28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 4. Asymptotiques <strong>de</strong> la probabilité <strong>de</strong> ruine<br />

P(X>x) - log scale<br />

1e-07 1e-05 1e-03 1e-01<br />

Survival function - exp mixing<br />

1 10 100 1000 10000<br />

x - log scale<br />

(a) Exponential<br />

exact<br />

asympto<br />

P(X>x) - log scale<br />

1e-10 1e-08 1e-06 1e-04 1e-02<br />

Survival function - gamma mixing<br />

2 5 10 20 50 200 500 2000<br />

x - log scale<br />

(b) Gamma<br />

asympto<br />

exact<br />

Figure 4.1: Survival functions<br />

P(X>x) - log scale<br />

0.15 0.20 0.25 0.30<br />

Survival function - stable mixing<br />

5 10 50 500 5000<br />

x - log scale<br />

(c) Lévy stable<br />

then, they have a <strong>de</strong>pen<strong>de</strong>nce structure due to an Archime<strong>de</strong>an survival copula with generator<br />

, the inverse Laplace transform of Θ.<br />

φ = L −1<br />

Θ<br />

Therefore, in continuous time, the <strong>de</strong>pen<strong>de</strong>nce structure is simply an Archime<strong>de</strong>an copula.<br />

Regarding the discrete-time setting, things are more complicated: the <strong>de</strong>pen<strong>de</strong>nce among<br />

discrete random variables is a complex topic. Genest and Neslehova (2007) present issues<br />

linked to discrete copula. To better un<strong>de</strong>rstand the problem, we recall the Sklar theorem, see,<br />

e.g., Joe (1997); Nelsen (2006).<br />

Theorem (Sklar). Let H be the bivariate distribution function of a random pair (X, Y ). There<br />

exists a copula C such that for all x, y ∈ R,<br />

exact<br />

asympto<br />

H(x, y) = C(FX(x), FY (y)). (4.9)<br />

Furthermore, C is unique on the Cartesian product of the ranges of the marginal distributions.<br />

As a consequence, the copula C is not unique outsi<strong>de</strong> the support of the random variables<br />

X and Y . When X, Y are discrete variables in N, C is only unique on N 2 but not on R 2 \ N 2 .<br />

The <strong>non</strong>-i<strong>de</strong>ntifiability is a major source of issues. An example of discrete copulas is the<br />

empirical copula for observation sample (Xi, Yi)1≤i≤n.<br />

Some problems in the discrete case arise from the discontinuity of the distribution function<br />

of discrete random variables. Let B be a Bernoulli variable B(p). The distribution function<br />

FB, given by FB(x) = (1 − p) 1x≥0 + p 1x≥1, is discontinuous. Thus, the random variable<br />

FB(B) is not a uniform variable U(0, 1).<br />

Let us introduce Genest and Neslehova (2007)’s notation. Let A be the class of functions<br />

verifying Equation (4.9) for all x, y ∈ R for a given FX and FY . Let us <strong>de</strong>fine the function<br />

B as for all u, v ∈ [0, 1], B(u, v) = (F −1 −1<br />

X (u), FY (v)). We also <strong>de</strong>note by D the distribution<br />

function of the pair (FX(X), FY (Y )).<br />

With a simple bivariate Bernoulli vector, Example 1 of Genest and Neslehova (2007) shows<br />

that (i) functions B and D are different, (ii) B is not a distribution function <strong><strong>de</strong>s</strong>pite both B<br />

and D belong to the class A. Even in that simple support {0, 1} 2 , the i<strong>de</strong>ntifiability issue of<br />

the copula C cannot be discar<strong>de</strong>d. Proposition 1 of Genest and Neslehova (2007) extends to<br />

196

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!