28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 4. Asymptotiques <strong>de</strong> la probabilité <strong>de</strong> ruine<br />

Getting back the original <strong>de</strong>finition, we have<br />

∆i,0 = P (W1 ≤ i, W2 ≤ 0) = P (W1 ≤ i, W2 ≤ 0) = 1 − LΘ(i + 1) − LΘ(1) + LΘ(i + 2).<br />

Since LΘ is convex, the sequence LΘ(i + 2) − LΘ(i + 1) is an increasing sequence. We conclu<strong>de</strong><br />

that (∆i,1)i is increasing, so the maximum is attained at +∞. Therefore,<br />

max<br />

i,j ∆i,j = ∆+∞,0 = P (W1 ≤ +∞, W2 ≤ 0) = P (W2 = 0).<br />

On Figure 4.2, we investigate the numerical differences with a given distribution for the<br />

latent variable. We consi<strong>de</strong>r Θ follows a gamma distribution Ga(2, 4). In other words, we<br />

assume<br />

α λ<br />

LΘ(t) = ⇔ L<br />

λ + t<br />

−1<br />

Θ (z) = λ(z−1/α − 1),<br />

with α = 2, λ = 4. We plot the unique continuous copula CY1,Y2 and the distribution function<br />

, left-hand and right-hand graphs, respectively.<br />

DW1,W2<br />

1.0<br />

0.8<br />

C(u,v)<br />

0.6<br />

0.4<br />

0.2<br />

Continuous case - Gamma G(2,4)<br />

0.0<br />

0.0<br />

0.2<br />

0.4<br />

u<br />

0.6<br />

0.8<br />

1.00.0<br />

0.2<br />

(a) Continuous case<br />

0.4<br />

0.6<br />

v<br />

1.0<br />

0.8<br />

Figure 4.2: Comparison of copula CY1,Y2<br />

1.0<br />

0.8<br />

H(u,v)<br />

0.6<br />

0.4<br />

0.2<br />

Discrete case - Gamma G(2,4)<br />

0.0<br />

0.0<br />

0.2<br />

0.4<br />

u<br />

0.6<br />

0.8<br />

1.00.0<br />

(b) Discrete case<br />

0.2<br />

0.4<br />

0.6<br />

v<br />

1.0<br />

0.8<br />

and distribution function DW1,W2<br />

CY1,Y2 passes through all the top-left corners of the stairs <strong><strong>de</strong>s</strong>cribed by HW1,W2 . The grid of<br />

points used for the graphs is {(FW1 (n), FW2 (m)), n, m ∈ N}. As n increases, the distribution<br />

function FW1 (n) tends 1, so there infinitely many stairs towards the point (1, 1). Graphically,<br />

the maximal stairstep corresponds to (u, v) = (1, FW2 (0)) or (FW1 (0), 1) and ∆∞,0 = 0.36.<br />

The maximal stairstep is also the maximum difference between copula CY1,Y2 and distribution<br />

function DW1,W2 .<br />

4.4.3 Non-i<strong>de</strong>ntifiability issues<br />

The function DW1,W2 is not a copula but only a distribution function. The maximal<br />

stairstep leads to the question of the maximal differences between two copulas satisfying<br />

200

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!