28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 4. Asymptotiques <strong>de</strong> la probabilité <strong>de</strong> ruine<br />

Proof. Since for u, v ≤ q = FW1 (0), both functions DW1,W2 and DZ1,Z2 are zero, we have<br />

max<br />

i,j≥0 ∆i,j = max<br />

i,j≥1 ∆i,j.<br />

Using Lemma 4.4.5, the function x ↦→ LΘ(x) − (1 − q)LΘ(x + c) is convex <strong>de</strong>creasing. Thus,<br />

x ↦→ LΘ(x) − (1 − q)LΘ(x + c) is concave increasing. We get back to the proof of Proposition<br />

4.4.4. So, it follows that the maximal difference is the stairstep ∆∞,1.<br />

Graphical comparison<br />

As already said, functions DZ1,Z2 and DW1,W2 are not copula but only distribution functions.<br />

We plot on Figure 4.4 these two functions when Θ is gamma distributed Ga(2, 4) with<br />

parameter q = 0.3. The appropriate way to <strong>de</strong>al with <strong>non</strong>-i<strong>de</strong>ntifiability issues is again to use<br />

the interpolated copula C .<br />

1.0<br />

0.8<br />

C(u,v)<br />

0.6<br />

Continuous case - Gamma G(2,4), q=0.3<br />

0.4<br />

0.2<br />

0.0<br />

0.0<br />

0.2<br />

0.4<br />

u<br />

0.6<br />

4.5 Conclusion<br />

0.8<br />

1.00.0<br />

(a) Continuous case<br />

0.2<br />

0.4<br />

0.6<br />

v<br />

1.0<br />

0.8<br />

0.0<br />

0.0<br />

0.2<br />

0.4<br />

Figure 4.4: Comparison of distribution functions DZ1,Z2<br />

1.0<br />

0.8<br />

H(u,v)<br />

0.6<br />

0.4<br />

Discrete case - Gamma G(2,4), q=0.3<br />

0.2<br />

u<br />

0.6<br />

0.8<br />

1.00.0<br />

(b) Discrete case<br />

0.2<br />

0.4<br />

0.6<br />

v<br />

and DW1,W2<br />

This paper uses a new class of <strong>de</strong>pen<strong>de</strong>nt risk mo<strong>de</strong>ls, where the <strong>de</strong>pen<strong>de</strong>nce is based on a<br />

mixing approach. Emphasis has been put on infinite time ruin probability asymptotics. This<br />

paper validates the A + B/u rule suggested in Example 2.3 of Albrecher et al. (2011). The<br />

asymptotic rule applies both when the claim amounts or the waiting times are correlated. In<br />

the ruin literature, even when some <strong>de</strong>pen<strong>de</strong>nce is ad<strong>de</strong>d in the claim arrival process, e.g.,<br />

a Markovian setting or a specific <strong>de</strong>pen<strong>de</strong>nce for the claim severity and waiting time, the<br />

<strong>de</strong>creasing shape of the ruin probability remains unchanged compared to the corresponding<br />

in<strong>de</strong>pen<strong>de</strong>nt case, either exponential e −γu or polynomial u −α . Hence, our particular mixing<br />

approach, leading to A + B/u asymptotics, significantly worsens the situation for the insurer.<br />

204<br />

1.0<br />

0.8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!