28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 4. Asymptotiques <strong>de</strong> la probabilité <strong>de</strong> ruine<br />

(iii) If in addition fΘ is C k-1 almost everywhere on [0, θ0] and successive <strong>de</strong>rivatives of fΘ<br />

are boun<strong>de</strong>d on [0, θ0], then we have<br />

ψ(u) = ¯ k−1<br />

˜h<br />

FΘ(θ0) +<br />

(i) <br />

<br />

(0)<br />

1<br />

+ o<br />

,<br />

(u + 2) . . . (u + 2 + i) (u + 2) . . . (u + 2 + k − 1)<br />

i=0<br />

with ˜ h(x) = fΘ(− log(1 − xq))/(1 − xq) 2 .<br />

(iv) If fΘ is C ∞ on [0, θ0], then we have<br />

ψ(u) ∼<br />

u→+∞<br />

¯FΘ(θ0) +<br />

+∞<br />

i=0<br />

˜h (i) (0)<br />

(u + 2) . . . (u + 2 + i) .<br />

Proof. (i) From (4.5) and (4.6), the ruin probability is given by<br />

ψ(u) = ¯ θ0<br />

1 − q<br />

FΘ(θ0) + ψu(θ)dFΘ(θ), with ψu(θ) =<br />

0<br />

e−θ 1 − e −θ<br />

q<br />

u+1<br />

,<br />

where θ0 = − log(1 − q).<br />

First, we change the right-hand si<strong>de</strong> Stieltjes integral by using the survival function ¯ FΘ<br />

rather than the cumulative distribution function. We get<br />

ψ(u) = ¯ θ0<br />

FΘ(θ0) − ψu(θ)d<br />

0<br />

¯ FΘ(θ).<br />

Then, it is easy to see that both ψu and ¯ FΘ are also of boun<strong>de</strong>d variation on [0, θ0]. They<br />

also have boun<strong>de</strong>d variations since they are monotone. In addition, ψu is continuous. So by<br />

Corollary 7.1.23 of Silvia (1999), ¯ FΘ is Stieltjes integrable with respect to the function ψu.<br />

Then we apply the integration by part theorem on ψud ¯ FΘ reported in Appendix 4.6.5.<br />

We get<br />

ψ(u) = ¯ FΘ(θ0) − ψu(θ0) ¯ FΘ(θ0) + ψu(0) ¯ θ0<br />

FΘ(0) +<br />

0<br />

¯FΘ(t)dψu(t) =<br />

θ0<br />

0<br />

¯FΘ(t)dψu(t),<br />

using ψu(θ0) = 1 and ψu(0) = 0.<br />

Since ψu is continuously differentiable, the Stieltjes integral ¯ FΘdψu reduces to a Riemann<br />

integral. We have<br />

Therefore, we obtain<br />

ψ(u) =<br />

θ0<br />

0<br />

ψ ′ u(θ) = (1 − q)e θ<br />

<br />

1 − e−θ q<br />

u+1<br />

(1 − q)e t <br />

FΘ(t) ¯<br />

1 − e−t u+1 θ0<br />

dt +<br />

q<br />

0<br />

+ 1 − q<br />

(u + 1)<br />

q<br />

1 − e −θ<br />

q<br />

1 − q<br />

(u + 1)<br />

q<br />

¯ FΘ(t)<br />

u<br />

.<br />

1 − e −t<br />

Let J(u) = θ0<br />

0 ((1 − e−t )/q) u dθ. Making the change of variable qx = 1 − e −t , we have<br />

186<br />

J(u) = q<br />

1<br />

0<br />

1<br />

1 − xq xudx and q × 1<br />

q 1<br />

≤ J(u) ≤ ×<br />

u + 1 1 − q u + 1 .<br />

q<br />

u<br />

dt.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!