01.06.2013 Views

онтогения минералов и эволюция минерального мира

онтогения минералов и эволюция минерального мира

онтогения минералов и эволюция минерального мира

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ОНТОГЕНИЯ МИНЕРАЛОВ<br />

И ЭВОЛЮЦИЯ МИНЕРАЛЬНОГО<br />

МИРА<br />

Росс<strong>и</strong>йская Академ<strong>и</strong>я<br />

наук<br />

Уральское отделен<strong>и</strong>е<br />

Ком<strong>и</strong> научный центр<br />

Инст<strong>и</strong>тут геолог<strong>и</strong><strong>и</strong><br />

Тел.: (8212) 448563<br />

Fax: (8212) 448268<br />

Yushkin@geo.komisc.ru<br />

Н. П. Юшк<strong>и</strong>н<br />

RMS DPI 2009-1-E2-0


ИСТОКИ ЭВОЛЮЦИОННЫХ<br />

ПРЕДСТАВЛЕНИЙ<br />

пр<strong>и</strong>нц<strong>и</strong>п направленного разв<strong>и</strong>т<strong>и</strong>я м<strong>и</strong>нерального м<strong>и</strong>ра<br />

(пр<strong>и</strong>нц<strong>и</strong>п Чермака);<br />

пр<strong>и</strong>нц<strong>и</strong>п отражен<strong>и</strong>я м<strong>и</strong>нералам<strong>и</strong> услов<strong>и</strong>й <strong>и</strong>х образован<strong>и</strong>я<br />

(пр<strong>и</strong>нц<strong>и</strong>п Стенона);<br />

эволюц<strong>и</strong>онные схемы разв<strong>и</strong>т<strong>и</strong>я формы кр<strong>и</strong>сталлов<br />

(схемы Вернера <strong>и</strong> т. п.);<br />

пр<strong>и</strong>нц<strong>и</strong>п последовательного образован<strong>и</strong>я <strong>м<strong>и</strong>нералов</strong> в<br />

м<strong>и</strong>неральных телах<br />

<strong>и</strong> мног<strong>и</strong>е друг<strong>и</strong>е.


СТРУКТУРНЫЕ СХЕМЫ ГЕНЕТИЧЕСКОЙ<br />

МИНЕРАЛОГИИ<br />

(составлена Ю. М. Дымковым, 1985)<br />

ГЛАВНЫЕ ЭВОЛЮЦИОННЫЕ<br />

УРОВНИ<br />

ОНТОГЕНЕЗ МИНЕРАЛОВ – генез<strong>и</strong>с <strong>м<strong>и</strong>нералов</strong> <strong>и</strong> агрегатов, <strong>и</strong>х<br />

разв<strong>и</strong>т<strong>и</strong>е от акта зарожден<strong>и</strong>я до полного разрушен<strong>и</strong>я, совокупность<br />

явлен<strong>и</strong>й <strong>и</strong>нд<strong>и</strong>в<strong>и</strong>дуальной <strong>и</strong>стор<strong>и</strong><strong>и</strong> м<strong>и</strong>нерала<br />

ОНТОГЕНИЯ – учен<strong>и</strong>е об онтогенезе <strong>м<strong>и</strong>нералов</strong><br />

ФИЛОГЕНЕЗ МИНЕРАЛОВ – генез<strong>и</strong>с <strong>и</strong> разв<strong>и</strong>т<strong>и</strong>е м<strong>и</strong>неральных в<strong>и</strong>дов<br />

ФИЛОГЕНИЯ – учен<strong>и</strong>е об эволюц<strong>и</strong><strong>и</strong> м<strong>и</strong>неральных в<strong>и</strong>дов<br />

в геолог<strong>и</strong>ческой <strong>и</strong>стор<strong>и</strong><strong>и</strong><br />

СИНГЕНЕЗ МИНЕРАЛОВ – генез<strong>и</strong>с <strong>и</strong> разв<strong>и</strong>т<strong>и</strong>е разл<strong>и</strong>чных по составу<br />

<strong>и</strong> структурным соотношен<strong>и</strong>ем ассоц<strong>и</strong>ац<strong>и</strong>й <strong>м<strong>и</strong>нералов</strong><br />

СИНГЕНИЯ – учен<strong>и</strong>е об эволюц<strong>и</strong><strong>и</strong> м<strong>и</strong>неральных ассоц<strong>и</strong>ац<strong>и</strong>й<br />

<strong>и</strong> парагенез<strong>и</strong>сов


Nanometre-size products of uranium bioreduction<br />

Characterization of bioreduced uraninite (UO 2 ) nanoparticles. а, Transmission electron microscopy (TEM) image of<br />

flocculated UO 2 , nanoparticles associated with DesuIfosporosinus spp. bacteria (arrow). Inset, high-resolution TEM image<br />

of isolated particles. b, ТЕМ image of the Desulfosporosinus cell surface coated with UO 2 , nanoparticles (size, 1.5-2.5<br />

nm). с, А single uraninite particle (about 1.3 nm across). d, Magnitude of the Fourier transform (FT) of Х-ray absorption<br />

fine-structure (XAFS) data obtained from the sediment, and the best-fit model. R, radial distance (uncorrected for electron<br />

phase shift). Inset, real part of the Fourier transform. R e` real part of Fourier transformed data. е, Growth of uraninite<br />

crystals formed by oriented attachment of individual nanoparticles. Scale bars: 0.6 µm (а, inset, 2 nm), 6 nm (b) and 2nm<br />

(с, е).<br />

Yohey Suzuki*§, Shelly D. Kellyt, Kenneth<br />

М. Кеmnert, Jullian F. Banfield*Ŧ


Left: Fourier-filtered HR-TEM image of biogenic uraninite produced by Shewanella oneidensis strain<br />

MR-1, showing UO 2 , lattice fringes. Ovals indicate individual nanoparticles. Center: Fourier transforms<br />

(FT) оf EXAFS spectra from biogenic uraninite and stoichiometric UO 2 (solid lines are data; dotted lines<br />

are fits). Right Ball-and-stick representation of the structure of biogenic uraninite nanoparticies, from<br />

Schofiefd et al. (2008). Uranium atoms are red; oxygen atoms are green. The shaded area emphasizes<br />

the slightly distorted outer zone of the nanoparticles. Тhе contraction in the first U neighbor distance,<br />

believed to occur at the immediate periphery of the particles, in illustrated with exaggerated atomic<br />

displacements.<br />

High-recsoluliun TEM images of 2- 3 nm nanodiamonds recovered from lIie Murchison meteorite (A),<br />

inlerplanetary dust particles (В, D, Е, F), and a rnicrometeorite (C).<br />

Ball-and-stick representations of two nanodiamonds based on ab initio calculaliuns, the smaller with 147 С<br />

atoms (about 1.2 nm in diameter) and the larger with 275 C atoms (about 1.4 nm in diameter). The structures<br />

shown have diamond-structured cores (yellow) and fullerene-like reconstructed surfaces (red).


ТЕОРЕМЫ В. И. СИЛАЕВА (2008)<br />

Акс<strong>и</strong>ома №1: М<strong>и</strong>нералы есть кр<strong>и</strong>сталлоструктурно упорядоченные сочетан<strong>и</strong>я<br />

х<strong>и</strong>м<strong>и</strong>ческ<strong>и</strong>х элементов.<br />

Акс<strong>и</strong>ома №2: М<strong>и</strong>нералы есть продукты <strong>и</strong>сключ<strong>и</strong>тельно геолог<strong>и</strong>ческ<strong>и</strong>х процессов.<br />

Их аналог<strong>и</strong><strong>и</strong> б<strong>и</strong>огенного, техногенного, антропогенного про<strong>и</strong>схожден<strong>и</strong>я необход<strong>и</strong>мо<br />

рассматр<strong>и</strong>вать л<strong>и</strong>шь как м<strong>и</strong>нералоподобные − парам<strong>и</strong>неральные образован<strong>и</strong>я, не<br />

отражающ<strong>и</strong>е <strong>и</strong>стор<strong>и</strong>ю геолог<strong>и</strong>ческого <strong>и</strong> м<strong>и</strong>нералог<strong>и</strong>ческого разв<strong>и</strong>т<strong>и</strong>я.<br />

Теорема №1(теорема Ферсмана): Общее ч<strong>и</strong>сло м<strong>и</strong>неральных в<strong>и</strong>дов в<br />

земной коре огран<strong>и</strong>чено <strong>и</strong> в первом пр<strong>и</strong>бл<strong>и</strong>жен<strong>и</strong><strong>и</strong> зав<strong>и</strong>с<strong>и</strong>т от характера<br />

распределен<strong>и</strong>я <strong>м<strong>и</strong>нералов</strong> по ч<strong>и</strong>слу сочетающ<strong>и</strong>хся в н<strong>и</strong>х<br />

м<strong>и</strong>нералообразующ<strong>и</strong>х элементов, с<strong>и</strong>льно огран<strong>и</strong>ч<strong>и</strong>ваясь геолог<strong>и</strong>ческ<strong>и</strong>м<strong>и</strong>,<br />

геох<strong>и</strong>м<strong>и</strong>ческ<strong>и</strong>м<strong>и</strong>, термод<strong>и</strong>нам<strong>и</strong>ческ<strong>и</strong>м<strong>и</strong> <strong>и</strong> кр<strong>и</strong>сталлох<strong>и</strong>м<strong>и</strong>ческ<strong>и</strong>м<strong>и</strong> факторам<strong>и</strong><br />

естественного м<strong>и</strong>нерально-в<strong>и</strong>дового отбора.<br />

Теорема №2 (теорема П<strong>и</strong>л<strong>и</strong>пенко-Саукова): Общее ч<strong>и</strong>сло <strong>и</strong> кр<strong>и</strong>сталлох<strong>и</strong>м<strong>и</strong>ческ<strong>и</strong>й<br />

ассорт<strong>и</strong>мент <strong>м<strong>и</strong>нералов</strong> прямо коррел<strong>и</strong>руются с распространённостью в земной коре<br />

м<strong>и</strong>нералообразующ<strong>и</strong>х элементов, определяясь в первом пр<strong>и</strong>бл<strong>и</strong>жен<strong>и</strong><strong>и</strong> х<strong>и</strong>м<strong>и</strong>ческ<strong>и</strong>м законом<br />

действующ<strong>и</strong>х масс.<br />

Теорема №3: Распределен<strong>и</strong>е х<strong>и</strong>м<strong>и</strong>ческ<strong>и</strong>х элементов по кр<strong>и</strong>сталлох<strong>и</strong>м<strong>и</strong>ческ<strong>и</strong>м классам <strong>и</strong><br />

структурным т<strong>и</strong>пам <strong>м<strong>и</strong>нералов</strong> стрем<strong>и</strong>тся к упорядоченност<strong>и</strong>, отражающей космогеох<strong>и</strong>м<strong>и</strong>ческ<strong>и</strong>е<br />

свойства элементов.<br />

Следств<strong>и</strong>е №3.1. М<strong>и</strong>неральный м<strong>и</strong>р есть непосредственный результат<br />

постоянной <strong>и</strong> в целом необрат<strong>и</strong>мой космогеох<strong>и</strong>м<strong>и</strong>ческой эволюц<strong>и</strong><strong>и</strong> вещества<br />

Земл<strong>и</strong>.<br />

Structure of the mineral world is<br />

characterized by its components<br />

(individuals, species).<br />

Total number of mineral<br />

individuals in the Earth<br />

crust о,n - n·10 31<br />

There are about 4500 known<br />

mineral species, and new<br />

discoveries are unlimited.


Mineral number<br />

Phosphates Фосфаты and <strong>и</strong> <strong>и</strong>х<br />

their analogs аналог<strong>и</strong>;<br />

17%<br />

С<strong>и</strong>л<strong>и</strong>каты;<br />

Silicates<br />

25%<br />

Other Проч<strong>и</strong>е;<br />

1,8%<br />

Borate Бораты;<br />

2,8%<br />

MINERAL RATIO IN THE EARTH<br />

CRUST<br />

Сульф<strong>и</strong>ды;<br />

Sulphides<br />

13%<br />

Oxides Окс<strong>и</strong>ды and <strong>и</strong><br />

г<strong>и</strong>дрокс<strong>и</strong>ды;<br />

hydroxides<br />

12,5%<br />

Сульфаты;<br />

Sulphates<br />

9%<br />

Native<br />

Самородные<br />

элементы; 3,3%<br />

elements<br />

3,3%<br />

Карбонаты;<br />

Carbonates<br />

4,5%<br />

Phtorides, Фтор<strong>и</strong>ды,<br />

chlorides, хлор<strong>и</strong>ды,<br />

bromides, бром<strong>и</strong>ды,<br />

<strong>и</strong>од<strong>и</strong>ды; iodides; 5,7 5,7% %<br />

Орган<strong>и</strong>ческ<strong>и</strong>е<br />

Organic<br />

соед<strong>и</strong>нен<strong>и</strong>я;<br />

compounds<br />

4,7%<br />

Mineral diversity<br />

= crystallochemical<br />

Species, varieties<br />

= crystallostructural<br />

Morphological, structural symmetry<br />

= mineralogenetic<br />

Paragenesises, genetic types<br />

= operational approaches<br />

С<strong>и</strong>л<strong>и</strong>каты;<br />

Silicates<br />

75%<br />

Sulphides Сульф<strong>и</strong>ды;<br />

1,15%<br />

Oxides Окс<strong>и</strong>ды and <strong>и</strong><br />

г<strong>и</strong>дрокс<strong>и</strong>ды;<br />

hydroxides<br />

17%<br />

Карбонаты;<br />

Silicates<br />

1,17%<br />

Chromates Хроматы;<br />

3,35%<br />

other Проч<strong>и</strong>е;<br />

3,8%<br />

Weight ratio<br />

Problem of mineral<br />

diversity<br />

= scientific-naturalistic<br />

Perception of real nature<br />

= economic<br />

Functional aspects<br />

= humanitarian<br />

(cultural-esthetic)<br />

= medical<br />

(bioecological)


SYSTEM OF CHARACTERISTIC PARAMETERS OF<br />

MINERALOGICAL DIVERSITY<br />

Number of mineral species<br />

Quantitative mineral content (mineral<br />

distribution by crystallochemical classes);<br />

Quantitative crystallostructural content<br />

(distribution by syngonies, symmetry types<br />

etc.);<br />

Number and types of minerals of one and<br />

the same element;<br />

Total symmetry index;<br />

Information enthropy of cadastral<br />

characteristics.<br />

Quantitative comparative analysis of mineral diversity of a large<br />

number of objects, based on these parameters, allow characterizing<br />

mineral structure of these objects and perception of their material<br />

and genetic peculiarities.<br />

Each geological system, composed by minerals, is<br />

characterized by definite crystallosymmetric structure<br />

expressed by characteristic parameters of distribution of<br />

mineral types by symmetry classes (categories, syngonies,<br />

symmetry types).<br />

Law of tendency of topomineralogical<br />

systems to average lithospheric type<br />

Characteristic parameters of<br />

crystallosymmetric structure of some<br />

parts of the Earth crust in their<br />

expansion and increasing of areas and<br />

volumes (e.g. consolidation of<br />

mineralogical provinces) tend to<br />

characteristic symmetry parameters of<br />

lithosphere.


SYMMETRY SPECIFICITY OF MINERAL WORLD<br />

68.73% (!) of known mineral types<br />

98.01% (!!!) weight % of Earth matter<br />

Primary crystallographic classes of mineral world<br />

(48.69% of mineral types; 80.85 weight % of mineral matter)


PARAMETIRS OF CRYSTALLOSYMMETRIC<br />

STRUCTURE<br />

OF MINERAL SYSTEMS<br />

Parameters of distribution of minerals among symmetry categories,<br />

systems, point groups;<br />

•Generalized symmetry indices (Is const, Is conc);<br />

•Informational entropy of crystallosymymmetric structure (Hs );<br />

•Density of atom emplacement<br />

INDEX OF GENERALIZED SYMMETRY (I S )<br />

MOST “CONDENSED” SYMMETRY INFORMATION<br />

P – symmetry rank (crystal system): tricl. – 0, monocl. – 1, orth. – 2, trig.<br />

– 3, tetr. – 4, hexag. – 5, cubic – 6.<br />

PR – percentage of occurrence of mineral species of the given rank (crystal<br />

system); ∑ PR = 100%.<br />

INFORMATIONAL ENTROPY<br />

DESITY OF ATOM EMPLACEMENT<br />

Pa = (KaVa+KbVb+…)Z<br />

Vu.c.<br />

Vu.c. – unit cell volume<br />

Ka, Kb – number of atoms A, B, …. In the formula<br />

Va, Vb – atomic volume in ionization state


OBJECTS<br />

(COMPLEX<br />

MINERAL<br />

SYSTEMS)<br />

METEORITES<br />

(CHQNDERITES)<br />

LITHOSPHERE OF<br />

THE MOON<br />

LITHOSPHERE OF<br />

THE EARTH<br />

BIOMINERALS<br />

(ALL)<br />

CRYSTAL<br />

LOCHEMI<br />

CAL<br />

ENTROPY<br />

Нkx, bit<br />

INDEX OF<br />

GENERAL<br />

IZED<br />

SYMMETR<br />

Y Is,%<br />

ENTROPY OF MI-<br />

NERAL DISTRI-<br />

BUTION BETWEEN<br />

CRYSTAL<br />

SYSTEMS<br />

He, bit<br />

POINT<br />

GROUPS<br />

Нв . с .<br />

PERCENTAGE OF THE NUMBER OF MINERAL SPECIS WITH<br />

REFERENCE TO THE EARTH'S CRUST<br />

INTERME<br />

TALLIC<br />

COMPOU<br />

NDS<br />

CARD<br />

BONA<br />

TES<br />

CHAL<br />

COGE<br />

NIDES<br />

OXIDES<br />

AND<br />

HYDROXI<br />

DES<br />

OXOS<br />

AETS<br />

HALOGE<br />

NIDES<br />

2, 38 62,5 2,6 3,28 5,62 - 1,12 1,23 0,81 0,69<br />

2,64 55,67 2,58 3,42 1,18 - 0,93 1,26 0,82 0,6<br />

3,46 42,56 2,56 3,69 1,0 1,0 1,0 1,0 1,0 1,0<br />

1,96 42,68 2,6 3,07 1,12 - 0,42 0,74 1,26 0,62<br />

PHYSIOMINERALS 2,86 61,26 2,37 3,32 5,52 - 1,02 1,4 0,77 1,59<br />

TECHNOGENIC<br />

(BURNT COAL<br />

MINERALS DUMPS)<br />

GENERALIZED MINERALOGICAL AND<br />

CRYSTALLOGRAPHIC CHARACTERISTICS<br />

OF GLOBAL GEOLOGIC OBJECTS<br />

3,02 47,74 2,54 3,3 0,83 4,97 0,42 1,77 0,91 2,22<br />

DISTRIBUTION OF MINERAL TYPES BY CATEGORIES AND<br />

SYNGONIES. %<br />

(ACCORDING TO M.N. OSTROUMOV AND L. N.<br />

KULYAMIN)<br />

Index Earth crust Oceanic<br />

lithosphere<br />

Category, syngony<br />

Higher, cubic C<br />

Medium<br />

Hexagonal H<br />

Tetragonal TETR<br />

Trigonal TRIG<br />

Lower<br />

Rhombic К<br />

Monoclinic<br />

Triclinic TRIC<br />

Symmetry index<br />

14.28<br />

26.88<br />

7.29<br />

9.38<br />

10.21<br />

58.75<br />

21.67<br />

30.26<br />

6.82<br />

42.56<br />

18.40<br />

28.84<br />

9.82<br />

10.43<br />

8.59<br />

52.76<br />

22.70<br />

22.08<br />

7.98<br />

49.08<br />

Oceanic lithosphere<br />

K 22,70 – М 22,06 –C 18,40 – ТETR 10,43 –H 9,82 – ТRIG 8,59 – ТRIC 7,98<br />

Earth crust<br />

М 30,3 –K 21,7 –C 14,4 – ТRIG 10,2 – ТETR 9,4 –H 7,2 – ТRIC 6,3<br />

Provinces according to N.P.Yushkin<br />

Regions-countries ore<br />

13.46-15.20<br />

23.41-28.08<br />

4.56-7.29<br />

7.60-9.40<br />

10.21-13.30<br />

58.46-61.39<br />

21.67-24.01<br />

21.39-34.21<br />

4.86-5.42<br />

43.11-48.14<br />

13.16-21.47<br />

25.42-28.39<br />

5.75-7.74<br />

6.78-10.97<br />

9.86-12.64<br />

50.97-60.53<br />

19.74-24.29<br />

30.83-32.52<br />

3.45-7.74<br />

41.88-50.10


Syngony of<br />

minerals<br />

Cubic<br />

Hexagonal<br />

Trigonal<br />

Tetragonal<br />

Rhombic<br />

Monoclinic<br />

Triclinic<br />

COMPARISON OF DISTRIBUTION OF MINERALS<br />

OF DIFFERENT SYNGONY IN GOLD DEPOSITS IN YAKUTIA<br />

KIMBERLITES AND ALLUVIAL DEPOSITS (%)<br />

(ACCORDING TO N.A.SHILO, 2002)<br />

Gold deposits Yakutia<br />

Volcanogenic<br />

Ore Vein<br />

Plutonogenic<br />

Ore vein<br />

kimberl<br />

ites<br />

41 7.3 50<br />

- 21.3<br />

5.9 14.2 8.2 8.5 10<br />

5.8 14.2 8.2 33.5 8.4<br />

5.9 21.4 16.5 -<br />

3.5<br />

17.8 14.2 12.5 16.5 20.2<br />

17.8 21.4 4.5 41.5 28.7<br />

5.8 7.3<br />

-<br />

-<br />

8.7<br />

CONCENTRATION PARAMETERS OF<br />

CRYSTALLOSYMMETRIC<br />

STRUCTURE OF MAIN ROCK TYPES<br />

Rock types<br />

Magmatic rocks<br />

(medium)<br />

Dunites<br />

Basalts<br />

Granites<br />

Metamorphic rocks<br />

Eclogites<br />

Granulites<br />

Gneisses<br />

Shales<br />

Sedimentogenic rocks<br />

Symmetry Index, Is % Structural density, Pa<br />

Alluvial<br />

deposit<br />

s<br />

37.8<br />

4.8<br />

8.8<br />

16.5<br />

23.4<br />

8.7<br />

-


GENERALIZED CHARACTERISTICS OF THE MINERAL<br />

SYSTEMS (Pa; Iscone [Is const ]; Hcch)


Distribution of mineral types of meteorite, lunar and Earth matter (1), and also synthetic<br />

non-organic (2), organic (3) compounds and biominerals (4) in the crystallographic<br />

symmetry system.<br />

TWO STATISTICAL SERIES OF PRINCIPLE POINT GROUPS<br />

(framed are the point groups to which<br />

the overwhelming majority of minerals belong)<br />

mineral and inorganic compounds:<br />

organic compounds of non-biogenic origin:<br />

Typomorphic biogenic point groups<br />

belong to common branch of the series:


Схема разв<strong>и</strong>т<strong>и</strong>я Вселенной<br />

CRYSTALLINE UNIVERSE<br />

The world of flatfaced crystals is one of the components of the<br />

curved Universe substance, but it looks as if the Universe is also<br />

a crystal. Up-to-date astronomic and cosmological data prove<br />

the idea of finite Universe and its specific topology. The two<br />

models that are mostly studied are based on a dodecahedron.<br />

They are Seifert – Weber diversity with dodecahedron concave<br />

faces (a) and Poincaré dodecahedral space with convex faces (b)<br />

a b<br />

These models have been mathematically studied from the positions<br />

of three-dimensional transformations (W. Thurston and J. Weeks , 1984).


UNIVERSE ACCORDING TO SEIFERT– WEBER,<br />

GOT BY EXPANDING OF A DODECAHEDRON IN<br />

HYPERBOLIC SPACE<br />

Four stages of inflation are shown.<br />

J.-P. Luminet’s research group, on the<br />

basis of new data, got by means of<br />

NASA’s Wilkinson Microwave<br />

Anisotropy Probe (WMAP), showed the<br />

possibility of the closed Universe<br />

existence in the form of a Poincaré<br />

dodecahedron with positive curvature<br />

and quite small size.<br />

Such Universe expands not in a chaotic<br />

way but like one bubble, and we can see<br />

almost all the way round it.<br />

But it is not clear whether there are<br />

punctures of this bubble and if it can<br />

blow out?<br />

The Universe dodecahedron faces are pentagonal;<br />

their face symmetry is five-fold.<br />

Al 6Mn<br />

In crystals, a five-fold axis has always been considered forbidden because it is<br />

impossible to fill up some crystalline space with pentagons without leaving<br />

cavities.<br />

However, having discovered specific substance condition - quasi-crystalline – it is<br />

possible to say that textures and three-dimensional icosahedra with quintuple<br />

symmetry axis exist.<br />

Thus, five-fold symmetry got into the mineral world, and hexad symmetry is<br />

getting from the mineral kingdom into biological one.


FILD OF ETICS<br />

AND SENSE<br />

BIOLOGY<br />

SYSTEMS<br />

UNIVERSE MINERAL<br />

SYSTEMS<br />

Thus, the five-fold symmetry<br />

line is observed in the<br />

spheres of esthetics and<br />

sense and goes deep into the<br />

Universe depth. Perhaps, in<br />

the future, scientists will<br />

construct Universe models<br />

on the basis not of<br />

dodecahedral crystals, but a<br />

penta-axis icosahedron.<br />

The symmetry L5 in the process of<br />

the material world investigation is<br />

getting more and more mysterious<br />

and attractive for natural scientists.


АСТРОФИЗИЧЕСКИЕ СТАДИИ ЭВОЛЮЦИИ<br />

ВСЕЛЕННОЙ


Comparative analysis of structure,<br />

functioning and development of<br />

biologic and mineral systems and<br />

study of functions of biominerals<br />

in living organisms cast doubts on<br />

existence of mineral roots of the<br />

living world. Prebiologic<br />

informational structures, gene<br />

predecessors and protoorganisms<br />

should be looked for among<br />

abiogenic ordered hydrocarbon<br />

molecular systems that are in<br />

common substantional<br />

hydrocarbon field of coexistence<br />

of biological and mineral<br />

structures.


ELEMENT CONCENTRATIONS IN LIVING SYSTEMS AND<br />

FIBROUS KERITE (%)<br />

LIVING HUMAN PROTEINS FIBROUS<br />

SUBSTANCE BODY<br />

KERITE<br />

H 10.5 62.8 6.5 - 7.3 5.02 – 7.06<br />

O 70.0 25.4 21 – 24 9 – 23<br />

C 18.0 9.4 50 – 55 60.38 – 76.51<br />

N 0.3 1.4 15 - 18 9<br />

C 491 H 386 O 87 S(N)<br />

Main structural elements of life – C*, H, N, O, P, S, Na, K, F, Mg, Si, Ca<br />

Catalysts – Fe, Cu, B, Mn, J<br />

*Elements incorporated in kerite are in bold<br />

type


Ecosystem of a fibrous hydrocarbon crystal<br />

There are two major conceptual<br />

lines in natural sciences in dealing<br />

with the problem of abiogenesis:<br />

• genobiosis, which postulates the<br />

priority of a molecular system with<br />

properties of the initial genetic code<br />

•holobiosis, or cellobiosis arguing<br />

that life has evolved from cell-like<br />

structures with elementary metabolic<br />

processes involving ferments.<br />

Our sights into the biomorphous<br />

hydrocarbon structures brought us to<br />

accept organismobiosis as the most<br />

realistic, i.e. evolution of structures<br />

and functions in ordered molecular<br />

hydrocarbon systems,<br />

protoorganisms, which gave rise to<br />

biological systems.<br />

MAJOR THEORIES OF ABIOGENESIS<br />

COACERVATE THEORY<br />

A.I. Oparin (1924, 1975)<br />

THEORY OF HYPERCYCLES<br />

M.Eigen et al. (1981)<br />

THEORY OF GENETIC TAKEOVER<br />

A.G. Cairns-Smith (1971, 1982)<br />

THEORY OF MINERAL ORGANISMOBIOSIS<br />

(Hydrocarbon crystallization of life)<br />

N.P.Yushkin (1994, 1999, 2000)


■ More homologous to bioorganisms abiogenous<br />

hydrocarbon structures crystallize:<br />

● under relatively high temperature and high-baric conditions<br />

● in the aqueous-gas mineralized medium of the carbonatechloride-sulfate<br />

magnesium-potassium-sodium composition<br />

● in the presence of ammonia, sulfur dioxide gases,<br />

methane, carbonic acid and other components<br />

● in the low redox potential environment.<br />

Presumably, biological life could begin under similar conditions.<br />

■ More homologous to bioorganisms abiogenous<br />

hydrocarbon structures crystallize:<br />

● under relatively high temperature and high-baric conditions<br />

● in the aqueous-gas mineralized medium of the carbonatechloride-sulfate<br />

magnesium-potassium-sodium composition<br />

● in the presence of ammonia, sulfur dioxide gases,<br />

methane, carbonic acid and other components<br />

● in the low redox potential environment.<br />

Presumably, biological life could begin under similar conditions.


ЭВОЛЮЦИОННЫЕ ЗАКОНОМЕРНОСТИ<br />

Общ<strong>и</strong>й рост <strong>м<strong>и</strong>нералов</strong>, усложнен<strong>и</strong>е структуры<br />

м<strong>и</strong>нерального м<strong>и</strong>ра, увел<strong>и</strong>чен<strong>и</strong>е его разнообраз<strong>и</strong>я с<br />

течен<strong>и</strong>ем геолог<strong>и</strong>ческого времен<strong>и</strong>.<br />

Эволюц<strong>и</strong>я “куб<strong>и</strong>ческого” <strong>и</strong>л<strong>и</strong> “кубо-ромб<strong>и</strong>ческого”<br />

м<strong>и</strong>нерального м<strong>и</strong>ра в “монокл<strong>и</strong>нной” от ранн<strong>и</strong>х этапов<br />

разв<strong>и</strong>т<strong>и</strong>я Земл<strong>и</strong> к современному, сн<strong>и</strong>жен<strong>и</strong>е с<strong>и</strong>мметр<strong>и</strong><strong>и</strong><br />

вещества на фоне сохраняющейся высокой (а может быть <strong>и</strong><br />

повышающейся с<strong>и</strong>мметр<strong>и</strong><strong>и</strong> самой Земл<strong>и</strong>)<br />

Накоплен<strong>и</strong>е усложнен<strong>и</strong>й м<strong>и</strong>неральных с<strong>и</strong>стем в верхн<strong>и</strong>х<br />

частях земной коры, особенно у поверхност<strong>и</strong> гео<strong>и</strong>да.


Дв<strong>и</strong>жущей с<strong>и</strong>лой эволюц<strong>и</strong><strong>и</strong> м<strong>и</strong>нерального м<strong>и</strong>ра<br />

является стремлен<strong>и</strong>е разв<strong>и</strong>вающ<strong>и</strong>хся м<strong>и</strong>неральных с<strong>и</strong>стем к<br />

равновесному состоян<strong>и</strong>ю в услов<strong>и</strong>ях закономерно непрерывной<br />

потер<strong>и</strong> Землёй тепла, дост<strong>и</strong>гшей за 4,5 млрд лет около 7,1⋅10 29 кал.<br />

Направленное <strong>и</strong>зменен<strong>и</strong>е термод<strong>и</strong>нам<strong>и</strong>ческ<strong>и</strong>х услов<strong>и</strong>й определяет<br />

действ<strong>и</strong>е всех эволюц<strong>и</strong>онных механ<strong>и</strong>змов: д<strong>и</strong>фференц<strong>и</strong>ац<strong>и</strong>я, м<strong>и</strong>грац<strong>и</strong>я <strong>и</strong><br />

концентрац<strong>и</strong><strong>и</strong> вещества, <strong>и</strong>зменч<strong>и</strong>вост<strong>и</strong> м<strong>и</strong>нералообразующей среды <strong>и</strong><br />

акт<strong>и</strong>вност<strong>и</strong> её компонентов, б<strong>и</strong>ом<strong>и</strong>неральных вза<strong>и</strong>модейств<strong>и</strong>й <strong>и</strong> др.<br />

Потеря тепла л<strong>и</strong>тосферой <strong>и</strong>дёт с земной поверхност<strong>и</strong>, поэтому <strong>и</strong><br />

эволюц<strong>и</strong>онные процессы на<strong>и</strong>более <strong>и</strong>нтенс<strong>и</strong>вно <strong>и</strong> энерг<strong>и</strong>чно протекают, как<br />

впервые замет<strong>и</strong>л Д. В. Рундкв<strong>и</strong>ст, у земной поверхност<strong>и</strong>. Рудосфера,<br />

обязанная сво<strong>и</strong>м про<strong>и</strong>схожден<strong>и</strong>ем разнообразным процессам<br />

д<strong>и</strong>фференц<strong>и</strong>ац<strong>и</strong><strong>и</strong>, переотложен<strong>и</strong>я <strong>и</strong> концентрац<strong>и</strong><strong>и</strong> вещества, по этой же<br />

пр<strong>и</strong>ч<strong>и</strong>не зан<strong>и</strong>мает самую внешнюю часть л<strong>и</strong>тосферы выше <strong>и</strong>зограды 600-<br />

700°C (кр<strong>и</strong>т<strong>и</strong>ческая зона).<br />

ЧТО<br />

ВПЕРЕДИ?


БЛАГОДАРЮ<br />

ЗА ВНИМАНИЕ!<br />

ВНИМАНИЕ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!