28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 4. Asymptotiques <strong>de</strong> la probabilité <strong>de</strong> ruine<br />

with d+ = √ uθ0 + α/(2 √ θ0) and d− = √ uθ0 − α/(2 √ θ0). We <strong>de</strong>duce that<br />

I(u, θ0) = θ0<br />

√<br />

u<br />

α euθ0<br />

<br />

1 − 1<br />

α √ <br />

e<br />

u<br />

α√u erfc (d+)<br />

<br />

+ 1 + 1<br />

α √ <br />

e<br />

u<br />

−α√u erfc (d−) −<br />

2<br />

√ e<br />

πuθ0<br />

−uθ0−α2 <br />

/(4θ0)<br />

.<br />

By reor<strong>de</strong>ring the terms, we get the formula of Albrecher et al. (2011), which is<br />

<br />

−αc/4λ<br />

I(u, θ0) = e e (cα+2λ√u) 2 /4λc −1 + α √ u erfc (d+)<br />

+e (cα−2λ√u) 2 /4λc 1 + α √ u erfc (d−) − 2α<br />

<br />

.<br />

πλ/c<br />

4.6.3 For the discrete time mo<strong>de</strong>l<br />

Geometric distribution<br />

In this subsection, we study the geometric distribution, its properties and its minor extensions.<br />

Classic geometric distribution The geometric distribution G(p) is characterized by the<br />

following probability (mass) function<br />

P (X = k) = p(1 − p) k ,<br />

where k ∈ N and 0 ≤ p ≤ 1. Note that it takes values in all integers N. Another <strong>de</strong>finition of<br />

the geometric distribution is p(1 − p) k−1 so that the random variable takes values in strictly<br />

positive integers. In this case, we can interpret this distribution as the distribution of the first<br />

moment we observe a specific event occuring with probability p in a serie of in<strong>de</strong>pe<strong>de</strong>nt and<br />

i<strong>de</strong>ntically distributed Bernoulli trials.<br />

The probability generating function is given by<br />

p<br />

GX(z) =<br />

1 − (1 − p)z .<br />

With this characterizition, it is straightforward to see that summing n geometric random<br />

variates G(p) has a negative binomial distribution N B(n, 1−p), see, e.g., Chapter 5 of Johnson<br />

et al. (2005). The first two moments can be <strong>de</strong>rived E(X) = (1−p)/p and V ar(X) = (1−p)/p 2<br />

when p > 0. In the following subsection, a net profit condition will force E(X) < 1 which is<br />

quivalent to p > 1/2. Furthermore, we also have P (X > k) = (1 − p) k+1 .<br />

Modified geometric distributions The geometric distribution will be used to mo<strong>de</strong>l the<br />

claim severity. It is very restrictive to mo<strong>de</strong>l claims by a one-parameter distribution. Thus, we<br />

introduce two modified versions of the classic geometric distributions: 0-modified geometric<br />

distribution and 0,1-modified geometric distribution.<br />

The principle is simple, we modify respectively the first and the first two probabilities of<br />

the probability function. Firstly, we introduce the 0-modified geometric distribution. That is<br />

X ∼ G(q, ρ) when<br />

208<br />

<br />

P (X = k) =<br />

q if k = 0,<br />

(1 − q)ρ(1 − ρ) k−1 otherwise.<br />

,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!