28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 4. Asymptotiques <strong>de</strong> la probabilité <strong>de</strong> ruine<br />

Discrete case<br />

If Y follows an exponential distribution E(θ), then W = ⌊Y ⌋ follows a geometric distribution<br />

G(1 − e −θ ), where ⌊x⌋ <strong>de</strong>notes the floor function. In<strong>de</strong>ed, we have<br />

P (W = k) = P (Y ∈ [k, k + 1[) = e −θk (1 − e −θ ).<br />

Furthermore, P (W > x) = F Y (⌊x⌋ + 1) = e −θ(⌊x⌋+1) and P (W ≤ x) = FY (⌊x⌋ + 1) =<br />

1 − e −θ(⌊x⌋+1) for all x ∈ R. Hence, the distribution function FW and FY only coinci<strong>de</strong> for<br />

integer values with a shift, i.e. FW (n) = FY (n + 1) for all n ∈ N.<br />

Using the same assumption for Y1 and Y2 as in Subsection 4.4.1, we look at the <strong>de</strong>pen<strong>de</strong>nce<br />

of W1, W2 with Wi = ⌊Yi⌋, i = 1, 2. The distribution function is given by<br />

FW1 (x) = P (W1 ≤ x) = P (⌊Y1⌋ ≤ x) = P (Y1 < ⌊x⌋ + 1) = P (Y1 ≤ ⌊x⌋ + 1) = 1 − LΘ(⌊x⌋ + 1),<br />

for x ∈ R+. In this case, the random variable FWi (Wi) is not uniform on [0,1] since<br />

P (FW1 (W1) ≤ u) = P (W1 ≤ L −1<br />

Θ (1 − u) − 1) = 1 − LΘ<br />

Their joint distribution function is given by<br />

DW1,W2 (u, v) = P (FW1 (W1) ≤ u, FW2 (W2) ≤ v) = P (W1 ≤ L −1<br />

=<br />

∞<br />

0<br />

(1 − e θ(⌊L−1<br />

Θ (1−u)−1⌋+1) )(1 − e θ(⌊L−1<br />

Θ (1−v)−1⌋+1) )dFΘ(θ).<br />

The distribution function of (FW1 (W1), FW2 (W2)) can be rewritten as<br />

⌊L −1<br />

Θ (1 − u)⌋ = u.<br />

Θ (1 − u) − 1, W2 ≤ L −1<br />

Θ<br />

DW1,W2 (u, v) = 1 − LΘ (⌊lu⌋) − LΘ (⌊lv⌋) + LΘ (⌊lu⌋ + ⌊lv⌋) , (4.11)<br />

where lp = L −1<br />

Θ (1 − p). Equations (4.10) and (4.11) differ by the use of the floor function in<br />

the arguments of LΘ.<br />

Remark 4.4.1. If one uses another parametrization for Wi than the geometric distribution<br />

G(1 − e −θ ), then we have to replace all the Laplace transform by an appropriate expectation.<br />

For example, if we consi<strong>de</strong>r G(e −θ ), we use E((1 − e −Θ ) x ) instead of LΘ(x).<br />

4.4.2 Differences between CY1,Y2 and DW1,W2<br />

Before looking at the differences between CY1,Y2 and DW1,W2 , we check that these distribution<br />

functions (<strong>de</strong>fined in Equations (4.10) and (4.11)) are i<strong>de</strong>ntical on the support of<br />

(FW1 , FW2 ). Let Im(FWi ) be the inverse image by FWi of the integer set N. Let u ∈ Im(FW1 )<br />

and v ∈ Im(FW2 ), i.e. there exist n, m ∈ N, such that u = FW1 (n) and v = FW2 (m). Firstly,<br />

we have<br />

u = FW1 (n) = FY1 (n + 1) and v = FW2 (m) = FY2 (m + 1).<br />

Secondly, functions CY1,Y2<br />

and DW1,W2 can be written as<br />

CY1,Y2 (u, v) = P (FY1 (Y1) ≤ FY1 (n + 1), FY2 (Y2) ≤ FY2 (m + 1)) = P (Y1 ≤ n + 1, Y2 ≤ m + 1).<br />

and<br />

DW1,W2 (u, v) = P (FW1 (W1) ≤ FW1 (n), FW2 (W2) ≤ FW2 (m)) = P (W1 ≤ n, W2 ≤ m).<br />

Hence, both functions CY1,Y2 (u, v) and DW1,W2 (u, v) are equal for u, v ∈ Im(FW1 ) × Im(FW2 ).<br />

Now, we are going to <strong>de</strong>termine the maximal distance between CY1,Y2 (u, v) and DW1,W2 (u, v).<br />

For that, we begin by <strong>de</strong>riving two elementary lemmas.<br />

198<br />

(1 − v) − 1)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!