bnf in sugarcane, ghg & impact of crop management - Fapesp

bnf in sugarcane, ghg & impact of crop management - Fapesp bnf in sugarcane, ghg & impact of crop management - Fapesp

BIOEN WORKSHOP 2012: Session 1:<br />

Biomass / Impacts and Susta<strong>in</strong>ability Divisions<br />

BNF IN SUGARCANE,<br />

GHG & IMPACT OF<br />

CROP MANAGEMENT<br />

Cantarella, Carmo, LaScalla, Rossetto<br />

& Barbosa


2<br />

List <strong>of</strong> projects<br />

08/56.147-1 Cantarella N nutrition <strong>of</strong> <strong>sugarcane</strong> with fertilizers<br />

or N-fix<strong>in</strong>g bacteria<br />

08/57937-6 Barbosa Study <strong>of</strong> the transference <strong>of</strong> fixed<br />

nitrogen from the diazotrophic bacteria to<br />

<strong>sugarcane</strong><br />

08/58029-6 Rossetto Concentrated v<strong>in</strong>asse applied to<br />

<strong>sugarcane</strong>: chemical soil characteristics,<br />

ion leach<strong>in</strong>g and agronomic efficiency<br />

08/55989-9 Carmo N2O, CO2 and CH4 emissions from agrobi<strong>of</strong>uel<br />

production <strong>in</strong> São Paulo state,<br />

Brazil.<br />

08/58187-0 LaScala The <strong>impact</strong> <strong>of</strong> tillage and harvest<br />

Bioen Workshop 2012 (Cantarella)<br />

practices on soil CO2 emission <strong>of</strong>


N nutrition <strong>of</strong> <strong>sugarcane</strong> with<br />

fertilizers or N-fix<strong>in</strong>g bacteria<br />

3<br />

Evidences <strong>of</strong> BNF <strong>in</strong> <strong>sugarcane</strong>: an<br />

<strong>in</strong>oculant conta<strong>in</strong><strong>in</strong>g 5 species <strong>of</strong><br />

bacteria was launched <strong>in</strong> 2008<br />

Can we replace (or decrease) m<strong>in</strong>eral N<br />

fertilization?<br />

Objectives<br />

Determ<strong>in</strong>e the extent <strong>of</strong> the contribution <strong>of</strong> BNF compared<br />

with N fertilization <strong>in</strong> a network <strong>of</strong> field experiments<br />

Identify genetic traits <strong>of</strong> <strong>sugarcane</strong> plants related to BNF<br />

that could be used <strong>in</strong> a breed<strong>in</strong>g program<br />

Identify new microorganisms capable <strong>of</strong> stimulat<strong>in</strong>g plant<br />

growth and carry on BNF<br />

Measure GHGs emissions as affected by N fertilization <strong>of</strong><br />

<strong>in</strong>oculation <strong>of</strong> N-fix<strong>in</strong>g microorganisms<br />

Bioen Workshop 2012 (Cantarella)


BNF and N fertilization: field<br />

studies<br />

4<br />

Stalks, t/ha<br />

Stalks, t/ha<br />

125<br />

120<br />

115<br />

110<br />

105<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

Plant Cane - 5 sites<br />

y = -0.0022N 2 + 0.3975N + 102.6<br />

R² = 0.99<br />

0 20 40 60 80 100<br />

Applied N, kg/ha<br />

Ratoon Cane - 2 sites<br />

y = -0.0009N 2 + 0.2524N + 58.8<br />

R² = 0.98<br />

Bioen Workshop 2012 (Cantarella)<br />

M<strong>in</strong>eral N<br />

Inoculated<br />

N + Inoculation<br />

M<strong>in</strong>eral N<br />

Inoculated<br />

N + Inoculation<br />

0 50 100 150<br />

Applied N, kg/ha<br />

Summary <strong>of</strong> Ma<strong>in</strong> Results:<br />

Mean N fertilizer response: 15 t/ha stalk and 5 t/ha dry<br />

mass<br />

Significant response to N: 3/5 <strong>in</strong> plant cycle and ½ <strong>in</strong><br />

ratoon.<br />

No significant response to <strong>in</strong>oculation <strong>of</strong> N-fix<strong>in</strong>g<br />

bacteria with or without N fertilizer <strong>in</strong> any <strong>of</strong> the<br />

varieties or sites studied<br />

Effect <strong>of</strong> FBN – if significant – may be already built<br />

<strong>in</strong>to the <strong>sugarcane</strong> production system (native<br />

species)<br />

FBN por δ 15 N: 0 to ~70% <strong>of</strong> contribution <strong>of</strong> N from<br />

BNF<br />

Next: 4 new fields harvested <strong>in</strong> 2012<br />

N stock <strong>in</strong> soil (long term effect) to be evaluated<br />

2012


New microrganisms isolated<br />

from <strong>sugarcane</strong> fields: BNF and<br />

PGP<br />

5<br />

Genetic diversity <strong>of</strong> isolates (162) by Box PCR<br />

(From Jaú, SP, cane cultivar IAC-5000)<br />

Isolado - espécie PMSPA<br />

Bioen Workshop 2012 (Cantarella)<br />

g<br />

Redutase<br />

Nitrato<br />

N acum. AIA P Sol. nifH<br />

µmol NO2 g -1 -1<br />

mg pl<br />

µg mg -1<br />

prote<strong>in</strong><br />

mg<br />

mg -1<br />

Delftia acidovorans 11,5a 0,05 131a 2,47 nd -<br />

Delftia acidovorans 10,6a 0,04 143a 0,49 nd -<br />

B Pantoea dispersa 11,0a 0,11 134a 0.04 nd -<br />

Enterobacter cloacae 12,4a 0,03 157a 0.34 nd -<br />

Pantoea dispersa 11,8a 0,04 142a 0,07 1,02 -<br />

A Pantoea dispersa 13,2a 0,07 167a 0,07 1,04 -<br />

Pantoea dispersa 11,3a 0,04 137a 3,73 2,08 -<br />

Herbaspirillum fris<strong>in</strong>gense 12,0a 0,23 152a 0,98 nd -<br />

B Burkholderia caledonica 11,8a 0,14 137a 0,09 3,98 -<br />

Pseudomonas sp. 11,6a 0,03 114b 5,37 nd -<br />

A Enterobacter asburiae 13,4a 0,09 146a 1,91 nd -<br />

B Enterobacter asburiae 11,8a 0,06 137a 1,91 nd -<br />

Methylobacterium fujisawaense 10,4a 0,10 119b 3,43 nd -<br />

Controle 8,0b 0,05 99b -<br />

Ma<strong>in</strong> isolates will be <strong>in</strong>oculated <strong>in</strong><br />

mi<strong>crop</strong>ropaged <strong>sugarcane</strong> plants<br />

168 stra<strong>in</strong>s<br />

89% with BNF capacity<br />

59% with effect similar to aux<strong>in</strong>es


Inoculation <strong>of</strong> 5-bacteria mix to<br />

meristem micro-propagated<br />

<strong>sugarcane</strong> plants<br />

6<br />

60,0<br />

50,0<br />

40,0<br />

30,0<br />

20,0<br />

10,0<br />

0,0<br />

Plant height (cm) 56 days<br />

after <strong>in</strong>oculation<br />

sem <strong>in</strong>ocluante<br />

Bioen Workshop 2012 (Cantarella)<br />

Response to <strong>in</strong>oculation is varietydependent.<br />

Early stage results (PGPB) are good<br />

but it is not clear whether or how they<br />

could be ma<strong>in</strong>ta<strong>in</strong>ed<br />

New cane cultivars are be<strong>in</strong>g tested<br />

Gene expression will be evaluated<br />

IACSP95-5094<br />

No <strong>in</strong>oculation (38.1 cm) Inoculated (52.0 cm)


Study <strong>of</strong> the transference <strong>of</strong> fixed nitrogen<br />

from the diazotrophic bacteria to <strong>sugarcane</strong><br />

7<br />

Several new microorganisms associated<br />

with <strong>sugarcane</strong> have been isolated,<br />

present<strong>in</strong>g different effects and functions<br />

Results presented refer to most recent<br />

research (not published yet).<br />

Sugarcane-bacterial <strong>in</strong>teractions are<br />

promis<strong>in</strong>g areas, to be further studied<br />

Bioen Workshop 2012 (Cantarella)<br />

H. Barbosa et all.


CO-CULTURES AS A MODEL TO STUDY INTERACTIONS BETWEEN<br />

SUGARCANE CALUSES AND DIAZOTROPHIC ENDOPHYFITIC<br />

BACTERIA.<br />

R. C. R. MARTINS AND H. R. BARBOSA<br />

Callus<br />

Co-culture<br />

8<br />

• Influence <strong>of</strong> callus on bacterial growth – STIMULATION x INHIBITION<br />

Callus<br />

log CFU.mL -1<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Enterobacter sp. (ICB117)<br />

10<br />

9<br />

8<br />

Erw<strong>in</strong>ia sp. (ICB409)<br />

0<br />

0 200 400 600 800 1000 1200<br />

time (h)<br />

log CFU.mL -1<br />

log CFU.mL -1<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 200 400 600<br />

time (h)<br />

• Influence <strong>of</strong> bacteria on calluses– INCREASE OF PROTEIN<br />

CONTENT-through N-fixation<br />

Culture medium<br />

N comb<strong>in</strong>ed-free<br />

Bioen Workshop 2012 (Cantarella)<br />

prote<strong>in</strong> content <strong>of</strong> calluses<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Callus + Erw<strong>in</strong>ia sp.<br />

0<br />

0 200 400 600 800 1000 1200 1400<br />

Time (h)<br />

Callus +<br />

Enterobacter sp.<br />

Callus control


Massa fresca foliar (g)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

9<br />

Comprimento foliar (cm)<br />

Inoculation <strong>of</strong> Enterobacter sp. <strong>in</strong> <strong>sugarcane</strong> plantlets S. Ichiwaki, F. I. Ferrara I and<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

H. R. Barbosa<br />

Fertilization:<br />

Leaf lenght Root volume<br />

a a a a<br />

Orgânico Convencional Sem adubação<br />

Tratamentos (60 DPI)<br />

Orgânico Convencional Sem adubação<br />

Tramamento (60 DPI)<br />

Não <strong>in</strong>oculado Enterobacter<br />

Organic x Conventional<br />

b<br />

a<br />

Vol Radicular (cm³)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

b<br />

a<br />

b<br />

Orgânico Convencional Sem adubação<br />

a<br />

Tratamentos (60 DPI)<br />

b<br />

a<br />

Clor<strong>of</strong>ila<br />

Growth parameters: organic = conventional<br />

Prote<strong>in</strong> content: Enterobacter sp. + organic = conventional<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

a<br />

Chlorophyll<br />

a a a a<br />

Orgânico Convencional Sem adubação<br />

Tratamentos (60 DPI)<br />

Leaf fresh weigh Root fresh weigh Leaf dry weigh<br />

Root dry weigh<br />

a a a a<br />

Control<br />

Inoculated x Fertilized<br />

b<br />

Bioen Workshop 2012 (Cantarella)<br />

c<br />

Massa fresca radicular (g)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

a<br />

b b b<br />

a c<br />

Orgânico Convencional Sem adubação<br />

Tratamento (60DPI)<br />

Massa seca foliar (g)<br />

1<br />

0,8<br />

Não 0,6 <strong>in</strong>oculado<br />

Enterobacter<br />

0,4<br />

0,2<br />

0<br />

a a<br />

a a<br />

Orgânico Convencional Sem adubação<br />

Tratamentos (60 DPI)<br />

b<br />

a<br />

Massa seca radicular (g)<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

b<br />

a a a a a<br />

b<br />

Orgânico Convencional Sem adubação<br />

Tratamentos (60 DPI)<br />

Growth parameters and prote<strong>in</strong> content: Always the lowest<br />

Growth parameters: Inoculated = organic and conventional<br />

Prote<strong>in</strong> content: Inoculated = Enterobacter sp. + organic<br />

and conventional


10<br />

Leaf size<br />

O EO C EC S ES<br />

Comparação entre comprimentos foliares de plântulas não <strong>in</strong>oculadas e <strong>in</strong>oculadas 60<br />

DPI.<br />

Clorose<br />

O C S<br />

Diferença na pigmentação foliar em plântulas<br />

não <strong>in</strong>oculadas.<br />

Foto por: Ichiwaki (2012).<br />

Enterobacter<br />

EC EO ES S Foto por: Ichiwaki (2012).<br />

Diferença entre os comprimentos foliares de plântulas de canade-açúcar<br />

<strong>in</strong>oculadas com Enterobacter sp. ICB481 e plântula<br />

do grupo sem adubação, após 60 DPI.<br />

EO EC ES<br />

Ausência de amarelecimento foliar nos grupos<br />

<strong>in</strong>oculados com Enterobacter sp. ICB481 aos 60 DPI.<br />

Legenda: Grupos Orgânico (O), Enterobacter-orgânico (EO) / Convencional (C), Enterobacter-convencional / Sem<br />

adubação (S) e ES= Enterobacter-sem adubação.<br />

Foto por: Ichiwaki (2012).<br />

Foto por: Ichiwaki (2012).


11<br />

GHGs emission: suste<strong>in</strong>ability <strong>of</strong><br />

ethanol production<br />

GHG emissions reduction due to<br />

ethanol replacement <strong>of</strong> fossil fuels<br />

51 – 65% (Boddey et al., 2008)<br />

85% (Börjesson, 2009)<br />

81 and 24% to 1 st and 2 nd generation (Luo et al.,<br />

2009)<br />

Emission associated with<br />

fertilizer use<br />

N 2O releas<strong>in</strong>g from soils/fertilizers<br />

could <strong>of</strong>fset the benefits <strong>of</strong> avoid<strong>in</strong>g<br />

CO 2 from fossil fuels (Scharlemann &<br />

Laurence, 2008; Crutzen et al., 2008).<br />

High N 2O values found <strong>in</strong> other<br />

important cane producer countries<br />

(Denmead et al., 2009; Allen et al., 2010)<br />

IPCC Bioen Workshop standard: 2012 (Cantarella) 1% (IPCC, 2006)


N 2O (mg N m -2 )<br />

CH 4 (mg N m -2 )<br />

12<br />

GHGs emission: fertilizer X<br />

<strong>in</strong>oculation<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

Nitrous Oxide<br />

N0 N0+I N100 N150<br />

N0 N0+I N100 N150<br />

Methane<br />

Jaú (Burned)<br />

Clay: 17.8%; Sand: 76.6%<br />

Bulk density: 1.39 g cm -3<br />

Carbon: 2114 g C m -2<br />

Bioen Workshop 2012 (Cantarella)<br />

N 2O (mg N m -2 )<br />

CH 4 (mg C m -2 )<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

Nitrous Oxide<br />

N0 N0+I N100 N150<br />

N0 N0+I N100 N150<br />

Methane<br />

Piracicaba (Unburned)<br />

Clay: 51.9%; Sand: 31.4%<br />

Bulk density: 1.49 g cm -3<br />

Carbon: 4090 g C m -2<br />

N 2O emission <strong>in</strong>creased<br />

with N fertilizer application<br />

but was not affected by<br />

<strong>in</strong>oculation with diazotrhopic<br />

bacteria<br />

Emission factor ≤ IPCC<br />

Vargas et al, 2012)


Emission factor (fertilizer, trash,<br />

v<strong>in</strong>asse)<br />

13<br />

Trash rate V<strong>in</strong>asse<br />

Mg ha-1 Mg ha-1 Added<br />

N<br />

£ Added N<br />

emission factor<br />

kg ha-1 kg ha (%)<br />

-1 (%)<br />

§ CO2<br />

equivalent<br />

kg CO2 eq. ha-1 kg CO2 eq. ha-1 yr-1 yr-1 0 With 142 0.59±0.29 1,289<br />

Without 120 0.68±0.41 382<br />

7 With 142 1.19±0.84 1,620<br />

Without 120 0.96±0.46 540<br />

14 With 142 1.89±1.00 3,005<br />

Without 120 0.76±0.30 427<br />

21 With 142 3.03±1.22 3,060<br />

Without 120 2.03±1.15 1,141<br />

Bioen Workshop 2012 (Cantarella)<br />

Carmo et al. 2012 (GCB-Bioenergy)


N 2O Emission, kg N-N 2O/ha<br />

4<br />

3<br />

2<br />

1<br />

0<br />

N 2O = 0,0056x 2 + 0,0207x + 0,78<br />

R² = 0,99<br />

N 2O = 0,0496x + 0,692<br />

R² = 0,62<br />

0 5 10 15 20 25<br />

Sugarcane trash, t/ha<br />

Trash+v<strong>in</strong><br />

Trash<br />

N 2O emission from N<br />

fertilizer <strong>in</strong> <strong>sugarcane</strong> is<br />

with<strong>in</strong> or bellow the<br />

IPPC default value but<br />

the addition <strong>of</strong> organic<br />

residues caused<br />

<strong>in</strong>crease N 2O emission.<br />

Remov<strong>in</strong>g excess trash<br />

from the field (for<br />

energy production) may<br />

avoid high N 2O emission<br />

Increase <strong>of</strong> N emission factor for fertilizer N (ammonium nitrate surface-applied):<br />

Trash 0,04% per t/ha <strong>of</strong> trash left on soil<br />

Trash+v<strong>in</strong>asse 0,12% per t/ha trash left on soil


15<br />

Nitrification <strong>in</strong>hibitor<br />

decreases N 2O emission<br />

Trash<br />

(Mg ha -1 ) + N<br />

(100 kg/ha)<br />

Bioen Workshop 2012 (Cantarella)<br />

Days after fertilization<br />

N2O emission (mg N/m 2 ) Reduction <strong>in</strong> N2O<br />

emission due to<br />

No DCD With DCD<br />

DCD<br />

0 10,89 bA § 3,85 aB 65%<br />

8 15,92 bA 5,91 aB 63%<br />

16 32,04 aA 8,44 aB 74%<br />

(Vargas et al, 2012)


Concentrated v<strong>in</strong>asse <strong>in</strong> <strong>sugarcane</strong>: soil<br />

chemical attributes, ion lixiviation and<br />

agronomic efficiency<br />

16<br />

V<strong>in</strong>asse: 10 to 13 L/L ethanol<br />

Large amounts generated: high cost <strong>of</strong> application, risk <strong>of</strong> soil and ground water<br />

contam<strong>in</strong>ation with nutrients<br />

Concentrated v<strong>in</strong>asse: high cost (and energy) to remove water. Easier and cheaper<br />

field application<br />

Treatments: 0, 120, 140, 360 kg/ha K 2O (as KCl, normal or concentrated v<strong>in</strong>asse)<br />

Bioen Workshop 2012 (Cantarella)<br />

Rossetto et al, (2012)


17<br />

Monitor<strong>in</strong>g: <strong>of</strong> K, NO 3, Cl, etc...<br />

Soil – 0-25,25-50, 50-80cm depth<br />

Samples <strong>in</strong> each plot every 3 months<br />

Leach<strong>in</strong>g ions - soil solution extraction –<br />

0- 80cm depth<br />

•Diagnosis Solo –<br />

leave<br />

camadas<br />

– top<br />

0-10,10-20,<br />

visible dewlap<br />

até 1,20m<br />

Macronutrients analysis<br />

Plant – leaves, stalks (bagasse + juice), roots<br />

Straw<br />

Samples taken before harvest<br />

Bioen Workshop 2012 (Cantarella)


V<strong>in</strong>asse: ma<strong>in</strong> results<br />

18<br />

N m<strong>in</strong>eralization <strong>in</strong> concentrated v<strong>in</strong>asse is slower. Half life 6<br />

weeks (3 <strong>in</strong> conventional v<strong>in</strong>asse): longer N availability<br />

V<strong>in</strong>asse improved soil fertility (SOM, N, K, P, Ca). Higher rate <strong>of</strong><br />

CV <strong>in</strong>crease K saturation up to 2.2% <strong>of</strong> CEC <strong>in</strong> topsoil<br />

(legislation limit is 5%)<br />

Ca, K, N and P were concentrated <strong>in</strong> the soil surface layer. Mg<br />

was well distributed ; SO4 was more concentrated <strong>in</strong> deep<br />

layers.<br />

Sugarcane yield <strong>in</strong>creased with v<strong>in</strong>asse application (+12<br />

ton/ha). Enhanced nutrient extraction contributed to avoid<br />

accumulation <strong>of</strong> nutrients <strong>in</strong> soil.<br />

No negative effect <strong>of</strong> v<strong>in</strong>asse was observed, even at high K<br />

rates<br />

Bioen Workshop 2012 (Cantarella)


Tillage and harvest practices on soil CO 2<br />

emission <strong>in</strong> <strong>sugarcane</strong> production areas<br />

19<br />

Bioen Workshop 2012 (Cantarella)<br />

Burn<strong>in</strong>g <strong>sugarcane</strong> before<br />

harvest is be<strong>in</strong>g phased<br />

out.<br />

The effect <strong>of</strong> such change<br />

on soil properties &<br />

susta<strong>in</strong>ability must be<br />

exam<strong>in</strong>ed.<br />

LaScalla & collaborators are study<strong>in</strong>g<br />

the effect <strong>of</strong> green cane harvest<strong>in</strong>g on<br />

soil C, along with practices such as<br />

no-till and conventional till


20<br />

GHG balance <strong>of</strong> cane production:<br />

Green cane decreases CO 2 emission<br />

Source<br />

Synthetic Fertilizer<br />

V<strong>in</strong>asse<br />

Filter Cake<br />

Harvest Residues<br />

Residues Burn<strong>in</strong>g<br />

Lim<strong>in</strong>g<br />

Diesel<br />

Sub-Total:<br />

C sequestration<br />

Total:<br />

1,173<br />

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000<br />

Bioen Workshop 2012 (Cantarella)<br />

Burned harvest Green harvest<br />

CO 2 eq emission (kg ha -1 y -1 )<br />

1,620<br />

2,793<br />

3,104<br />

3,104<br />

Conversion to green cane<br />

could save the equivalent<br />

<strong>of</strong> 311 kg CO 2 ha -1 yr -1 ,<br />

or 1484 kg CO 2 ha -1 yr -1 if<br />

soil C sequestration is<br />

computed<br />

2011<br />

Figueiredo et al., 2011


21<br />

Effect <strong>of</strong> tillage on CO 2 emission<br />

under burned or green cane<br />

Total Emission (kg CO 2 -C hectare -1 )<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

0<br />

525.4<br />

808.8<br />

BH<br />

953.9<br />

1093.5<br />

NT Cn CnLi CnLiG NT Cn CnLi CnLiG NT Cn CnLi CnLiG<br />

Bioen Workshop 2012 (Cantarella)<br />

698.8<br />

GHnores<br />

284 kg C-CO 2 ha -1 247 kg C-CO 2 ha -1<br />

944.5<br />

1065.0<br />

1081.8<br />

Treatment<br />

= 1039 kg C-CO 2 ha -1 (3808 kg CO 2)<br />

Em 25 days after tillage<br />

446.4<br />

GHres<br />

1485.1<br />

1266.9<br />

1550.2<br />

Plow<strong>in</strong>g the soil<br />

promotes large<br />

CO 2 emissions,<br />

especially <strong>in</strong> areas<br />

with trash (plant<br />

residues) <strong>of</strong> GH<br />

BH: burned harved<br />

GH: green cane<br />

(with or without<br />

residues)<br />

NT: no till<br />

CN: conventional<br />

tillage Figueiredo et al., 2011


Conclud<strong>in</strong>g remarks<br />

22<br />

Inoculation <strong>of</strong> <strong>sugarcane</strong> with endophytic bacteria is<br />

not result<strong>in</strong>g <strong>in</strong> yield ga<strong>in</strong>s or apparent N<br />

substitution under field conditions<br />

Controlled conditions: promis<strong>in</strong>g results, variety-dependent.<br />

PGP properties. Practical benefits <strong>of</strong> endophytic and<br />

rhizobacterias are still a challenge.<br />

Sugarcane <strong>in</strong>dustry by-products can be susta<strong>in</strong>ably<br />

used <strong>in</strong> the field. Subject deserves more studies<br />

GHGs emission: large volume <strong>of</strong> good quality data is<br />

be<strong>in</strong>g generated.<br />

C balance: projects under way with good prospects.<br />

Enormous challenge.<br />

Bioen Workshop 2012 (Cantarella)


Thank you<br />

cantarella@iac.sp.gov.br<br />

Thai Delegation Meet<strong>in</strong>g 16-8-2012<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!