01.06.2013 Views

Hernan J. Cortes, Robert A. Shellie, Jim Luong, Kayte Parlevliet. HJ ...

Hernan J. Cortes, Robert A. Shellie, Jim Luong, Kayte Parlevliet. HJ ...

Hernan J. Cortes, Robert A. Shellie, Jim Luong, Kayte Parlevliet. HJ ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Hernan</strong> J. <strong>Cortes</strong>, <strong>Robert</strong> A. <strong>Shellie</strong>,<br />

<strong>Jim</strong> <strong>Luong</strong>, <strong>Kayte</strong> <strong>Parlevliet</strong>.<br />

<strong>HJ</strong> <strong>Cortes</strong> Consulting, LLC., Midland, MI USA, University of<br />

Tasmania, Hobart, Tasmania and SGE, Melbourne,<br />

Australia.<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

1


Migration from tube based flow systems to planar<br />

microchannel systems to deliver flexible and innovative<br />

chromatographic solutions<br />

1. Suitable for fast moving molecules<br />

2. Doesn’t require cryogen<br />

3. In-Oven with no moving parts<br />

Capillary flow technology (first generation)<br />

SilFlow technology (second generation)<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

2


Like capillary flow technology:<br />

• Chemically inert<br />

• Low to no dead volume<br />

• Super operational stability (thermal cycle)<br />

• Easy to install and leak free<br />

Unlike capillary flow technology:<br />

• Much lower thermal mass; by 300%<br />

• Substantially lower cost, by 400%<br />

• Smaller in size = flexibility for system application<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

3


Configuration of a three-port splitter device for parallel chromatography<br />

Inlet<br />

Transfer line<br />

30 m x 0.32 mm-id x 20 µm HP-PLOT Q<br />

30 m x 0.32 mm-id x 10 µm Rtx-Alumina BOND MAPD<br />

•. <strong>Luong</strong>, R. Gras, R.A. <strong>Shellie</strong>, H.J. <strong>Cortes</strong> – J. Sep. Sci., 30 (2013) 182-191<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

FID-1<br />

FID-2<br />

4


30 m x 0.32 mm-id x 20 µm HP-PLOT Q<br />

30 m x 0.32 mm-id x 10 µm Rtx-Alumina BOND MAPD<br />

HPLOT Q<br />

PW1/2=0.0102 min<br />

Al 2O 3<br />

PW1/2=0.007648 min<br />

1<br />

1<br />

4<br />

<strong>Luong</strong>, R. Gras, R.A. <strong>Shellie</strong>, H.J. <strong>Cortes</strong> – J. Sep. Sci., 30 (2013) 182-191<br />

3<br />

2<br />

3<br />

4<br />

6<br />

5<br />

5<br />

6<br />

2<br />

1. Methane<br />

2. Acetylene<br />

3. Ethylene<br />

4. Ethane<br />

5. Propylene<br />

6. Propane<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013 5


Configuration of a three-port splitter device for column effluent splitting<br />

Inlet<br />

30 m x 0.32 mm-id x 5 µm CP-Sil 5CB<br />

1 m x 0.32 mm-id fused silica<br />

2 m x 0.20 mm-id fused silica<br />

J. <strong>Luong</strong>, R. Gras, R.A. <strong>Shellie</strong>, H.J. <strong>Cortes</strong> – J. Sep. Sci., 30 (2013) 182-191<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

FID<br />

SCD<br />

6


FID<br />

P-SCD<br />

1<br />

Hydrocarbons in natural gas<br />

2 3 4<br />

5<br />

6<br />

1. Hydrogen sulfide<br />

2. Carbonyl sulfide<br />

3. Methyl mercaptan<br />

4. Ethyl mercaptan<br />

5. Impurity<br />

6. Impuritiy<br />

J. <strong>Luong</strong>, R. Gras, R.A. <strong>Shellie</strong>, H.J. <strong>Cortes</strong> – J. Sep. Sci., 30 (2013) 182-191<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

7


Inlet Pressure (P1)<br />

10 m x 0.32 mm-id x 1 µm VF-Waxms<br />

Pressure control<br />

module (P2)<br />

Transfer line<br />

Fused silica restrictor<br />

FID-1<br />

FID-2<br />

30 m x 0.32 mm-id x 10 µm Rtx-Alumina BOND MAPD<br />

J. <strong>Luong</strong>, R. Gras, R.A. <strong>Shellie</strong>, H.J. <strong>Cortes</strong> – J. Sep. Sci., 30 (2013) 182-191<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

8


VF-WAXms<br />

1,2,3,4,5,6,7,8,9<br />

Rtx-AluminaBOND MAPD<br />

2<br />

1<br />

Water if present Backflush<br />

Column 1: 10 m x 0.32 mm x 1 µm VF-WAXms<br />

Column 2: 30 m x 0.32 mm Rtx-AluminaBOND MAPD<br />

3<br />

•J. <strong>Luong</strong>, R. Gras, H.J. <strong>Cortes</strong>, R.A. <strong>Shellie</strong> –J. Chromatogr A, 1271 (2013) 185-191<br />

4<br />

5<br />

6<br />

7<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

8<br />

1. Methane<br />

2. Ethane<br />

3. Ethylene<br />

4. Propane<br />

5. Propylene<br />

6. Acetylene<br />

7. Butane<br />

8. Pentane<br />

9. Hexane<br />

9<br />

9


Inlet Pressure (P1)<br />

Column 1<br />

Flow profiles:<br />

• P1>>P2 = forward<br />

• P1>P2 = isolate Column 2<br />

• P2>>P1 = backflush<br />

Transfer line<br />

Pressure control<br />

module (P2)<br />

Column 2<br />

•J. <strong>Luong</strong>, R. Gras, H.J. <strong>Cortes</strong>, R.A. <strong>Shellie</strong> –J. Chromatogr A, 1271 (2013) 185-191<br />

FID<br />

TCD<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

10


Volt<br />

Volt<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

0.10<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0.00<br />

-0.01<br />

Back FID<br />

Porabond Q and RT U Bond no stripper<br />

Name<br />

Retention Time<br />

Carbon Monoxide<br />

Front TCD<br />

TCD Porabond Q and RT U Bond no stripper no aux<br />

Name<br />

Retention Time<br />

1.667<br />

2.590<br />

Methane<br />

Carbon Dioxide 2.736<br />

1.791<br />

1 2<br />

3.648<br />

Ethylene<br />

3<br />

4.439<br />

4 5<br />

Ethane<br />

5.168 Acetylene<br />

5.587<br />

6<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br />

Minutes<br />

2.886<br />

Hydrogen<br />

3.144<br />

Oxygen<br />

3.780<br />

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4<br />

Minutes<br />

•J. <strong>Luong</strong>, R. Gras, H.J. <strong>Cortes</strong>, R.A. <strong>Shellie</strong> –J. Chromatogr A, 1271 (2013) 185-191<br />

9<br />

Proplyene<br />

10.178<br />

Propane<br />

10.620<br />

7<br />

8<br />

10<br />

12.084<br />

12.808<br />

0.50<br />

0.45<br />

FID – PoraBOND Q/Methanizer<br />

Nitrogen<br />

4.768<br />

11<br />

15.718<br />

1. Carbon monoxide<br />

2. Methane<br />

3. Carbon dioxide<br />

4. Ethylene<br />

5. Ethane<br />

6. Acetylene<br />

7. Propylene<br />

8. Propane<br />

TCD – MS5A<br />

9. Hydrogen<br />

10. Oxygen<br />

11. Nitrogen<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013 11<br />

(Methane)<br />

19.703<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

0.10<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0.00<br />

-0.01<br />

Volt<br />

Volt


1,2,3,4,5,6,7,8,9 11<br />

10<br />

Al 2O 3<br />

1<br />

2<br />

3<br />

12<br />

4<br />

13<br />

5<br />

6<br />

7<br />

VF-WAXms<br />

•J. <strong>Luong</strong>, R. Gras, H.J. <strong>Cortes</strong>, R.A. <strong>Shellie</strong> –J. Chromatogr A, 1271 (2013) 185-191<br />

8<br />

9<br />

1. Methane<br />

2. Ethane<br />

3. Ethylene<br />

4. Propane<br />

5. Propylene<br />

6. Acetylene<br />

7. Butane<br />

8. Pentane<br />

9. Hexane<br />

10. Methanol<br />

11. Ethanol<br />

12. Propanol<br />

13. Butanol<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013 12


Inlet (P1)<br />

First detector<br />

Second detector<br />

Restrictor<br />

Column 1<br />

Column 2<br />

J. <strong>Luong</strong>, R. Gras, R.A. <strong>Shellie</strong>, H.J. <strong>Cortes</strong> – J. Sep. Sci., 30 (2013) 182-191<br />

Backflow protection restrictor<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

Three-way solenoid<br />

= Connection port<br />

Pressure control<br />

Module (P2)<br />

13


pA<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

pA<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

FID2 B, (DEANSWITCH\C1R000127.D)<br />

VF-1ms<br />

2.263<br />

2.625<br />

2.777<br />

3.0342.984<br />

3.256<br />

3.478<br />

3.757<br />

4.865<br />

2<br />

FID1 A, (DEANSWITCH\C2D000127.D)<br />

4 6 8 10 12<br />

CP-Lowox<br />

2.620<br />

2.553<br />

1<br />

2 4 6 8 10 12<br />

J. <strong>Luong</strong>, R. Gras, R.A. <strong>Shellie</strong>, H.J. <strong>Cortes</strong> – J. Sep. Sci., 30 (2013) 182-191<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

2<br />

8.573<br />

9.186<br />

2<br />

9.656<br />

3<br />

min<br />

1. Light hydrocarbons<br />

2. Methanol<br />

3. Ethanol<br />

4. Propanol<br />

min<br />

14


• Flow modulation with SilFlow<br />

• Performance and operating characteristics<br />

• Configurations and applications with auxiliary ovens<br />

(LTM)<br />

• Industrial Applications<br />

• Summary<br />

• Acknowledgements<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

15


Flow modulation is an option for implementation of<br />

comprehensive GCxGC<br />

Strengths:<br />

• Does not require cryogen<br />

• Simple to construct (connection fittings, three-way<br />

gas switching valve, a timing device)<br />

• Ideal for fast moving molecules<br />

• Handles heavy hydrocarbons<br />

Limitations:<br />

• Unlike thermal modulation where modulation period<br />

can be readily changed, parameter optimization can<br />

be more intensive and careful attention to k in the<br />

second dimension is important<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

16


From PCM<br />

3 way<br />

micro<br />

valve<br />

N. O.<br />

Suggested internal diameters for<br />

the collection loop: 0.45mm,<br />

0.32mm, 0.53mm<br />

Be aware of peak broadening<br />

as collection channel size increases Column 1 In Column 2 out<br />

Oven Wall<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

External Fused Silica collection<br />

loop<br />

4


Inlet<br />

First dimension column<br />

1 mL/min<br />

Modulator with two<br />

Three-three port<br />

SilFlow<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

Pressure control module<br />

20 mL/min<br />

Second dimension column<br />

22 mL/min<br />

Detector<br />

18


Design Key Attribute<br />

External Channel Easy to setup and use<br />

Variable External Loop [1] Fine tune for application<br />

External Loop with reverse<br />

flow pulse [2]<br />

1. J. V. Seeley J. Chromatogr. A. 1255, (2012) 24<br />

2. Griffith et al., J. Chromatogr. A. 1226 (2012) 116<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

Can improve modulated<br />

peak shapes with larger ID<br />

columns in 1 st dimension<br />

19


Along with other commercially available fluidic<br />

devices, aids in reducing FM-GCxGC to practice:<br />

• No moving parts<br />

• Low thermal mass<br />

• Inert<br />

• In-column switching<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

20


First column flow ml/min<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

Modulation Period in seconds<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

21


Analysis of modulated C13, no retention time correction applied<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

Single pulse<br />

22


Typical “general purpose” setup<br />

Column 1: 10 m x 0.18 mm x 0.18 µm DB1<br />

Column 2: 5 m x 0.25 mm x 0.15 µm DB-INNOwax<br />

Column 1 flow: 0.4 mL/min<br />

Column 2 flow: 21mL/min<br />

Modulation Timing<br />

Load: 2.895 sec.<br />

Inject: 0.114 sec.<br />

Period: 3.009 sec.<br />

Lower primary flow allows longer modulation period<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

23


Column 1: 10 m x 0.18 mm x 0.18 um DB1<br />

Column 2: 5 m x 0.25 mm x 0.15 um DB-INNOwax<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

24


S/S Inlet<br />

PCM Micro Valve<br />

Three Independent temperature programs<br />

Column 1<br />

LTM = Low Thermal Mass<br />

Modulator<br />

Splitter<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

Column 2<br />

FID LTM<br />

FID LTM<br />

Column 3<br />

FID<br />

FID<br />

25


Picture courtesy of Dr. Peter Dawes, SGE Analytical Science, Australia<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

26


Column Heated By Column Dimensions Comments<br />

First D 7890 Oven 20 m x 0.18um x 0.10<br />

µm VF-5ms<br />

2 nd D - I LTM I 5 m x 0.25 mm x 0.15<br />

µm INNOwax<br />

2 nd D - II LTM II 5 m x 0.25 mm x 0.15<br />

µm DB17 HT<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

Rugged<br />

Polar<br />

Mid-polarity<br />

27


1 2 3<br />

1. Nonane<br />

2. 3-methyl nonane<br />

3. Decane<br />

4. 3-methyl decane<br />

5. Undecane<br />

6. 3-methyl 1-undecane<br />

7. Dodecane<br />

8. 4-methyl-dodecane<br />

9. 3-methyl-dodecane<br />

10. Tridecane<br />

11. Tetradecane<br />

12<br />

13<br />

4<br />

14 15 16<br />

5 6 7<br />

17<br />

12. Butyl benzene<br />

13. 1-methyl 4 propyl benzene<br />

14. 1-methyl-4-(1-methylpropyl)-benzene<br />

15. Penty lbenzene<br />

16. 1-methyl butyl benzene<br />

17. Hexyl benzene<br />

18. 1,3 dimethyl butyl benzene<br />

19. 1-methyl hexyl benzene<br />

20. 1-methyl 2-n-hexyl benzene<br />

21. 1-butylhexyl-benzene<br />

22. 1-propyl heptyl-benzene<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

18<br />

19<br />

20<br />

8 9 10 11<br />

21<br />

22<br />

28


<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

29


1. Methane<br />

2. Ethylene<br />

3. Acetylene<br />

4. Propylene<br />

5. Propane<br />

6. Methanol<br />

7. Ethanol<br />

8. Propanol<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

3<br />

1<br />

2<br />

5<br />

4<br />

6<br />

7<br />

8<br />

30


Because pulsed flow modulation does not<br />

rely on thermal focusing, hydrocarbons<br />

to over C70-C80 can be successfully<br />

modulated<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

31


Fuels and lubricants are complex samples,<br />

often encountered in manufacturing processes<br />

- knock-out pots, pipelines, exchangers etc.<br />

Current analytical tools for the identification of<br />

fuels and lubricants are adequate but not<br />

ideal<br />

FM-GCxGC has the potential of offering fast,<br />

efficient and accurate identification of oils<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

32


Diesel<br />

Classical GC Comprehensive 2D-GC<br />

Mine Oil<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

33


Various type of fuels and lubricants by FM-GCxGC<br />

Gasoline<br />

Petroleum Distillate<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

Diesel<br />

Mine Oil<br />

34


<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

35


System cleanliness is essential for<br />

successful implementation of the<br />

technique<br />

FM-GCxGC typically requires longer method<br />

development when compared to conventional<br />

GC or thermally modulated GCxGC<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

36


University of Tasmania<br />

SGE Analytical Science<br />

<strong>Robert</strong> <strong>Shellie</strong>, <strong>Jim</strong> <strong>Luong</strong>, <strong>Kayte</strong> <strong>Parlevliet</strong><br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

37


• J. <strong>Luong</strong>, R.A. <strong>Shellie</strong>, H. J. <strong>Cortes</strong>, R. Gras, T. Hayward, J. Chromatogr. A, 1229 (2012) 223-229<br />

o Ultra trace analysis of morpholine, cyclohexylamine and diethylaminoethanol in steam condensate by GC with MMI-FID<br />

• J. <strong>Luong</strong>, R. Gras, R.A. <strong>Shellie</strong>, H.J. <strong>Cortes</strong>, J. Sep. Sci., 35 (2012) 1486-1493<br />

o Direct measurement of part-per-billion level of dimethyl sulfoxide in water by GC with stacked injection and<br />

chemiluminescence detection<br />

• J. <strong>Luong</strong>, R. Gras, H.J. <strong>Cortes</strong>, R.A. <strong>Shellie</strong>, J. Chromatogr. A, 1231 (2012), 216-220<br />

o Multi-dimensional gas chromatography with a planar microfluidic device for the characterization of oxygenated compounds<br />

• J. <strong>Luong</strong>, R. Gras, H.J. <strong>Cortes</strong>, R.A. <strong>Shellie</strong>, J. Chromatogr. A, 1261 (2012) 136-141<br />

o Temperature Programmable low thermal mass silicon micromachined gas chromatography and differential mobility detection<br />

for the fast analysis of trace level of ethylene oxide in medical work place atmospheres<br />

• J. <strong>Luong</strong>, E. Nazarov, R. Gras, R.A. <strong>Shellie</strong>, H.J. <strong>Cortes</strong>, IJMS, 3 (2012) 179-187<br />

o Resistively heated temperature programmable silicon micromachined gas chromatography with differential mobility<br />

spectrometry<br />

• . <strong>Luong</strong>, R. Gras, R.A. <strong>Shellie</strong>, H.J. <strong>Cortes</strong> – J. Sep. Sci., 30 (2013) 182-191<br />

o Applications of planar microfluidic devices and gas chromatography for complex problem solving<br />

• J. <strong>Luong</strong>, R. Gras, H.J. <strong>Cortes</strong>, R.A. <strong>Shellie</strong> –J. Chromatogr A, 1271 (2013) 185-191<br />

o Multidimensional gas chromatography for the characterization of permanent gases and Light Hydrocarbons in catalytic<br />

cracking process<br />

• J. <strong>Luong</strong>, R. Gras, R.A. <strong>Shellie</strong> H.J. <strong>Cortes</strong> – J. Chromatogr. A; accepted.<br />

o Planar microfluidic device and low thermal mass GC in multi-dimensional gas chromatography for the characterization of<br />

targeted volatile organic compounds<br />

<strong>Hernan</strong> J. <strong>Cortes</strong>, GCxGC, Toronto, Canada. January 2013<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!