />

800<br />

82 5 2.99 10<br />

TABLE 6<br />

Influence <strong>of</strong> inlet partial pressure <strong>and</strong> total pressure on the<br />

kinetic parameters <strong>of</strong> <strong>ethylene</strong> <strong>cracking</strong>.<br />

I A 1 E(kcal/mol) 1 n t<br />

Class 1 I 2.48 10” 54.220 f 1.260 1.29 2 0.046 !<br />

Class 2 1 .I1 10;; 81.910 f 1.340 1.54 0.01<br />

Class 3 54.430 f 2.170 1.27 2 0.027<br />

Class 4 5.47 IOl3 66.400 2 .211 1.35 2 0.023<br />

Class 5 I .50 1015 72.840 2 .i91 1.36 2 0.018<br />

iA ll classes 2.51 IOl3 TkELE 60.400 7 2 .975 1.30 2 0.027<br />

Influence <strong>of</strong> inlet partial pressure ana total pressure on the<br />

kinetic parameters <strong>of</strong> <strong>propylene</strong> <strong>cracking</strong>.<br />

E( Iccal/mol<br />

n<br />

1 1 A<br />

Class 2<br />

Class 3<br />

class 4 1.89 10<br />

Class 5 5.18<br />

51.320 2 2.600<br />

66.020 2 28.000<br />

56.690 2 2.900<br />

63.960 2 1.080<br />

47.710 2 2.150<br />

50.650 1 A00<br />

139<br />

1.02 2 0.035<br />

1.02 2 0.37<br />

1.05 2 0.028<br />

1.18 + 0.040<br />

1.15 0.063<br />

1.08 2 0.037


5. Decomposition <strong>and</strong> pol.wnerization zones in olefines crackins<br />

i:. Propylene <strong>cracking</strong><br />

In the <strong>thermal</strong> <strong>cracking</strong> <strong>of</strong> <strong>propylene</strong>, polyierization <strong>and</strong> decomposition<br />

processes are in competition (1,2,3,12,13,14). Low tenperatures<br />

<strong>and</strong> high partial pressures favor polynerization, high tenperatures<br />

<strong>and</strong> lovr partial pressures fa-ieu*.e 17.<br />

To permit a direct cornp.rison with the literature, the propyhene<br />

partial pressure is expressed in rm Me. From Anano's border line,<br />

it follovis that the present results woulci be conpletely located<br />

in the golpierization zone aid indeed no allene is found. However,<br />

the order <strong>of</strong> the global disappezrance reaction is not 5/2 but<br />

varies froiii 1/2 to 1 as the teriperature is increased, while the<br />

activation enerfiie varj.es from 31; tn 66 kc~.l/~?:&!.- C!%C r;-ggcr;ts<br />

that the present dat.?. would be located in the trznsition area <strong>and</strong><br />

this in turn requires the border line to be shifted towards the<br />

left <strong>of</strong> t'ne figure. Such a shift could result from a decomposition<br />

<strong>of</strong> allyl into acetylene instead <strong>of</strong> allene :<br />

An iso<strong>thermal</strong>, unsteady state radical siniulation <strong>of</strong> the <strong>propylene</strong><br />

experiments (10) led to a frequenc factor <strong>of</strong> 1.108 <strong>and</strong> an activation<br />

energy <strong>of</strong> 32.4 kcal/mol for 77. These values are j?lausj.bl.e,<br />

when compared with Allarals data (9) for the decomposition <strong>of</strong> c<br />

radicals into C 11 :',ken reaction 7 instead <strong>of</strong> reaction 6 accoukts<br />

for the/t-behav$o$'<strong>of</strong> the allylradical, the border line between the<br />

two areas io, calculated from : IC C I1 ) = I: . This is the full<br />

line on Figure 17. Both Kunugi's5t2j Bnd O U ~ experiments are now<br />

located in the transition zone. Tile experiments <strong>of</strong> Laidler (1)<br />

<strong>and</strong> Ingold (12) lie in the polyuerization area <strong>and</strong> these <strong>of</strong> Szwarc:<br />

(13) <strong>and</strong> Salcakibarz (14) in the decomposition zone. This is in<br />

agreement with the fact that neither Laidler nor Ingold found<br />

acetylene, while Kunugi <strong>and</strong> Sakakibara d.id. The results <strong>of</strong> Szviarc<br />

are doubtful bccause <strong>of</strong> his rudimentary analytical technique.<br />

At 1200°C <strong>and</strong> higher, the decomposition <strong>of</strong> allyl into alleEe<br />

becomes more <strong>and</strong> more important, became <strong>of</strong> the high activation<br />

encrm, so that Sakalcibara, whose work is lrlainly situated in the<br />

temperature range 12000c-1400°c, found inore allene <strong>and</strong> iiiethyl-<br />

140


acetylene then acetylene.<br />

B. :+Xl_gne crac+g<br />

In CoWete amlogy with <strong>propylene</strong> <strong>cracking</strong>, the two major initial<br />

reactions are :<br />

%<br />

C2fijo+C 2FI 4 -+ C~EI?O -+ c 4M 6 +HO<br />

~ ( rno1-lsec-l) 1<br />

7 107<br />

~(~ccal/mol)<br />

7.3 8)<br />

c 2H 3 o+i:l--tC k 9 2H 2 +Ho+l,i 5 loq1 31.5 9)<br />

The vinylradical acts as a p radical. in 8) <strong>and</strong> as a<br />

9). The kinetic parameters <strong>of</strong> Z;'nese reactions were<br />

extensive literature survey ( 1 1,15,16,17).<br />

The border line between the two zrea's is now given hy :<br />

k8(C21130)(C2H4) = k (C H O )(l.i)<br />

9 2 3<br />

This line is the flit1 line in Figure 18. ';;itti a second orcier<br />

initiation 1i.ke 2C H 422I.i- "+C21150 <strong>and</strong> a teir;iinatj.on involving<br />

two vinylradicals ;i2&Ii3 -+ .? , !C4Hg), an order <strong>of</strong> 2 is predicted<br />

for Conditions in the polymerization zone <strong>and</strong> a.n order <strong>of</strong> 1 for<br />

conditions in the dccoi~iposition zone.<br />

Si1:lon <strong>and</strong> Iijaclc (1 5) <strong>and</strong> Silcocks (1 8) observed seconci order<br />

kinetics, while l.:olera <strong>and</strong> Stuhbs (16) found second order 1cineti.c.s<br />

in the region 5 <strong>of</strong> Fi,mre 18 <strong>and</strong> first order kinetics in region TI,<br />

in agreement with tie proposed border line. R.m.uzi's data (11 )<br />

ivhi.cli arc located in the transition area lead to an order <strong>of</strong> 312<br />

for tiic ~:lolial. disa?xarrr.nc:e reaction.<br />

The pilot plant experiinento cover the transition zone. The order<br />

!ea.s shown in 'I'al:~lea 4 <strong>and</strong> 6 to evolve fron! 1 .6 to 1 .2 as the<br />

temperature is increased <strong>and</strong> the activation eiiergy from 40 to<br />

2.boIit 75 kce?.l/iilol.<br />

I '<br />

J?'Iie pol.yilir~i.iarttion can also lie <strong>of</strong> a J!lOleCILlar nature :<br />

.A(I mol-' sec-l) :,'(1cca,l/rnQl) iter<br />

C,ii +I ,'jC I L ---> polymer<br />

r 4 4<br />

3 107 27 19 IC)<br />

Th.e ratio <strong>of</strong> the ra.c?ica.l. reaction <strong>and</strong> molecular condensation rates<br />

was ca3.cula.ted fron 2.n isotlierraal. non cteady state radi.ca1 siimlation<br />

<strong>of</strong> the <strong>ethylene</strong> experiinents by Sunderan & PToment (IO), to be<br />

71 at 80GV <strong>and</strong> 1.; conversion, 15 at OOO°C <strong>and</strong> 3:~ conversion ana<br />

10 at 825°C <strong>and</strong> 8 ;i conversion.<br />

It follows that molecular condensation cannot be neglected a.t<br />

8CO°C <strong>and</strong> higher. This explains vlhy the experi.inenta1 Cg+ frsction<br />

was SO stroiicly correla.ted aitli the temperature. In <strong>propylene</strong><br />

crrtcitiiie the ratios <strong>of</strong> the rates <strong>of</strong> the radical po1yl;ierisation <strong>and</strong><br />

the moleculcir conderisation at OGCV would Le <strong>of</strong> the ordcr <strong>of</strong> IC00<br />

because the allyl rzdical is hich <strong>and</strong> butadiene is low.<br />

It is clear also froiii Piwre 16 for <strong>ethylene</strong> ax1 from Figure 17<br />

for <strong>propylene</strong> that tile influence <strong>of</strong> the pnr-tial <strong>and</strong> total pressure<br />

on fne order anci activation encrt27 vrill be inore or less pronounced<br />

depending u?on the distance frnrn the border line. The higher acti-<br />

vation enerzies Given in lnbles 6 <strong>and</strong> 7 for the conditions <strong>of</strong> the<br />

classes 2, 4 <strong>and</strong>, 5 may be related to t<br />

Pinally, il; ShOii.ld be added that even<br />

less tila (1.2 wt ,:, in the etiiyleiie feed, the initiation reaction<br />

C 11 i2CI11° cannot lje ne!:lecterl, as concluded already by<br />

2 6<br />

1:m~ugi (I I ) unc~ BY yowell <strong>and</strong> liartin (20) .<br />

141


From the mechanistic point <strong>of</strong> view the initiation then becomes <strong>of</strong><br />

first order <strong>and</strong> the order <strong>of</strong> the global disappearance should vary<br />

between 3/2 <strong>and</strong> 1/2. On the other h<strong>and</strong>, the molecular reactions<br />

vtill increase the overall order. All these trends substantiate the<br />

-rariation <strong>of</strong> the order from 1.6 to 1.2 observed in the present viorl;.<br />

k<br />

n<br />

Pt<br />

R<br />

r<br />

T<br />

VE<br />

X<br />

Y<br />

z<br />

Y<br />

b<br />

E<br />

Y<br />

Notation<br />

-1<br />

frequency factor sec or 1 rno1-lsec-l<br />

activation energy kc a1 /mol<br />

concentration IUOl/l<br />

concentration, total hydro-<br />

carbons<br />

molar flow rate <strong>of</strong> the craclced<br />

coaiponent at the inlet<br />

rate Coefficient<br />

order <strong>of</strong> reaction<br />

lJOl/l<br />

mollsec<br />

sec-’ or 1 mol-’ sec-’<br />

total pressure atm.abs.<br />

gas constant<br />

kc a1 /mol ‘C<br />

rate <strong>of</strong> reaction mol/l sec<br />

temperature OK or ‘C<br />

equivalent reactor volume 1<br />

conversion<br />

selectivity mol/nol<br />

tube length rn<br />

mol ratio mol/mol<br />

dilution rat io<br />

inol steam/mol hydrocarbor.<br />

expansion factor mol products/mol <strong>hydrocarbon</strong><br />

cracked<br />

mol fraction mol /mol<br />

ethane<br />

progylene<br />

mixture<br />

initial value<br />

total<br />

mean<br />

Subscrints<br />

Table captions<br />

Table 1 : Xthylene <strong>cracking</strong>. Influence <strong>of</strong> the total pressure <strong>and</strong><br />

the partial pressure <strong>of</strong> <strong>ethylene</strong> on the yields <strong>of</strong> the<br />

dj ffercnt groducts.<br />

Table 2 : Propylene craclrint;. Influence <strong>of</strong> the total pressure <strong>and</strong><br />

the pnrtial pressure <strong>of</strong> <strong>propylene</strong> on the yields <strong>of</strong> the<br />

different products.<br />

Table 3 : Effect <strong>of</strong> the addition <strong>of</strong> various colnponcnts on the rate<br />

coefficient €or the <strong>cracking</strong> <strong>of</strong> ethane, propane,<br />

n-butane , i -butrine <strong>and</strong> <strong>propylene</strong>.<br />

142<br />

rn<br />

m<br />

m


w<br />

w<br />

m<br />

H<br />

m<br />

m<br />

m<br />

H<br />

m<br />

m<br />

m<br />

H<br />

Table 4 : Influence <strong>of</strong> temperature on the kinetic parameters <strong>of</strong> the<br />

overall <strong>ethylene</strong> disappearance.<br />

Table 5 : Influence <strong>of</strong> temperature on the kinetic parameters <strong>of</strong> the<br />

overall <strong>propylene</strong> disappearance.<br />

Table 6 : Influence <strong>of</strong> inlet partial pressure <strong>and</strong> total pressure on<br />

the kinetic parameters <strong>of</strong> <strong>ethylene</strong> <strong>cracking</strong>.<br />

Table 7 : Influence <strong>of</strong> inlet partial pressure <strong>and</strong> total pressure on<br />

the kinetic parameters <strong>of</strong> <strong>propylene</strong> <strong>cracking</strong>.<br />

Figure captions<br />

Figure 1 : Ethylene <strong>cracking</strong> : hydrogen yield<br />

Figure 2 : Zthylene <strong>cracking</strong> : methane yield<br />

Figure 3 : Ethylene <strong>cracking</strong> : acetylene yield<br />

Figure 4 : Ethylene <strong>cracking</strong> : <strong>propylene</strong> yield<br />

Figure 5 : Ethylene <strong>cracking</strong> : butadiene yield<br />

Figure 6 : Propylene <strong>cracking</strong> : hydrogen yield<br />

Fiwe 7 : Propylene <strong>cracking</strong> : methane yield<br />

Figure 8 : Propylene <strong>cracking</strong> : acetylene yield<br />

Figure 9 : Propylene <strong>cracking</strong> : <strong>ethylene</strong> yield<br />

Figure 10 : Propylene <strong>cracking</strong> : butadiene yield<br />

Fi,gre 11 : Propylene <strong>cracking</strong> : C5+ yield<br />

Figure 12 : Selectivity <strong>of</strong> H2, CH4 <strong>and</strong> C2H4 versus mol fraction<br />

<strong>propylene</strong> in the mixture<br />

Figure I3 : Selectivity <strong>of</strong> C H versus feed composition in the<br />

ternary mixture &hane-propane-n.butane<br />

- - lines on non-interaction surface ; + non inter-<br />

action points ; . experimental<br />

Figure 14 : Arrhenius plot <strong>of</strong> rate coefficients for the <strong>cracking</strong> <strong>of</strong><br />

<strong>light</strong> <strong>hydrocarbon</strong>s<br />

Figure 15 : Rate coefficient for the <strong>cracking</strong> <strong>of</strong> ethane in an<br />

ethane-<strong>propylene</strong> mixture versus feed composition<br />

Figure 16 : Rate coefficient for the <strong>cracking</strong> <strong>of</strong> ethane in ternary<br />

mixtures <strong>of</strong> ethane-propane <strong>and</strong> n-butane<br />

Figure 17 : Polymerization <strong>and</strong> decomposition zones in <strong>propylene</strong><br />

<strong>cracking</strong><br />

Figure 18 : Polymerization <strong>and</strong> decomposition zones in <strong>ethylene</strong><br />

<strong>cracking</strong>.<br />

References<br />

1) Laidler K.J., Vojciechowski B.TI., Proc.Roy;Soc. (London),<br />

A259, 257 (1960)<br />

2) Kunugi T., Sakai T., Soma K. <strong>and</strong> Sasaki Y., 1nd.Eng.Chem.<br />

* Fundam., v01.9, NO3 (1970).<br />

3) Aman0 A., Uchujana M., J.Phys.Chem., 68, 1133 (1964).<br />

4) s&ai T., Soma K., Sasaki Y., Tominaga H. <strong>and</strong> Kunugi T.,<br />

Refining Petroleum for Chemicals, 68 (1 970).<br />

5) Kallend A.S., Wnell J.H., Shurlock B.C., Proc.Roy.Soc.<br />

(London), A300, 120 (1967).<br />

6) van Damme P.S., Narayanan S. <strong>and</strong> Froment G.F., A.1.Ch.E.<br />

Journal, 1701.21, N06, 1065 (1975).<br />

14 3


7) Froment G.F., Van de Steene B.O., Van Dame Y., marayanan S.<br />

<strong>and</strong> Goossens A.G., 1nd.Eng.Chem.Process Des.&<br />

Develop. (to be published)<br />

8) Froriient G.F., Pycke Ii., Goethals G., Chem.Eng.Sci.,l3, 173,<br />

180 (1961)<br />

9) Allara D.L., i~ co!ripilation <strong>of</strong> kinetic parameters for the<br />

thcrinal degradation <strong>of</strong> n-alkane molecules<br />

IO) Sundaram id., Froment G.F., (to be published)<br />

11 ) Icunugi T., Sakai T., Soma K., Sasaki Y., 1nd.Eng.Chem.Fundam.<br />

Vo1.8, 374 (1969)<br />

12) Ingold K.U., Stubbs F.J., J.Chem.Soc., 1749 (1951)<br />

13) Szwarc U., J.Chem.Phys., I%, 234 (1949)<br />

14) Sakakibara Y., Bull.Chem.Soc. Japan, 37, 1262 (1964).<br />

15) Simon ki., Back X.H., Can.J.Chern., 47, 251 (1969)<br />

16) Xolera M.J., Stubbs F.J., J.Chem.Soc., 301 (1952)<br />

17) Benson S.Y., Hougen G.R., J.Phys.Chem., 71, 1735 (1967)<br />

16) Silcocks C.G., Eroc.Roy.Soc., A233, 465 (1955)<br />

.is) Bowley D., Steiner H., diss.!L'rans.Faraday SOC., 10,198(1951)<br />

2O)Towell G .D :, 1,lartin J. J. , L. I ,Ch.3. Journal, vol. 7 ,1T04, 693 ( 1961 )<br />

:?I) Froriient G.P., Van De Steene B.O. <strong>and</strong> Goossens A.G.<br />

(to be published)<br />

22) Marquardt D.?., Soc.Ind.ilp-ol.l,iath.J., 11, 431 (1963).<br />

144<br />

W<br />

m<br />

H<br />

B,<br />

W<br />

m<br />

W<br />

m<br />

W<br />

m<br />

m<br />

m


N<br />

I<br />

.2<br />

CLASS 1 0<br />

CLASS 2 A<br />

CLASS3 -k<br />

CLASS 4 X<br />

CLASS 5 0<br />

Figure 1.<br />

C<br />

0 10 20<br />

CONVERSION %<br />

THERMAL CRACKING OF ETHYLENE<br />

145<br />

X<br />

30


.l 2<br />

I<br />

u<br />

1<br />

CLASS 1 0<br />

CLASS 2 A<br />

CLASS 3 +<br />

CLASS L X<br />

CLASS 5 0<br />

Figure 2.<br />

0 10 20 30<br />

CONVERSION O h<br />

THERMAL CRACKING OF ETHYLENE<br />

146<br />

+


-<br />

8"<br />

N<br />

0<br />

m<br />

Y<br />

0 .<br />

a Y<br />

I<br />

N<br />

N<br />

0<br />

2<br />

I 1<br />

0<br />

J<br />

w<br />

><br />

0<br />

CLASS 1 0<br />

CLASS 2 A<br />

CLASS 3 +<br />

CLASS L X<br />

CLASS 5 0<br />

Figure 3.<br />

I I I<br />

10. 20. 30<br />

CON V E R S I 0 N %<br />

THERMAL CRACKING OF ETHYLENE<br />

147<br />

,


N<br />

u<br />

.<br />

I?<br />

Y -<br />

CLASS 1 0<br />

CLASS 2 A<br />

CLASS 3 +<br />

CLASS L X<br />

CLASS 5 0<br />

Figure 4.<br />

0. 10 20 30<br />

CON V ER S IO N %<br />

THERMAL CRACKING OF ETHYLENE H<br />

148<br />

H


I<br />

.I<br />

I<br />

6<br />

N<br />

0<br />

0 L<br />

Y<br />

0<br />

0<br />

- .<br />

0<br />

Y<br />

u3<br />

I<br />

.l<br />

0<br />

0<br />

_1<br />

W<br />

-<br />

t-<br />

2<br />

0<br />

CLASS 1 0<br />

CLASS 2 A<br />

CLASS 3 +<br />

CLASS I x<br />

CLASS 5 0<br />

Figure 5.<br />

X+<br />

0<br />

+ +<br />

I 1 I I<br />

0 10 20 30<br />

CONVERSION '/o<br />

THERMAL CRACKING OF ETHYLENE<br />

149


CLASS 1<br />

CLASS 2<br />

CLASS 3<br />

CLASS L<br />

CLASS 5<br />

Figure 6.<br />

0<br />

a<br />

+<br />

X<br />

0<br />

CONVERSION (% 1<br />

THERMAL CRACKING OF PROPYLENE<br />

150


.I<br />

.'<br />

B'<br />

.<br />

.I<br />

.' B'<br />

M'<br />

. U:<br />

.'<br />

m:<br />

E<br />

m<br />

.'<br />

rn<br />

.: W<br />

.'<br />

.,<br />

.'<br />

.I<br />

25.<br />

29<br />

CLASS<br />

CLASS<br />

CLASS<br />

CLASS<br />

CLACS<br />

1<br />

2<br />

3<br />

L,<br />

5<br />

Figure 7.<br />

0 20 LO 60 80 100<br />

CONVERSION ( %)<br />

THERMAL CRACKING OF PROPYLENE<br />

151


CLA5S 1 0<br />

CLASS 2 A<br />

I,LA-\sS 3 +<br />

CLASS L X<br />

CLAZS 5 0<br />

Figure 8.<br />

2 i) LO 60 80 1oc<br />

CONVERSION l%l<br />

THERMAL CRACKING OF PROPYLENE<br />

152<br />

a<br />

a<br />

a<br />

a<br />

I<br />

a<br />

rn<br />

PI<br />

H<br />

IC'<br />

H<br />

a'<br />

H<br />

I


30<br />

20<br />

10<br />

0<br />

Figure 9.<br />

CLASS 1 0<br />

CLASS 2 a 0<br />

CLASS 3 +<br />

CLASS 4 X<br />

CLASS 5 0<br />

20 LO 60 80 100<br />

CONVERSION I % )<br />

THERMAL CRACKING OF PROPYLENE<br />

153


CLASS 1 0<br />

CLASS 2 a<br />

CLASS 3 +<br />

CLASS L X<br />

CLASS 5 0<br />

Figure 10.<br />

X<br />

0 20. LO 60. 80 100<br />

0<br />

CONVERSION 1%)<br />

THERMAL CRACKING OF PROPYLENE<br />

154


CLASS 1 0<br />

CLASS 2 fl<br />

CLASS 3 +<br />

CLASS L X<br />

CLASS5 0<br />

Figure 11.<br />

20 40 60 80 100<br />

CONVERSION [%I<br />

THERMAL CRACKING OF PROPYLENE<br />

155


SE<br />

1<br />

.a<br />

.6<br />

.4<br />

.2<br />

a<br />

ECTl V IT Y<br />

Figure 12.<br />

ETHANE-PROPYLENE MIXTURES<br />

CLASS 1<br />

X z 49% X = 7Q%<br />

E P<br />

156


Figure 13.<br />

TERNARY MIXTURES<br />

ETHANE -PROPANE-N.BUTANE<br />

CLASS 1 XE,M= 40% Xp,M= 73% XN,M= 88%<br />

SELECTiVITY<br />

157


-Nb<br />

3<br />

-1<br />

2<br />

1<br />

0<br />

-2<br />

(<br />

Figure 14.<br />

I I I *<br />

I I I 1 I I I<br />

T(OC)<br />

*<br />

8 50 800 750 7 h<br />

3 0.90 0.92 0.94 0.96 a98 1 1.02 lOOO/TR<br />

L FIG L<br />

158


k<br />

E,P'<br />

( 8<br />

Figure 15.<br />

ETHANE -PROPYLENE MIXTURES<br />

CLASS 1<br />

T =825OC<br />

T = 800 OC<br />

T 775OC e<br />

O l<br />

0<br />

T = 75OoC - w<br />

I<br />

1 1 molsC3H6<br />

mol C2H6<br />

159<br />

0<br />

0


I<br />

Figure 16.<br />

TERNARY MIXTURES<br />

N.BUTANE - PROPANE - ETHANE<br />

CLASS 1 T = 8OO0C<br />

.kEJMl<br />

-<br />

.3<br />

R


*:<br />

600 800 1000 T ("C)<br />

161


2 ,<br />

2 D ECOM PO S I T ION ZONE<br />

.. .. .<br />

1 : PRESENT WORK<br />

2: SIMON ,<br />

3+3': MOLERA<br />

4: KUNUGI<br />

5: TANlEWSKl<br />

A: SILCOCKS<br />

THERMAL CRACKING -<br />

OF ETHYLENE<br />

I I I I -+<br />

600<br />

162<br />

8 00 lobo T ("C)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!