01.06.2013 Views

Modification of Drilling Fluid pH with Local Nigerian Additives

Modification of Drilling Fluid pH with Local Nigerian Additives

Modification of Drilling Fluid pH with Local Nigerian Additives

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Modification</strong> <strong>of</strong> <strong>Drilling</strong> <strong>Fluid</strong> <strong>pH</strong> <strong>with</strong><br />

<strong>Local</strong> <strong>Nigerian</strong> <strong>Additives</strong><br />

By<br />

O. M. Okorie<br />

Petroleum Engineering and Geosciences Department<br />

Petroleum Training Institute<br />

Effurun, Delta State, Nigeria<br />

E-mail: revobi58@yahoo.com.<br />

Published in:<br />

Petroleum Technology Development Journal (ISSN 1595-9104)<br />

An International Journal<br />

January 2009 - Vol. 1<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 1


Abstract<br />

<strong>Drilling</strong> fluid environmental pollution problems and the need by regulatory bodies to protect the environment<br />

and monitor oil field operational activities has been highly emphasized. This research paper pr<strong>of</strong>fers local<br />

solution to the challenges <strong>of</strong> drilling fluid <strong>pH</strong> treatment and maintenance, using local modified ash <strong>of</strong> burnt<br />

palm head sponge [BPHSP] and a rich potash base mineral know as Trona [AK-P], popularly called<br />

“akanwu” as mud <strong>pH</strong> additive in place <strong>of</strong> the currently used industrial chemicals called caustic soda<br />

[NaOH], calcium hydroxide [Ca (OH) 2] and Soda ash [Na2Co3] for drilling fluid <strong>pH</strong> maintenance in the Oil<br />

and Gas industry.<br />

Field use <strong>of</strong> local additives such as trona and BPHSP ought to be encouraged because contaminated mud<br />

properties could lead to very serious mud problems in oil well drilling. There is need therefore for mud to be<br />

monitored, treated and maintained in Oil and Gas well drilling operations.<br />

Introduction<br />

In 1900, while drilling an oil well in Spindle tops, Texas, the drilling crew, used viscous, muddy<br />

slurry <strong>of</strong> water and clay as drilling mud. Today drilling fluids are still called mud, but engineers no<br />

longer rely only on a mixture <strong>of</strong> water and clay. Instead, they carefully design compounds and<br />

mixtures <strong>with</strong> both local and foreign materials to meet specific needs <strong>of</strong> drilling operations under<br />

various drilling conditions. Modern and modified drilling fluids are truly the lifeblood <strong>of</strong> the well.<br />

Today’s deep and hazardous wells can not exist <strong>with</strong>out them . The harsh, acidic and hazardous<br />

environment in underground drilling operations encouraged the research and development <strong>of</strong> drilling<br />

fluids. Modern drilling fluids are complex compounds and mixtures that are carefully designed and<br />

fine-tuned to the wide variety <strong>of</strong> conditions found in modern wells and fields.<br />

<strong>Drilling</strong> fluids performs better in a <strong>pH</strong> range between 8.0 and 10.5 for Water-base mud [WBM]. If<br />

the <strong>pH</strong> <strong>of</strong> the mud is low, below 7.0, it becomes acidic and can corrode the drilling equipment and<br />

also pollute the environment. Imported chemicals such as Soda ash [Na2CO3], Caustic Soda [NaOH]<br />

and Calcium hydroxide [Ca (OH2)] are usually added to the mud to raise the mud <strong>pH</strong> to 8.0 or 10.5. 1<br />

When drilling across formations, the presence <strong>of</strong> contaminants such as salt [Chlorides] water,<br />

Calcium carbonates, and sulfides will affect the properties <strong>of</strong> the drilling fluid, which is noticeable in<br />

the Rheological properties <strong>of</strong> the mud. These contaminants will drastically thicken or thin the mud,<br />

cause separation <strong>of</strong> Bentonite or treatment polymer in the mixing tank or in hole. Most <strong>of</strong> these<br />

contaminants come from the mud water-make-up or the formation. When this becomes the case,<br />

there is the need to control, modify or treat the mud in terms <strong>of</strong> <strong>pH</strong> <strong>with</strong> a <strong>pH</strong> modifier or additives. 2<br />

, 3<br />

This paper therefore presents <strong>Local</strong> <strong>Nigerian</strong> Materials as alternative substitute to mud <strong>pH</strong> modifier<br />

or additives using Burnt Palm Head Sponge Powder [BPHSP] and locally sourced trona popularly<br />

known as “Akanwu” Powder [AK-P]. The <strong>Local</strong> Palm Head Sponge was burnt and the ash powder<br />

pulverized, purified, sieved and packaged. Trona was pulverized, purified, sieved and packaged,<br />

made ready for use in this research.<br />

1<br />

.Baroid <strong>Fluid</strong>s Handbook Revised August 1, 1997<br />

2<br />

John McDermott, “<strong>Drilling</strong> mud and additives,” Noyes Data Co-operation, U.S.A, 1974.<br />

3<br />

Chancy, P.E Oxford, W.F.J. et al; “Chemical treatment <strong>of</strong> drilling fluids,” World Oil, Jan-Feb<br />

1954.<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 2


Various gram weights were taken from the <strong>Local</strong> Materials and added to different prepared mud <strong>of</strong><br />

known <strong>pH</strong> <strong>with</strong> fresh water <strong>of</strong> <strong>pH</strong> 7.0.<br />

Literature:<br />

<strong>pH</strong> related mud problems and possible solutions:<br />

Carbon dioxide is found in natural gas in varying quantities. When combined <strong>with</strong> water, Co2 forms<br />

carbonic acid and decreases the water’s <strong>pH</strong>, which increases the water’s corrosiveness. While Co2 is<br />

not as corrosive as O2, it can cause pitting <strong>of</strong> circulating system <strong>of</strong> mud, made <strong>of</strong> pipe lines and mud<br />

motors.<br />

To solve this mud problem, <strong>pH</strong> could be controlled/maintained at its correct value by treating the<br />

mud for Co2 contamination either <strong>with</strong> Calcium hydroxide [lime], Caustic Soda, Soda Ash, Trona or<br />

Burnt Palm Head Sponge Powders <strong>of</strong> this research; as given by these equations:<br />

Caustic Soda – 2NaOH + Co2 + H2O → 2H2O + Na2 Co3<br />

Lime - Ca (OH) 2 + Co2 + H2O → 2H2O + CaCo3<br />

Soda Ash [Sodium Carbonate] - Na2CO3 + CO2 +H2O →2H2O +NaOH +HCO3<br />

Trona -Na2CO3+Co2+H2O → 2H2O + NaOH +HCO3<br />

Burnt Palm Head Sponge Powder - NaOH + CO2 + H2O → 2H2O + Na2Co3<br />

In this regard, the Burnt Palm Head Sponge Powder, the caustic soda, the Lime will be more<br />

effective than Trona or soda ash , since Trona and soda ash will introduce some bits <strong>of</strong> Bicarbonate<br />

in the mud system, which is not too bad. The corrosiveness <strong>of</strong> brines or brackish water system<br />

depends on their density and chemical composition. Laboratory data show that the addition <strong>of</strong><br />

Sodium hydroxide, and where possible the Burnt Palm Head Sponge Powder, or its solution in<br />

Calcium Chloride [CaCl2] medium, will lower the rate <strong>of</strong> corrosion in mud systems.<br />

Acid Gases and their impartation in drilling fluid systems: - Carbon dioxide and hydrogen<br />

sulfide are <strong>of</strong>ten some <strong>of</strong> the constituents <strong>of</strong> natural gas that are <strong>of</strong>ten encountered during drilling<br />

operations. They form acids in water solution, affecting mud <strong>pH</strong>, thus causing mud problems such as<br />

flocculation, thickening, dispersion and clay separation in mud systems. If other parameters such as<br />

formation pressures are known and a good mud weight is maintained at a comfortable overbalance,<br />

formations that contain H2S, O2 and CO2 can be drilled safely <strong>with</strong> Water-Base Mud [WBM] by<br />

rough maintaince <strong>of</strong> high mud <strong>pH</strong> in the order <strong>of</strong> 10.50 to 11.50 to neutralize gases which are<br />

entrained in the mud systems 4<br />

.<br />

Minimizing Corrosion in Mud Systems: To minimize corrosion and other <strong>pH</strong> related mud<br />

problems <strong>of</strong> drilling strings in the hole, the mud circulating systems, mud motors, the <strong>pH</strong> <strong>of</strong> the mud<br />

must be maintained at values in the alkaline range <strong>of</strong> 7.0 to14.0, mostly at around 10.0.A value<br />

below 7.0 would indicate that the mud is acidic. The <strong>pH</strong> is kept at the required <strong>pH</strong> level by adding<br />

Caustic Soda or lime to the mud or as research has proven, adding the <strong>Local</strong> Burnt Palm Head<br />

Sponge Powder or the AK-P. Mud systems should be monitored closely through routine test because<br />

a drop in <strong>pH</strong> can be caused by acidic fluids, for example H2S, from the formation drilled. Mud<br />

neutralizing potential can be increased by other alkaline products in the mud such as carbonate ions<br />

from the local trona apart from the hydroxyl ion in the BPHSP.<br />

The data collected from the alkalinity test can also be used to estimate the concentration <strong>of</strong> hydroxyl<br />

(OH - ), carbonate (CO3 -2 ) and bicarbonate (HCO3 - ) ions in the drilling mud. Knowledge <strong>of</strong> the mud<br />

4 Ibid 1<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 3


and filtrate alkalinities is very important in many drilling operations to ensure proper control <strong>of</strong> the<br />

mud chemistry. Mud additives, particularly some deflocculants, dispersants, viscosifiers, thinners,<br />

filtrate control agents, require an alkaline environment to function properly, effectively and<br />

efficiently 5,6<br />

The Mud treatment required to neutralize these acid gases are:<br />

• Using the Burnt Palm Head Sponge Powder [BPHSP] and the Trona Powder [AK-P] or<br />

their solutions, which are local Sodium hydroxide [NaOH] and Bicarbonate <strong>of</strong> Soda<br />

[H2CO3] respectively to increase the mud <strong>pH</strong>.<br />

• Using Caustic Soda, which is foreign or imported Sodium hydroxide [NaOH] to maintain<br />

high alkalinity [high <strong>pH</strong>] <strong>of</strong> mud systems, as shown in the following reactions:<br />

CO2 + H2O ↔ H2CO3<br />

H2CO3 + 2NaOH ↔ Na2 CO3 + 2H2O<br />

Since by test research analysis, the Burnt Palm Head Sponge Powder can produce <strong>pH</strong> <strong>of</strong> up<br />

to 12.90, it can easily handle mud problems emanating from these acid gases. Lime [Ca (OH)<br />

2] or the local Trona as [Na2O or Na2 (OH)] can equally be used to eliminate H2S or CO2 or<br />

Calcium contaminations in mud systems <strong>with</strong> a likely reaction as:<br />

H2CO3 + Na2, Ca (OH)2 → Na, CaCO3 (precipitate) + 2H2O<br />

Hydrogen –ion [<strong>pH</strong>] determination and measurement:-<br />

The degree <strong>of</strong> acidity or alkalinity <strong>of</strong> drilling mud is indicated by the hydrogen –ion concentration<br />

which is usually expressed in terms <strong>of</strong> <strong>pH</strong>.<br />

<strong>pH</strong> measurement is used as an aid in determining the need for chemical control or treatment <strong>of</strong><br />

drilling fluid [mud] as well as indicating the presence <strong>of</strong> contaminants such as acid gases [CO2,<br />

HCO3, H2S], Gypsum [Calcium Sulphate], cement [mixture <strong>of</strong> Calcium aluminates and silicates<br />

made by combining lime and clay under heat], and salt.<br />

The optimum <strong>pH</strong> for any mud system during Oil Well drilling operations depends on the type <strong>of</strong><br />

mud in use and the nature <strong>of</strong> the formation being drilled but the normal <strong>pH</strong> range <strong>of</strong> drilling fluid is<br />

kept and maintained between 9.5 -11.5 7 , 8<br />

There are two ways <strong>of</strong> measuring or determining mud <strong>pH</strong>:-<br />

a) By means <strong>of</strong> a <strong>pH</strong> meter (digital or analog): This approach or method is based on the fact<br />

that, when certain electrodes are immersed in a liquid or fluid system, the voltage<br />

developed between them varies according to the <strong>pH</strong> <strong>of</strong> the liquid or mud system.<br />

b) By means <strong>of</strong> Phydrion dispenser, popularly called <strong>pH</strong> paper: This approach provides a<br />

series <strong>of</strong> paper indicator strips that determines <strong>pH</strong> <strong>of</strong> mud and other solutions from 1.0<br />

to14.0. Changes in color or color intensity over the range <strong>of</strong> each indicator are sufficient<br />

to allow the operator, analyst or researcher to read to <strong>with</strong>in 0.5 <strong>pH</strong> unit.<br />

5 Shell <strong>Drilling</strong> and Production Handbook Sept.2001<br />

6 Ibid 2<br />

7 NL Bariod / NL Industries, Inc., Houston, Texas 77001, 1979<br />

8 . Roggers W.F et al, Composition and properties <strong>of</strong> oil well drilling fluids, Gulf Publishing<br />

Company, Houston, Texas, 1962, USA.<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 4


In this study, the Phydrion dispenser or <strong>pH</strong> paper and the Digital <strong>pH</strong> meter model Jenway 3520 were<br />

used.<br />

Methodology<br />

Table 1<br />

<strong>Local</strong> <strong>Nigerian</strong> and Foreign Materials used in this research as <strong>pH</strong> additives to increase mud <strong>pH</strong> from<br />

7.0 -13.5.<br />

Materials<br />

Burnt Palm Head<br />

Research<br />

code<br />

Sponge<br />

sieved.<br />

Powder BPHSP<br />

Trona<br />

AK-P<br />

Chemical/ Structural Formula Source Comments<br />

Na2O<br />

NaOH, source <strong>of</strong><br />

<strong>Local</strong><br />

Sodium hydroxide<br />

Na20, Na2CO3<br />

source <strong>of</strong> local<br />

Sodium<br />

Carbonate<br />

Soda Ash or<br />

Sodium oxide<br />

Caustic Soda CS NaOH imported<br />

Sodium hydroxide<br />

Quantity<br />

used<br />

1.0 – 2.0g<br />

1.0 – 2.0 g<br />

1.0 – 2.0 g<br />

<strong>Local</strong> Palm Tree A chemical used<br />

primarily to impart a<br />

higher <strong>pH</strong> on mud, and<br />

for making local black<br />

<strong>Local</strong>ly mined from<br />

Enugu,Ebonyi,and<br />

Abia States <strong>of</strong><br />

Nigeria.<br />

Imported as<br />

commercial mud<br />

additive.<br />

Lime LM Ca(OH)2 imported 1.0 – 2.0g Imported for use as<br />

commercial mud<br />

treatment additive<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 5<br />

soap.<br />

When added to fluid, it<br />

increases the <strong>pH</strong> <strong>of</strong> the<br />

mud.Also used for<br />

preparing some African<br />

delicacies and meat<br />

tenderizer<br />

Used as comparator in<br />

this research to maintain<br />

high mud <strong>pH</strong>.<br />

Used as comparator in<br />

this research to maintain<br />

high mud <strong>pH</strong> especially<br />

for mud cement<br />

contamination treatment<br />

in the field.<br />

Soda Ash SA Na2CO3 1.0 – 2.0 g Imported Also used as comparator<br />

in this research for Mud<br />

high <strong>pH</strong> maintenance.<br />

Table 2<br />

List <strong>of</strong> equipments used for the research experiments<br />

Equipment Source Comments<br />

<strong>pH</strong> phydrion paper strip Micro essential lab., U.S.A. For mud <strong>pH</strong> measurement<br />

Beakers Pyrex, England. Container for testing<br />

Weighing balance Ohaus, London. For weighing quantities <strong>of</strong> materials<br />

Multi-mixers and cups Gallenkamp, England For mixing.<br />

Mud cups graduated Bariod Division, Texas For measuring<br />

Fann viscometer Bariod Division, Texas For mud rheological parameters test in Lab.<br />

Spatulas and stirrers Pyrex, England Taking samples from containers<br />

Conical and flat bottom flask Pyrex, England Containers for preparing molar solutions<br />

Sieve and shaker England and U.S.A. For sieving to talc size.<br />

A mini hand crusher <strong>Local</strong>ly fabricated, Nigeria For crushing the “akanwu” lumps to powder.<br />

Mud balance Bariod Division, Texas For mud weight test.<br />

<strong>Local</strong> evaporating basin <strong>Local</strong>ly fabricated, Nigeria For Solution concentrate<br />

<strong>pH</strong> meter model Jenway 3520 England For mud <strong>pH</strong> measurement


Experimental Procedures:<br />

Experiment 1<br />

Aim: Sample collection and preparation <strong>of</strong> the Burnt Palm Head Sponge Powder [BPHSP] and<br />

the Trona Powder [AK-P], used as the local <strong>pH</strong> additives to raise the <strong>pH</strong> values <strong>of</strong> drilling fluid<br />

from <strong>pH</strong> 7.0 – 12.90.<br />

a) For the burnt palm head sponge powder, the palm head sponge was collected from an oil<br />

palm mill at Lodu near Uzuakoli, Abia State in a palm farm. The palm head sponge was hand<br />

shredded to remove palm seeds and dirt and dried under the sun. The dried palm head sponge<br />

was placed on a neat surface and incinerated into ash powder, <strong>with</strong>out the use <strong>of</strong> additives<br />

such as kerosene, petrol or other sources <strong>of</strong> hydrocarbon to avoid contamination. The<br />

resultant palm head sponge ash powder was collected, sieved, packaged and labeled.<br />

Sieving was done <strong>with</strong> a 200micron sieve size to remove impurities and obtain very fine talc<br />

size powder <strong>of</strong> the BPHSP.<br />

b) To prepare a molar solution <strong>of</strong> the BPHSP, the NaOH molar weight calculation was used. A<br />

molar weight [about 40 grams] <strong>of</strong> the fine talc size powder <strong>of</strong> the BPHSP was used to make a<br />

molar solution <strong>of</strong> the BPHSP and carefully labeled.<br />

c) The concentrated solution <strong>of</strong> the BPHSP was obtained by boiling about two molar solution <strong>of</strong><br />

the BPHSP in an open heating evaporation basin and heated to near dryness, to concentrate<br />

the solution. The concentrated portion was poured into a clean dry container, well packaged<br />

and labeled ready for use for this research work.<br />

d) Trona lumps <strong>of</strong> about 920 – 1200 grams obtained from a local <strong>Nigerian</strong> market were crushed<br />

to fine powder <strong>with</strong> the crusher the crushed AK-P sieved <strong>with</strong> a 200 micron sieve to obtain a<br />

fine talc size powder. The sieved Trona powder was properly packaged and labeled, ready for<br />

use by taking successive incremental weight portion, and adding to the mud sample to<br />

increased level <strong>of</strong> mud <strong>pH</strong> impartation.<br />

e) Apparently 106 grams <strong>of</strong> the Trona powder was dissolved in 1000ml <strong>of</strong> distilled fresh water<br />

in a conical flask to make a molar solution for use as mud <strong>pH</strong> additive to increase mud <strong>pH</strong> in<br />

this research.<br />

f) The imported foreign Caustic Soda pellet [NaOH][white flakes], powdered Soda Ash<br />

[Na2CO3] and lime [Ca (OH)2][white powder] were also provided as comparators<br />

These were used as standard mud <strong>pH</strong> additives comparable to the <strong>Local</strong> <strong>pH</strong> additives in this<br />

research.<br />

i) The foreign Caustic Soda flakes were weighed and added to the mud sample <strong>of</strong> known<br />

initial <strong>pH</strong> and properly mixed. Likewise the Soda Ash, the lime powders, the local<br />

BPHSP and the AK-P.<br />

ii) Molar solutions <strong>of</strong> the Caustic Soda, Soda ash and lime were prepared by using 40 grams<br />

<strong>of</strong> NaOH, 106 grams <strong>of</strong> Na2CO3 and 54 grams <strong>of</strong> Ca (OH)2 mixed in 1000ml <strong>of</strong> distilled<br />

water respectively. 20ml and 30ml volume <strong>of</strong> each solution were measured and added, to<br />

the mud samples, allowed to age and tested.<br />

Experiment 2<br />

Aim: To prepare Laboratory equivalent barrels <strong>of</strong> mud <strong>with</strong> known initial <strong>pH</strong> <strong>of</strong> 7.0 <strong>with</strong> local<br />

bentonite , 8.0 <strong>with</strong> aquagel bentonite and 9.5 <strong>with</strong> Wyoming bentonite respectively, used as<br />

mud samples for increased <strong>pH</strong> impartation test <strong>with</strong> the <strong>Local</strong> and Foreign <strong>pH</strong> additives.<br />

Materials: <strong>Local</strong> Bentonite, Wyoming bentonite, Aquagel bentonite, fresh water <strong>of</strong> <strong>pH</strong> 7.0.<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 6


Equipment used: See Table 2<br />

Procedure /Method:<br />

Various concentrations <strong>of</strong> laboratory equivalent barrels <strong>of</strong> mud <strong>of</strong> 17.5g, 21.0g, 24.5g <strong>of</strong> beneficiated<br />

local bentonitic clay mixed in 350ml <strong>of</strong> fresh water in a mixer cup using the multi-mixer, were<br />

prepared and poured into different containers and properly preserved and labeled. The initial <strong>pH</strong> <strong>of</strong><br />

this mud concentration was 7.0. The same laboratory equivalent barrels <strong>of</strong> mud was again prepared<br />

<strong>with</strong> a standard Wyomming bentonite and aquagel bentonite respectively, properly preserved and<br />

labeled. The initial <strong>pH</strong> <strong>of</strong> these two mud types were 9.5 and 8.0 respectively. To prepare these mud<br />

samples, the 17.5g, 21.0g and 24.5g <strong>of</strong> the different bentonites [local and foreign] were weighed out<br />

<strong>with</strong> an Ohaus chemical weighing balance. 350ml <strong>of</strong> fresh water <strong>of</strong> <strong>pH</strong> 7.0 were measured out <strong>with</strong> a<br />

measuring cylinder and poured into the mixer cups containing the weighed quantities <strong>of</strong> local and<br />

foreign bentonite. The mixtures <strong>of</strong> bentonite and fresh water were thoroughly mixed, labeled and<br />

preserved, the initial properties <strong>of</strong> these mud samples were tested <strong>with</strong> the rheometer or fann<br />

viscometer to determine, the rheometer dial viscosity readings <strong>of</strong> the various mud samples <strong>with</strong> their<br />

rheological properties calculated and recorded. The mud weights were determined <strong>with</strong> the mud<br />

balance, so also were the mud sand level, the mud water loss, the “k” and “n” factors. These mud<br />

parameter details are as shown and recorded in the various Tables <strong>of</strong> result; they are the mud<br />

parameters values before the <strong>pH</strong> additives were added.<br />

Experiment 3<br />

Aim: To increase or raise the <strong>pH</strong> <strong>of</strong> the mud samples from the initial values <strong>of</strong> <strong>pH</strong> 7.0 for the local<br />

bentonite mud, 9.5 for the Wyoming bentonite mud and 8.0 for the Aquagel bentonite mud to <strong>pH</strong><br />

12.90 or 13.5 <strong>with</strong> the local mud <strong>pH</strong> additives [BPHSP & AK-P] and the foreign [NaOH, Na2co3, Ca<br />

(OH) 2] on mud prepared in Experiment 2 above and compare the level <strong>of</strong> mud <strong>pH</strong> impartation by<br />

the local additives <strong>with</strong> the standard Caustic Soda, Soda Ash and lime <strong>pH</strong> additives impartation<br />

respectively.<br />

Materials: See Table 1<br />

Equipment used: See Table 2<br />

Procedure /Method:<br />

With the chemical weighing balance, 1.0g, 1.5g and 2.0g <strong>of</strong> the <strong>Local</strong> BPHSP, AK-P, blend <strong>of</strong><br />

BPHSP and AK-P, and the foreign Caustic Soda, Sodium carbonate, Calcium hydroxide respectively<br />

were weighed and added into different equal laboratory barrels <strong>of</strong> the different mud types that were<br />

prepared in experiment 2. The additives were thoroughly mixed into the mud to obtain a<br />

homogenous mixture aged for 24 hrs and ready to be analyzed and tested for highest increase level<br />

<strong>of</strong> <strong>pH</strong> impartation to the different mud types by the different <strong>pH</strong> additives from their initial <strong>pH</strong> level.<br />

Also 20ml and 30ml <strong>of</strong> the molar and concentrated solutions <strong>of</strong> the local BPHSP, AK-P, Caustic<br />

Soda, Sodium carbonate and Calcium hydroxide were measured and added to the different<br />

laboratory barrels <strong>of</strong> the different mud types prepared in experiment 2 and thoroughly mixed <strong>with</strong><br />

the mud.<br />

The mixture <strong>of</strong> molar and concentrated solutions <strong>of</strong> the BPHSP, AK-P and that <strong>of</strong> the different<br />

foreign additives and the mud types were then tested and analyzed for <strong>pH</strong> increase <strong>with</strong> the <strong>pH</strong> paper<br />

and the digital <strong>pH</strong> meter respectively.<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 7


Note: The molar and concentrated solutions diluted the viscosity <strong>of</strong> the mud by some negligible<br />

amount.<br />

Experiment 4<br />

Aim: Determination <strong>of</strong> the level <strong>of</strong> increased mud <strong>pH</strong> impartation by the different local and foreign<br />

<strong>pH</strong> additives using the <strong>pH</strong> paper strip and the digital <strong>pH</strong> meter model Jenway 3520 at 26 o C.<br />

Materials: See Table 1<br />

Equipment: See Table 2<br />

Procedure /Method:<br />

Mud samples as prepared in experiment 2 and as indicated in Tables 3 to 10 were arrayed on a work bench in<br />

the laboratory [mud laboratory] and properly labeled and preserved.<br />

Each <strong>of</strong> the mud samples in experiment 3 were then tested for levels <strong>of</strong> <strong>pH</strong> increase <strong>with</strong> a 1-inch strip <strong>of</strong> <strong>pH</strong><br />

paper indicator.<br />

Note: The time it takes the <strong>pH</strong> paper strip to absorb the fluid and change color will vary from<br />

a few seconds to a few minutes.<br />

The color change <strong>of</strong> the <strong>pH</strong> paper strip after it has absorbed sufficient fluid was matched <strong>with</strong> reference chart<br />

colors provided. The <strong>pH</strong> value <strong>of</strong> the color indicated by the mud samples in turn were read and recorded as<br />

the <strong>pH</strong> values <strong>of</strong> the mud samples being tested, as shown in Tables.<br />

On the other hand, equivalent back up samples tested <strong>with</strong> the digital <strong>pH</strong> meter model Jenway 3520 operated<br />

at 26 o C were used as comparism to those obtained using <strong>pH</strong> paper strips.<br />

Tables <strong>of</strong> Results:<br />

Table 3<br />

Parameters<br />

Tested.<br />

Initial mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Increased mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Rheometer dial<br />

readings:<br />

Θ600<br />

Θ300<br />

Rheological<br />

Properties:<br />

a) PV<br />

b) AV<br />

c) YP<br />

d) Gel<br />

strength<br />

Qty <strong>of</strong><br />

pregelatinized<br />

stzrch in gms<br />

a) 1.0<br />

local bentonite mud<br />

<strong>with</strong>out <strong>pH</strong> modifier (4)<br />

17.5 , 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

46 64 70<br />

35 50 57<br />

11 14 15<br />

23 32 36<br />

24 36 21<br />

35 40 50<br />

1.0 1.0 1.0<br />

local bentonite mud<br />

<strong>with</strong> 1-2g BPHSP (5)<br />

17.5, 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

13.5 13.5 13.5<br />

12.89 12.89 12.89<br />

46 64 72<br />

35 50 57<br />

11 14 15<br />

23 32 36<br />

24 36 21<br />

35 40 50<br />

1.0 1.0 1.0<br />

local bentonite mud<br />

<strong>with</strong> 20-30ml BPHSP<br />

Soln. conc. (6)<br />

17.5, 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

12.5 12.5 12.5<br />

11.98 11.98 11.98<br />

40 48 54<br />

31 38 45<br />

9 10 14<br />

20 24 27<br />

22 28 36<br />

30 40 50<br />

1.0 1.0 1.0<br />

local bentonite<br />

mud <strong>with</strong> molar<br />

Sol. BPHSP 20-<br />

30ml<br />

(7)<br />

17.5, 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

12.5 12.5 12.5<br />

11.98 11.98 11.98<br />

40 48 54<br />

31 38 45<br />

9 10 14<br />

20 24 27<br />

22 28 36<br />

30 40 50<br />

1.0 1.0 1.0<br />

<strong>Local</strong> bentonite mud<br />

<strong>with</strong> 1-2g 50/50 AKP<br />

(Trona)/BPHSP<br />

(8)<br />

17.5, 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

13.0 13.0 13.0<br />

12.80 12.80 12.80<br />

46 64 72<br />

35 50 57<br />

11 14 15<br />

23 32 36<br />

24 36 21<br />

35 40 50<br />

1.0 1.0 1.0<br />

Sand content% 0.5 0.5 0.5 0.85 0.85 0.85 0.5 0.5 0.5 0.5 0.5 0.5 0.85 0.85 0.85<br />

Water loss ml 8.0 8.0 8.0 8.0 8.0 8.0 10 10 10 10 10 10 8.0 8.0 8.0<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 8


Mud weight Ib/gal 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65<br />

“k” factor 14.67 20.42 34.81 14.67 20.42 34.81 15.71 23.21 34.43 14.67 15.42 28.32 14.67 20.42 34.81<br />

“n” factor 0.40 0.40 0.34 0.40 0.41 0.34 0.37 0.34 0.30 0.40 0.40 0.26 0.40 0.41 0.34<br />

Table 4<br />

Parameters<br />

Tested.<br />

Initial mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Increased mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Rheometer dial<br />

readings:<br />

Θ600<br />

Θ300<br />

Rheological<br />

Properties:<br />

e) PV<br />

f) AV<br />

g) YP<br />

h) Gel<br />

strength<br />

local bentonite mud <strong>with</strong><br />

1-2g AKP (Trona) (9)<br />

17.5 , 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

13.5 13.5 13.5<br />

12.86 12.86 12.86<br />

46 64 72<br />

35 50 57<br />

11 14 15<br />

23 32 36<br />

24 36 21<br />

35 40 50<br />

local bentonite mud<br />

<strong>with</strong> 20-30ml molar<br />

soln AKP (Trona) (10)<br />

17.5, 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

13.0 13.0 13.0<br />

12.88 12.88 12.88<br />

40 48 54<br />

31 38 42<br />

9 10 11<br />

20 24 27<br />

22 28 36<br />

30 40 49<br />

Std Aquagel bentonite<br />

mud <strong>with</strong> 1-2g BPHSP<br />

(11)<br />

17.5, 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

13.0 13.0 13.0<br />

12.90 12.90 12.90<br />

45 55 80<br />

35 44 65<br />

10 11 15<br />

22.5 27.5 40<br />

25 33 50<br />

35 45 55<br />

Std Aquagel<br />

bentonite mud<br />

<strong>with</strong> 20-30ml con<br />

soln . BPHSP<br />

(12)<br />

17.5, 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

12.5 12.5 12.5<br />

12.15 12.15 12.15<br />

30 42 50<br />

22 33 40<br />

8 9 10<br />

15 21 25<br />

14 24 30<br />

17 40 45<br />

Std Aquagel bentonite<br />

mud <strong>with</strong> 20-30ml<br />

molar soln BPHSP<br />

(13)<br />

17.5, 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

12.0 12.0 12.0<br />

11.90 11.90 11.90<br />

32 50 67<br />

23 40 54<br />

9 10 13<br />

16 25 33.5<br />

14 30 41<br />

25 45 50<br />

Qty <strong>of</strong> stzrch in gm 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 - - -<br />

Sand content% 0 8.5 0.85 0.85 0.5 0.5 0.5 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.5 0.5<br />

Water loss ml 8.0 8.0 8.0 10.0 10.0 10.0 10 10 10 10 10 10 10.0 10.0 10.0<br />

Mud weight Ib/gal 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65<br />

“k” factor 14.67 20.42 34.81 15.71 23.21 34.43 13.95 35.08 51.08 6.77 13.40 27.80 25.13 27.8 39.88<br />

“n” factor 0.40 0.40 0.34 0.37 0.34 0.30 0.36 0.30 0.30 0.45 0.35 0.32 0.48 0.32 0.31<br />

Table 5<br />

Parameters<br />

Tested.<br />

Initial mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Increased mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Rheometer dial<br />

readings:<br />

Θ600<br />

Θ300<br />

Rheological<br />

Properties:<br />

i) PV<br />

j) AV<br />

k) YP<br />

l) Gel<br />

strength<br />

Qty <strong>of</strong><br />

pregelatinized<br />

stzrch in gms<br />

b) 1.0<br />

Std Aquagel bentonite<br />

mud <strong>with</strong> 50/50<br />

BPHSP/AKP (Trona) 1-<br />

2g (14)<br />

17.5 , 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

13.0 13.0 13.0<br />

12.85 12.85 12.85<br />

45 55 80<br />

35 44 65<br />

10 11 15<br />

22.5 27.5 40<br />

25 33 50<br />

35 45 55<br />

Std Aquagel mud <strong>with</strong><br />

1-2g AKP(Trona) (15)<br />

17.5, 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

13.0 13.0 13.0<br />

12.82 12.82 12.82<br />

45 55 80<br />

35 44 65<br />

10 11 15<br />

22.5 27.5 40<br />

25 33 50<br />

35 45 55<br />

Std Aquagel mud <strong>with</strong><br />

20-30ml molar soln<br />

AKP(Trona) (16)<br />

17.5, 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

12.0 12.0 12.0<br />

11.89 11.89 11.89<br />

32 50 67<br />

23 40 54<br />

9 10 13<br />

16 25 33.5<br />

14 30 41<br />

25 45 50<br />

_ _ _ _ _ _ _ _ _<br />

Std Wyoming<br />

bentonite mud<br />

<strong>with</strong> 1-2g BPHSP<br />

(17)<br />

17.5, 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.5 13.5 13.5<br />

12.86 12.86 12.86<br />

30 42 50<br />

22 33 40<br />

8 9 10<br />

15 21 25<br />

14 24 30<br />

17 40 45<br />

_ _ _<br />

Std Wyoming bentonite<br />

mud <strong>with</strong> 20-30ml<br />

molar soln BPHSP<br />

(18)<br />

17.5, 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.0 13.0 13.0<br />

12.88 12.88 12.88<br />

28 40 48<br />

20 31 38<br />

8 9 10<br />

14 20 24<br />

12 22 28<br />

20 30 43<br />

_ _ _<br />

Sand content% 0.75 0.75 0.75 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5<br />

Water loss ml 10.0 10.0 10.0 10.0 10.0 10.0 10 10 10 10 10 10 10.0 10.0 10.0<br />

Mud weight Ib/gal 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.75 8.75 8.75 8.65 8.65 8.65<br />

“k” factor 18.95 35.08 51.03 18.95 35.08 51.03 25.43 27.80 39.88 6.77 13.4 27.8 4.96 15.71 23.21<br />

“n” factor 0.36 0.30 0.30 0.36 0.30 0.30 0.48 0.32 0.31 0.45 0.35 0.32 0.49 0.37 0.34<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 9


Table 6<br />

Parameters<br />

Tested.<br />

Initial mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Increased mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Rheometer dial<br />

readings:<br />

Θ600<br />

Θ300<br />

Rheological<br />

Properties:<br />

m) PV<br />

n) AV<br />

o) YP<br />

p) Gel<br />

strength<br />

Qty <strong>of</strong><br />

pregelatinized<br />

stzrch in gms<br />

Std Wyoming mud <strong>with</strong><br />

20-30ml conc. Soln<br />

BPHSP (19)<br />

17.5 , 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.0 13.0 13.0<br />

12.85 12.85 12.85<br />

28 40 48<br />

20 31 38<br />

8 9 10<br />

14 20 24<br />

12 22 28<br />

20 30 43<br />

Std Wyoming mud <strong>with</strong><br />

1-2g AKP(Trona) (20)<br />

17.5, 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.0 13.0 13.0<br />

12.75 12.75 12.75<br />

30 42 50<br />

22 33 40<br />

8 9 10<br />

15 21 25<br />

14 24 30<br />

17 40 45<br />

_ _ _ _ _ _<br />

Std Wyoming mud <strong>with</strong><br />

50/50 1-2g<br />

BPHSP/AKP(Trona)<br />

Soln. (21)<br />

17.5, 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.0 13.0 13.0<br />

12.8 12.8 12.8<br />

30 42 50<br />

22 33 40<br />

8 9 10<br />

15 21 25<br />

14 24 30<br />

17 40 45<br />

_ _ _<br />

Std Wyoming mud<br />

<strong>with</strong> 20-30ml<br />

AKP(Trona) molar<br />

soln.<br />

(22)<br />

17.5, 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

12.5 12.5 12.5<br />

12.0 12.0 12.0<br />

28 37 46<br />

20 26 34<br />

8 11 12<br />

14 18.5 23<br />

12 15 22<br />

15 20 30<br />

_ _ _<br />

<strong>Local</strong> bentonite mud<br />

<strong>with</strong> 1-2g NaOH flakes<br />

(23)<br />

17.5, 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

13.5 13.5 13.5<br />

12.86 12.86 12.86<br />

46 64 72<br />

35 50 57<br />

11 14 15<br />

23 32 36<br />

24 36 21<br />

35 40 50<br />

1.0 1.0 1.0<br />

Sand content% 0.5 0.5 0.5 0.35 0.35 0.35 0.35 0.35 0.35 0.5 0.5 0.5 0.5 0.5 0.5<br />

Water loss ml 10.0 10.0 10.0 10.0 10.0 10.0 10 10 10 10 10 10 8.5 8.5 8.5<br />

Mud weight Ib/gal 8.65 8.65 8.65 8.75 8.75 8.75 8.75 8.75 8.75 8.65 8.65 8.65 8.65 8.65 8.65<br />

“k” factor 4.96 15.71 23.21 6.77 13.4 27.8 6.77 13.4 27.8 4.02 5.36 5.51 14.67 20.42 34.81<br />

“n” factor 0.49 0.37 0.34 0.45 0.35 0.32 0.45 0.35 0.32 0.49 0.51 0.44 0.40 0.41 0.34<br />

Table 7<br />

Parameters<br />

Tested.<br />

Initial mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Increased mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Rheometer dial<br />

readings:<br />

Θ600<br />

Θ300<br />

Rheological<br />

Properties:<br />

q) PV<br />

r) AV<br />

s) YP<br />

t) Gel<br />

strength<br />

Qty <strong>of</strong><br />

pregelatinized<br />

stzrch in gms<br />

c) 1.0<br />

local bentonite mud<br />

<strong>with</strong>20-30ml molar soln<br />

NaOH (24)<br />

17.5 , 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

13.0 13.0 13.0<br />

12.98 12.98 12.98<br />

40 48 54<br />

31 38 45<br />

9 10 11<br />

20 24 27<br />

22 28 36<br />

30 40 49<br />

local bentonite mud<br />

<strong>with</strong> 1-2g Na2CO3 (25)<br />

17.5, 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

13.5 13.5 13.5<br />

12.89 12.89 12.89<br />

46 64 72<br />

35 50 57<br />

11 14 15<br />

23 32 36<br />

24 36 21<br />

35 40 50<br />

local bentonite mud<br />

<strong>with</strong> 20-30ml molar<br />

soln <strong>of</strong> Na2CO3 (Soda<br />

Ash) (26)<br />

17.5, 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

13.5 13.5 13.5<br />

12.98 12.98 12.98<br />

40 48 54<br />

31 38 45<br />

9 10 11<br />

20 24 27<br />

22 28 36<br />

30 40 49<br />

Wyoming<br />

bentonite mud<br />

<strong>with</strong> 1-2g NaOH<br />

flakes (Caustic<br />

Soda)<br />

(27)<br />

17.5, 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.0 13.0 13.0<br />

12.61 12.61 12.61<br />

30 42 50<br />

22 33 40<br />

8 9 10<br />

15 21 25<br />

14 24 30<br />

17 40 45<br />

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 _ _ _<br />

Wyoming bentonite<br />

mud<strong>with</strong> 1-2g Ca(OH)2<br />

(28)<br />

17.5, 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.0 13.0 13.0<br />

12.62 12.62 12.62<br />

30 42 50<br />

22 33 40<br />

8 9 10<br />

15 21 25<br />

14 24 30<br />

17 40 45<br />

_ _ _<br />

Sand content% 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.26 0.26 0.26 0.26 0.26 0.26<br />

Water loss ml 10.0 10.0 10.0 8.5 8.5 8.5 10 10 10 10 10 10 10.0 10.0 10.0<br />

Mud weight Ib/gal 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.75 8.75 8.75 8.75 8.75 8.75<br />

“k” factor 14.67 15.42 28.32 14.67 20.42 34.81 14.67 15.42 28.32 6.77 13.4 27.80 6.77 13.40 27.80<br />

“n” factor 0.40 0.40 0.26 0.40 0.41 0.34 0.40 0.41 0.34 0.45 0.35 0.32 0.45 0.35 0.32<br />

Table 8<br />

Parameters Wyoming bentonite mud Wyoming bentonite Wyoming bentonite Wyoming Aquagel bentonite mud<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 10


Tested. <strong>with</strong> 1-2g Na2CO3 (Soda<br />

Ash) (29)<br />

Initial mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Increased mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Rheometer dial<br />

readings:<br />

Θ600<br />

Θ300<br />

Rheological<br />

Properties:<br />

u) PV<br />

v) AV<br />

w) YP<br />

x) Gel<br />

strength<br />

Qty <strong>of</strong><br />

pregelatinized<br />

stzrch in gms<br />

d) 1.0<br />

17.5 , 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.0 13.0 13.0<br />

12.68 12.68 12.68<br />

30 42 50<br />

22 33 40<br />

8 9 10<br />

15 21 25<br />

14 24 30<br />

17 40 45<br />

mud <strong>with</strong> 20-30ml<br />

molar soln NaOH (30)<br />

17.5, 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.5 13.5 13.5<br />

12.86 12.86 12.86<br />

28 40 48<br />

20 31 38<br />

8 9 10<br />

14 20 24<br />

12 22 28<br />

20 30 43<br />

mud<strong>with</strong> 20-30ml molar<br />

soln. Na2CO3 (31)<br />

17.5, 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.5 13.5 13.5<br />

12.92 12.92 12.92<br />

28 40 48<br />

20 31 38<br />

8 9 10<br />

14 20 24<br />

12 22 28<br />

20 30 43<br />

_ _ _ _ _ _ _ _ _<br />

bentonite mud<br />

<strong>with</strong> 20-30ml<br />

molar Sol. Ca<br />

(OH)2<br />

(32)<br />

17.5, 21.0, 24.5<br />

9.5 9.5 9.5<br />

9.0 9.0 9.0<br />

13.0 13.0 13.0<br />

12.89 12.89 12.89<br />

28 37 46<br />

20 26 34<br />

8 11 12<br />

14 18.5 23<br />

12 15 22<br />

15 20 30<br />

<strong>with</strong> 1-2g NaOH<br />

(Caustic Soda)<br />

(33)<br />

17.5, 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

13.0 13.0 13.0<br />

12.80 12.80 12.80<br />

40 55 80<br />

35 44 65<br />

10 11 15<br />

22.5 27.5 40<br />

25 33 50<br />

35 45 55<br />

_ _ _ _ _ _<br />

Sand content% 0.26 0.26 0.26 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.65 0.65 0.65<br />

Water loss ml 10.0 10.0 10.0 10.0 10.0 10.0 10 10 10 10 10 10 10.0 10.0 10.0<br />

Mud weight Ib/gal 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.65 8.65 8.65<br />

“k” factor 6.77 13.40 27.80 4.96 15.71 23.21 4.96 15.71 23.21 4.02 5.36 5.51 18.95 35.08 51.03<br />

“n” factor 0.45 0.35 0.32 0.49 0.37 0.34 0.49 0.37 0.34 0.51 0.51 0.51 0.35 0.30 0.30<br />

Table 9<br />

Parameters<br />

Tested.<br />

Initial mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Increased mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Rheometer dial<br />

readings:<br />

Θ600<br />

Θ300<br />

Rheological<br />

Properties:<br />

y) PV<br />

z) AV<br />

aa) YP<br />

bb) Gel<br />

strength<br />

Qty <strong>of</strong><br />

pregelatinized<br />

stzrch in gms<br />

e) 1.0<br />

Aquagel bentonite mud<br />

<strong>with</strong> 20-30ml molar soln.<br />

NaOH (Caustic Soda)<br />

(34)<br />

17.5 , 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

13.0 13.0 13.0<br />

12.50 12.50 12.50<br />

32 50 67<br />

23 40 54<br />

9 10 13<br />

16 25 33.5<br />

14 30 41<br />

25 45 50<br />

_ _ _<br />

Aquagel bentonite mud<br />

<strong>with</strong> 1-2g Ca (OH)2 (35)<br />

17.5, 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

13.0 13.0 13.0<br />

12.8 12.8 12.8<br />

40 55 80<br />

35 44 65<br />

10 11 15<br />

22.5 27.5 40<br />

25 33 50<br />

35 45 55<br />

_ _ _<br />

Aquagel bentonite mud<br />

<strong>with</strong>1-2g Na2CO3 (36)<br />

17.5, 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7. 9<br />

13.0 13.0 13.0<br />

12.8 12.8 12.8<br />

40 55 80<br />

35 44 65<br />

10 11 15<br />

22.5 27.5 40<br />

25 33 50<br />

35 45 55<br />

_ _ _<br />

lAquagel<br />

bentonite mud<br />

<strong>with</strong> 20-30ml<br />

molar soln<br />

Na2CO3<br />

(37)<br />

17.5, 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

13.0 13.0 13.0<br />

12.82 12.82 12.82<br />

32 50 67<br />

23 40 54<br />

9 10 13<br />

16 25 33.5<br />

14 30 41<br />

25 45 50<br />

_ _ _<br />

Aquagel bentonite mud<br />

<strong>with</strong> 20-30ml molar<br />

soln Ca (OH)2<br />

(38)<br />

17.5, 21.0, 24.5<br />

8.0 8.0 8.0<br />

7.9 7.9 7.9<br />

12.0 12.0 12.0<br />

11.65 11.65 11.65<br />

32 50 67<br />

23 40 54<br />

9 10 13<br />

16 25 33.5<br />

14 30 41<br />

25 45 50<br />

_ _ _<br />

Sand content% 0.5 0.5 0.5 0.65 0.65 0.65 0.65 0.65 0.65 0.5 0.5 0.5 0.5 0.5 0.5<br />

Water loss ml 10.0 10.0 10.0 10.0 10.0 10.0 10 10 10 10 10 10 10.0 10.0 10.0<br />

Mud weight Ib/gal 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65<br />

“k” factor 6.77 13.40 27.8 18.95 35.08 51.03 18.95 35.08 51.03 25.13 27.8 39.88 25.13 27.8 39.88<br />

“n” factor 0.42 0.35 0.36 0.34 0.35 0.36 0.34 0.35 0.36 0.41 0.34 0.35 0.41 0.34 0.35<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 11


Table 10<br />

Parameters<br />

Tested.<br />

Initial mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Increased mud <strong>pH</strong><br />

Paper<br />

Digital<br />

Rheometer dial<br />

readings:<br />

Θ600<br />

Θ300<br />

Rheological<br />

Properties:<br />

cc) PV<br />

dd) AV<br />

ee) YP<br />

ff) Gel<br />

strength<br />

Qty <strong>of</strong><br />

pregelatinized stzrch<br />

in gms<br />

a) 1.0<br />

<strong>Local</strong> bentonite mud<br />

<strong>with</strong> 1-2g Ca (OH)2<br />

(39)<br />

17.5 , 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

13.5 13.5 13.5<br />

12.59 12.59 12.59<br />

46 64 72<br />

35 50 57<br />

11 14 15<br />

23 32 36<br />

24 36 21<br />

35 40 50<br />

1.0 1.0 1.0<br />

<strong>Local</strong> bentonite mud<br />

<strong>with</strong> 20-30ml molar<br />

soln. Ca (OH)2 (40)<br />

17.5 , 21.0, 24.5<br />

7.0 7.0 7.0<br />

6.98 6.98 6.98<br />

13.5 13.5 13.5<br />

12.98 12.98 12.98<br />

40 48 54<br />

31 38 45<br />

9 10 14<br />

20 24 27<br />

22 28 36<br />

30 40 50<br />

1.0 1.0 1.0<br />

Sand content% 0.5 0.5 0.5 0.5 0.5 0.5<br />

Water loss ml 8.0 8.0 8.0 10.0 10.0 10.0<br />

Mud weight Ib/gal 8.65 8.65 8.65 8.65 8.65 8.65<br />

“k” factor 14.67 20.42 34.81 15.71 23.21 34.43<br />

“n” factor 0.43 0.43 0.35 0.37 0.34 0.30<br />

Graphical presentation <strong>of</strong> mud types <strong>with</strong> equal amount <strong>of</strong> local and foreign <strong>pH</strong> additives<br />

(Powdered form)<br />

Different Mud 1 - 2g 1 - 2g 1 - 2g 1 – 2g 1 - 2g 1 - 2g 5/50<br />

Types BPHSP AKP NaOH Na2CO3 Ca(OH)2 AKP/BPHSP<br />

<strong>Local</strong> Bentonite 12.89 12.86 12.86 12.89 12.59 12.8<br />

Aquagel Bentonite 12.9 12.82 12.8 12.8 12.8 12.85<br />

Wyoming Bentonite 12.86 12.75 12.61 12.68 12.62 12.8<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 12


<strong>pH</strong><br />

Mud types<br />

Graphical presentation <strong>of</strong> mud types <strong>with</strong> equal amount <strong>of</strong> local and foreign additives (molar and<br />

concentrated solutions)<br />

20 - 30ml<br />

molar soln.<br />

BPHSP<br />

20 - 30ml<br />

conc. Soln.<br />

BPHSP<br />

20 -<br />

30ml<br />

AKP<br />

20 -<br />

30ml<br />

20 -<br />

30ml<br />

20 -<br />

30ml<br />

Different Mud<br />

Types<br />

NaOH Na2CO3 Ca(OH)2<br />

<strong>Local</strong> Bentonite 11.98 11.98 12.88 12.98 12.98 12.98<br />

Aquagel Bentonite<br />

Wyoming<br />

11.9 12.15 11.89 12.5 12.82 11.65<br />

Bentonite 12.88 12.85 12 12.86 12.92 12.89<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 13


Results Analysis and Discussions:-<br />

Two local <strong>Nigerian</strong> <strong>pH</strong> additives used in this research [Burnt Palm Head Sponge Powder and Trona<br />

powder] increased or raised the <strong>pH</strong> <strong>of</strong> the various mud types from <strong>pH</strong> unit <strong>of</strong> 7.0 to 12.90,<br />

comparable to the highest mud <strong>pH</strong> <strong>of</strong> between 7.0 to 12.98 imparted when foreign standard Caustic<br />

Soda, Sodium Carbonate or Calcium hydroxide were used as mud <strong>pH</strong> modifier on the same mud<br />

types, see Tables 3 to 10.<br />

In all the tables, three laboratory barrels <strong>of</strong> mud <strong>of</strong> low, medium and high viscosity had initial mud<br />

<strong>pH</strong> <strong>of</strong> 7.0, 8.0, 9.5 <strong>with</strong> paper strip and 6.98, 7.9, 9.0 <strong>with</strong> the digital <strong>pH</strong> meter. This <strong>pH</strong> values<br />

increased to between 11.98 to 12.90 when 1-2g <strong>of</strong> the burnt palm head sponge and the Trona were<br />

added to the mud.<br />

In Table 3, both powder and solutions <strong>of</strong> BPHSP raised mud prepared <strong>with</strong> local <strong>Nigerian</strong> bentonite<br />

clay from an initial <strong>pH</strong> <strong>of</strong> 7.0 (6.98 <strong>with</strong> digital meter) to 13.5 (12.89 digital meter reading) <strong>with</strong> all<br />

mud properties unaffected.<br />

Table 4, showed that Trona (AKP) increased the same mud <strong>pH</strong> from 7.0 to 12.88 on digital meter<br />

and 13.0 <strong>with</strong> the <strong>pH</strong> paper strip, all mud properties remaining the same, except for slight decrease in<br />

viscosity when the conc. and molar solutions were used. In the same Table 4, 1-2g BPHSP increased<br />

mud <strong>pH</strong> <strong>of</strong> Aquagel Bentonite mud from 8.0 to 12.90, while Trona <strong>of</strong> the same quantity imparted<br />

12.82 <strong>pH</strong> unit to the Aquagel mud, see Table 5.<br />

On the Wyoming mud type, 1-2g BPHSP increased mud <strong>pH</strong> from 9.5 to 12.86 <strong>with</strong> its molar<br />

solution raising the mud <strong>pH</strong> to 12.88. Blend <strong>of</strong> Trona and BPHSP 50/50 increased Aquagel from 8.0<br />

to 12.85 <strong>pH</strong> unit, local bentonite and Wyoming mud from 7.0 to 12.80 respectively.<br />

This meant that local <strong>pH</strong> modifiers [additives] in fine powder and solution can increase the <strong>pH</strong> <strong>of</strong><br />

fresh water base mud from 7.0 to 12.90 <strong>pH</strong> units, <strong>with</strong>out affecting other mud properties <strong>of</strong> all three<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 14


mud types. In the powdered form the two local mud <strong>pH</strong> additives are more impartive on mud <strong>of</strong><br />

<strong>Local</strong> and Aquagel types, see graphical presentation on pages 12 and 13. In solution form the <strong>Local</strong><br />

additives are best on mud <strong>of</strong> <strong>Local</strong> and Wyoming Bentonite respectively.<br />

Comparing the degree <strong>of</strong> <strong>pH</strong> impartation <strong>of</strong> the two local <strong>pH</strong> additives in powder or solution BPHSP<br />

imparted more than Trona, BPHSP increased mud <strong>pH</strong> from 7.0 to 12.89 while Trona gave 12.88<br />

<strong>with</strong> 1-2g on local bentonite mud, BPHSP increased Aquagel Bentonite mud from 8.0 to 12.90 while<br />

Trona gave 12.82, BPHSP increased Wyoming Bentonite mud from 9.5 to 12.86 while Trona gave<br />

12.75, these comparism are clearly seen on the peaks <strong>of</strong> the graphical values on pages 12 and 13.<br />

On the other hand comparing the <strong>pH</strong> values <strong>of</strong> the BPHSP and Trona in tables 3, 4, 5 and 6 <strong>with</strong> the<br />

<strong>pH</strong> impartations by foreign <strong>pH</strong> additives on all mud types in tables 7, 8, 9 and 10, it was observed<br />

that NaOH and Na2CO3 gave the highest impartation <strong>with</strong> 12.98 respectively (See Table 7) than<br />

BPHSP that imparted 12.90 (See table 4) this indicates that the foreign mud <strong>pH</strong> additives are only<br />

0.08 <strong>pH</strong> unit more impartive than the <strong>Local</strong>.<br />

In a nutshell, the <strong>pH</strong> impartation values <strong>of</strong> the BPHSP and Trona on all three mud types lies <strong>with</strong><br />

the range <strong>of</strong> 7.0 to 12.90 in powdery form comparable <strong>with</strong> the highest <strong>pH</strong> impartation on all same<br />

three mud types by the foreign <strong>pH</strong> additives that lies between the range <strong>of</strong> 7.0 to 12.98 in solution<br />

form. The foreign <strong>pH</strong> additives impartation on three mud types is only 0.08 <strong>pH</strong> unit higher than the<br />

local. It is only in solution that the foreign additive imparted more than the local additive. See<br />

graphical presentation. In other words the <strong>Local</strong> <strong>pH</strong> additives are more <strong>pH</strong> imparting than the foreign<br />

in powdered form.<br />

This study therefore proves that BPHSP and Trona (AKP) can increase mud <strong>pH</strong> from 7.0 to well<br />

above 12.90, as high as Caustic Soda, Soda ash and lime can impart on most fresh water base<br />

drilling fluid used for oil well drilling in the oil and gas industry, both in Nigeria and other countries.<br />

All local <strong>pH</strong> additives used in this study are very effective in increased <strong>pH</strong> impartation and<br />

compared favorably, at par <strong>with</strong> the values <strong>of</strong> <strong>pH</strong> imparted to the sames mud types by the foreign <strong>pH</strong><br />

additives.<br />

Conclusion<br />

From the result analysis <strong>of</strong> this study, it can be concluded that all two <strong>Local</strong> <strong>Nigerian</strong> <strong>pH</strong> mud<br />

additives can increase the mud <strong>pH</strong> <strong>of</strong> water-base mud from 7.0 to well over 12.90 <strong>pH</strong> unit. Out <strong>of</strong> the<br />

two local materials, the Burnt Palm Head Sponge Powder gave the higher mud <strong>pH</strong> impartation <strong>of</strong> <strong>pH</strong><br />

7.0 to 12.90, followed by the AK-P and the 50/50 blended AK-P and BPHSP that gave mud <strong>pH</strong><br />

impartation <strong>of</strong> 12.88 and 12.86 <strong>pH</strong> units respectively.<br />

These imparted <strong>pH</strong> values are comparable to standard imported foreign <strong>pH</strong> additives like NaOH that<br />

gave about 12.98 <strong>pH</strong> units, Ca (OH) 2 gave about 12.80 and Na2CO3 that imparted about 13.0. All<br />

foreign <strong>pH</strong> modifiers are only 0.08 <strong>pH</strong> unit more mud <strong>pH</strong> impartive than the <strong>Local</strong> <strong>pH</strong> modifiers. All<br />

<strong>Local</strong> <strong>pH</strong> modifiers have tendencies <strong>of</strong> being biodegradable and environmentally friendly if tested<br />

since they are locally used in our local towns to prepare edibles, thus can be used as a very efficient<br />

and effective water-base mud <strong>pH</strong> modifier serving as a good substitute to the commercial foreign <strong>pH</strong><br />

modifiers [Caustic Soda, Soda Ash and Lime].<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 15


The “Trona” Powder [AK-P] and the Burnt Palm Head Sponge Powder [BPHSP] can be used in two<br />

forms, either fine powder or in solution. In which ever form they are used, <strong>pH</strong> level as high as from<br />

7.0 to 13.0 is impart able on drilling fluid [mud] system in which they are used.<br />

They are therefore recommended for use in the oil and gas industry for drilling fluid <strong>pH</strong> maintenance<br />

as this will effectively reduce importation <strong>of</strong> Caustic Soda, Soda Ash, and Lime for use as mud <strong>pH</strong><br />

modifiers, since most <strong>of</strong> these imported foreign <strong>pH</strong> additives stated above may not quite be as<br />

environmentally friendly and biodegradable as could the discovered local materials.<br />

The Federal Government and her representative organs should encourage the field application <strong>of</strong><br />

these discovered local mud <strong>pH</strong> materials to boost her local <strong>Nigerian</strong> content drive, and<br />

implementations not only in Nigeria but also in West African Sub-region.<br />

Petroleum Technology Development Journal (ISSN 1595-9104): An International Journal; January 2009 - Vol. 1 16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!