28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

4.4. Focus on the <strong>de</strong>pen<strong>de</strong>nce structure<br />

Lemma 4.4.2. Let f be a continuous concave (resp. convex) function on a set S. Then the<br />

sequence (f(xi) − f(xi−1))i with xi = x0 + iδ is <strong>de</strong>creasing (resp. increasing).<br />

Proof. Let ˜ Fi : [xi−1, xi+1] ↦→ R be <strong>de</strong>fined as<br />

˜Fi(x) =<br />

x − xi−1<br />

xi+1 − xi−1<br />

f(xi−1) + xi+1 − x<br />

f(xi+1).<br />

xi+1 − xi−1<br />

Since f is concave, we have for all x ∈ [xi−1, xi+1], f(x) ≥ ˜ Fi(x). In particular for x = xi, we<br />

get<br />

f(xi) ≥ (f(xi−1) + f(xi+1))/2 ⇔ f(xi) − f(xi−1) ≥ f(xi+1) − f(xi).<br />

Lemma 4.4.3. Let f be a completely monotone function and c > 0. The function fc : x ↦→<br />

f(x) − f(x + c) is also completely monotone.<br />

Proof. As f being completely monotone, (−1) n f (n) is <strong>de</strong>creasing. Furthermore, we have<br />

(−1) n f (n)<br />

c (x) = (−1) n f (n) (x) − (−1) n f (n) (x + c) ≥ 0<br />

as x < x + c. Thus fc is completely monotone.<br />

In particular, if f is convex <strong>de</strong>creasing, then x ↦→ f(x) − f(x + c) is also convex <strong>de</strong>creasing,<br />

and x ↦→ f(x + c) − f(x) is concave increasing.<br />

Let ∆i,j be the height of stairstep in the graphical representation of the distribution<br />

function DW1,W2 . We have ∆i,j = DW1,W2 (xi, yj) − DW1,W2 (xi−1, yj−1), where xi, yj ∈<br />

Im(FW1 ) × Im(FW2 ), i.e. xi = FW1 (i) and yj = FW2 (j).<br />

Proposition 4.4.4. The maximal stairstep, representing the highest difference between distribution<br />

functions DW1,W2 and CY1,Y2 , is ∆∞,0 = ∆0,∞.<br />

Proof. We are looking for the maximum of ∆i,j. By algebraic manipulations, we have<br />

DW1,W2 (xi, yj) = P (W1 ≤ i, W2 ≤ j) = 1 − LΘ(i + 1) − LΘ(j + 1) + LΘ(i + j + 2).<br />

Since LΘ is completely monotone, the function x ↦→ LΘ(x + c) − LΘ(x) is concave increasing,<br />

cf. Lemma 4.4.3. Similarly, for a constant c > 0, the function gc : x ↦→ 1 − LΘ(c + 1) − LΘ(x +<br />

1) + LΘ(x + 2 + c) is concave increasing.<br />

Furthermore, we have<br />

∆i,j = DW1,W2 (xi, yj) − DW1,W2 (xi, yj−1) + DW1,W2 (xi, yj−1) − DW1,W2 (xi−1, yj−1)<br />

Using the function f <strong>de</strong>fined above, we have DW1,W2 (xi, yj)−DW1,W2 (xi, yj−1) = gi(j)−gi(j −<br />

1). Hence, (DW1,W2 (xi, yj) − DW1,W2 (xi, yj−1))j is a <strong>de</strong>creasing sequence, using Lemma 4.4.2<br />

and gi is concave. DW1,W2 (xi, yj−1) − DW1,W2 (xi−1, yj−1) = gi+1(j + 1) − gi+1(j) + LΘ(i) −<br />

LΘ(i + 1). By Lemma 4.4.3, the function gi+1 is concave and by Lemma 4.4.2 the sequence<br />

(H(xi, yj−1) − H(xi−1, yj−1))j is <strong>de</strong>creasing.<br />

Therefore for a fixed i, (∆i,j)j is a sum of two <strong>de</strong>creasing sums of j. Since Archime<strong>de</strong>an<br />

copulas are symmetric, we <strong>de</strong>duce<br />

max<br />

i,j≥0 ∆i,j = max<br />

i≥j ∆i,j = max<br />

i≥0 max<br />

i≥j≥0 ∆i,j = max<br />

i<br />

∆i,0.<br />

199

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!