01.06.2013 Views

Recent TASISpec Results - GSI Webserver WWW-WIN

Recent TASISpec Results - GSI Webserver WWW-WIN

Recent TASISpec Results - GSI Webserver WWW-WIN

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Multi−Coincidence Spectroscopy of SHE<br />

*<br />

using the <strong>TASISpec</strong> Setup<br />

The TAS ISpec<br />

Setup<br />

* The GEANT4 Code<br />

First Experimental <strong>Results</strong><br />

*<br />

*<br />

*<br />

Next Approved Experiment<br />

TRAPSpec<br />

Lise−Lotte Andersson Helmholtz−Institute Mainz


The TAS ISpec<br />

Detector Set−up<br />

TASCA in Small Image Mode Spectroscopy<br />

1 DSSSD (32+32 strips)<br />

4 DSSSD (4*[16+16] strips)<br />

4 Ge Clover (4*4 crystals)<br />

1 Ge Cluster (7 crystals)<br />

ER<br />

TASCA<br />

L−L Andersson et al., NIM A 622, 164 (2010)


Clover<br />

The TAS ISpec<br />

Detector Set−up<br />

Clover<br />

Clover<br />

Details of the construction<br />

Cluster<br />

Clover


The Full <strong>TASISpec</strong> Setup in Geant4<br />

Programmed (in great detail) by: L. G. Sarmiento


Simulated Absolute Efficiency (%)<br />

40<br />

30<br />

20<br />

10<br />

Comparing Experiment With Simulations<br />

Relative gamma−ray efficiency with source on holder<br />

133Ba<br />

152Eu<br />

(Compare the shape of the two curves)<br />

Experimental<br />

Simulated<br />

Singles<br />

0<br />

0 200 400 600 800<br />

E (keV)<br />

γ<br />

1000 1200 1400


Detection Efficiency (%)<br />

40<br />

30<br />

20<br />

10<br />

Comparing Simulations With Experiment<br />

Gamma−ray efficiency obtained via alpha−gamma coincidences<br />

Singles<br />

Exp. α−γ coincidences<br />

0<br />

0 500 1000 1500<br />

E (keV)<br />

γ<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 10 20 30 40 50 60<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20


Limiting Background and "False" Coincidences<br />

There are no Compton shields in the setup<br />

1) Internal Add−back (between crystals in same detector)<br />

2) Cross detector add−back (some combinations are more likely)<br />

Compton Scattering:<br />

E’ − E = (1 − cos θ )<br />

2<br />

E * E’ m c<br />

e<br />

Geometric limits of possible scattering angles<br />

lead to restricted ratios for the two energies, E and E’!<br />

Min<br />

Max


Detection Efficiency (%)<br />

40<br />

30<br />

20<br />

10<br />

Simulating Addback Efficiencies<br />

Implanted nuclei decaying with a single gamma−ray<br />

No add-back<br />

Internal add-back<br />

Internal + cross detector add-back<br />

0<br />

0 500 1000 1500<br />

E (keV)<br />

γ


TAS ISpec<br />

The Next Step in Superheavy Element Spectroscopy<br />

* First main beam experiment run in May<br />

207<br />

Pb(<br />

48<br />

Ca, 2n)<br />

253<br />

No<br />

* Total beam integral 2.4E18<br />

* <strong>Results</strong> from a subset of runs, corresponding<br />

to some 25% of the collected data


Yield (Arbitrary Units)<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

Alpha Particles Detected in the DSSSD<br />

DSSSD p−side beam−off alpha spectrum<br />

7.9−8.2 MeV:<br />

some 120 000 alpha particles<br />

(In total ~480 000 alpha from 253No)<br />

211 Bi<br />

253<br />

Fm<br />

245<br />

Cf<br />

211 *<br />

Po<br />

0<br />

5500 6000 6500 7000 7500 8000 8500 9000<br />

α - particle energy (keV)<br />

211 Po<br />

249 Fm<br />

253 No


Yield (Arbitrary Units)<br />

15<br />

10<br />

5<br />

0<br />

7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40<br />

Alpha Energy (MeV)<br />

10 4<br />

10 3<br />

10 2<br />

10<br />

1<br />

Gates clearly show new(ish) gamma−ray transition at 669 keV<br />

X-rays<br />

150<br />

221<br />

7.63 MeV<br />

279<br />

20 keV FWHM<br />

E γ = 667-673 keV<br />

Q α = 8.15-8.35 MeV<br />

0.1<br />

0 100 200 300 400 500 600 700<br />

E (keV) γ<br />

A. Lopez−Martens et al. Nuclear Physics A 852, 15 (2011).<br />

Alpha Decaying 253No<br />

669


Yield (Arbitrary Units)<br />

15<br />

10<br />

5<br />

0<br />

7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40<br />

Alpha Energy (MeV)<br />

10 4<br />

10 3<br />

10 2<br />

10<br />

1<br />

Gates clearly show new(ish) gamma−ray transition at 669 keV<br />

X-rays<br />

150<br />

221<br />

7.63 MeV<br />

279<br />

20 keV FWHM<br />

E γ = 667-673 keV<br />

Q α = 8.15-8.35 MeV<br />

0.1<br />

0 100 200 300 400 500 600 700<br />

E (keV) γ<br />

A. Lopez−Martens et al. Nuclear Physics A 852, 15 (2011).<br />

Alpha decaying 253No<br />

669<br />

F.P. Hessberger et al. Eur. Phys. J. D 45, 33 (2007).


Yield (Arbitrary Units)<br />

100<br />

50<br />

0<br />

150<br />

100<br />

50<br />

0<br />

Gamma−Gamma Coincidences<br />

76 K 119 76<br />

α2<br />

K 125<br />

α1 109 ?<br />

K 135,137,140<br />

K 140, 141, 145<br />

β<br />

β 151<br />

166 ?<br />

188<br />

258 ?<br />

266 ?<br />

338<br />

394<br />

399<br />

454<br />

454<br />

Gated prompt on p−side DSSSD


Yield (Arbitrary Units)<br />

150<br />

100<br />

50<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Conversion Electrons and Gamma Rays<br />

253Fm comparison: All Ge detectors vs Si box detectors<br />

K<br />

K<br />

K= 46 keV K= 196 keV<br />

L= 162 keV L= 312 keV<br />

K= 124 keV<br />

L= 240 keV<br />

L<br />

188<br />

K<br />

L<br />

266<br />

K<br />

L<br />

338<br />

L<br />

399<br />

K= 257 keV<br />

L= 373 keV<br />

0 100 200 300 400 500 600 700 800<br />

Energy (keV)<br />

Predicted by<br />

BrIcc v2.2b


~100−500 keV<br />

~0 keV<br />

IDEA:<br />

TAS ISpec<br />

Fingerprinting E115 decay chains via X−rays<br />

Direct measurement of proton number of the new SHE island!<br />

8 weeks of beamtime approved at <strong>GSI</strong>.<br />

1 α − X−ray coincidence detection per week expected.<br />

Set−up and settings are prepared and at any time!<br />

α−decay<br />

~0 keV<br />

γ−ray<br />

emission or<br />

INTERNAL CONVERSION<br />

Flagship Experiment<br />

ready to run<br />

highly−<br />

converted<br />

M1<br />

transitions<br />

=> K X−rays<br />

Long decay chains of odd−A nuclei!<br />

Spokesperson D. Rudolph (Lund University)


Predicted X−rays in the Decay Chain<br />

Numbers include realistic conversion factors<br />

48 243 Ca + Am<br />

267<br />

Db<br />

α4<br />

271<br />

Bh<br />

275<br />

Mt<br />

α3<br />

X<br />

α2<br />

279<br />

Rg<br />

N ~ 1 K−X−ray<br />

X<br />

X<br />

N ~ 1 K−X−ray<br />

X<br />

α1<br />

283<br />

113<br />

287<br />

115<br />

X<br />

Expected to detect 8 decay chains<br />

N ~ 1 K−X−ray<br />

Predictions say the populated excited state<br />

will alpha decay directly (not via groundstate)<br />

Predictions say the alpha populates the ground state<br />

=> N X ~ 2−3 K−Xrays/chain!<br />

=> <strong>TASISpec</strong> efficiencies; detect one alpha−X−ray coincidence/week!


Counts /10keV<br />

15<br />

10<br />

5<br />

195Po<br />

1.9s 6.7 MeV<br />

4.6s 6.6 MeV<br />

<strong>TASISpec</strong> + SHIPTRAP = TRAPSpec<br />

6.4 sec<br />

0.5 sec<br />

0<br />

5000 5500 6000 6500 7000 7500<br />

Si energy (keV)<br />

Second test, October 2011


α<br />

TAS ISpec<br />

A versatile SHE spectroscopy setup!<br />

* Small−image mode => compact focal plane<br />

* High segmentation => 192 Si strips<br />

−efficiency ~80%<br />

* 4+1 segmented Ge detectors<br />

γ−efficiency<br />

~40% @ 150 keV<br />

* Multi−coincidence capabilities<br />

=> suitable for SHE experiments<br />

Next up: E115!<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

(mm)<br />

253<br />

No alpha decays<br />

0 10 20 30 40 50 60<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20


..<br />

TAS ISpec<br />

Many thanks to the ’updated’ collaboration:<br />

TASCA @ <strong>GSI</strong>, DE<br />

Helmholtz−Institut Mainz, DE<br />

Lund University, SWE<br />

University of Liverpool, UK<br />

Universidad Nacional de Colombia, CO<br />

Universitat Mainz, DE<br />

Lise−Lotte Andersson Helmholtz−Institute Mainz

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!