28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 4. Asymptotiques <strong>de</strong> la probabilité <strong>de</strong> ruine<br />

Calculus for absolutely continuous functions. So, absolute continuity of h on [a, b] is equivalent<br />

to h is almost everywhere differentiable [a, b] with h ′ being Lebesgue integrable on [a, b].<br />

Since t ↦→ θ0/(θ0 + t) is C ∞ on [0, b] for b > 0, h is absolutely continuous on [0, b] if and<br />

only if fΘ is. By assumption, fΘ is almost everywhere differentiable on R+ with f ′ Θ being<br />

Lebesgue integrable, hence h is absolutely continuous. Thus we have<br />

b<br />

0<br />

h(t)e −ut dt =<br />

<br />

h(t) e−ut<br />

b +<br />

−u 0<br />

1<br />

u<br />

As b tends to infinity, we get<br />

b<br />

0<br />

I(u, θ0) = h(0)<br />

u<br />

h ′ (t)e −ut dt = h(0)<br />

u<br />

+ 1<br />

u<br />

− h(b)e−bu<br />

u<br />

+∞<br />

h<br />

0<br />

′ (t)e −ut dt.<br />

+ 1<br />

u<br />

b<br />

h<br />

0<br />

′ (t)e −ut dt.<br />

Using a property of the Laplace transform, see, e.g., Chapter 19 of Jeffrey and Dai (2008), we<br />

have +∞<br />

Finally, we conclu<strong>de</strong><br />

0<br />

h ′ (t)e −ut dt −→<br />

u→+∞ 0.<br />

ψ(u) = FΘ(θ0) + fΘ(0)<br />

u<br />

<br />

1<br />

+ o .<br />

u<br />

is Lebesgue integrable, then<br />

h (i) is absolute continous for all i ≤ k. Applying k times the integration by part theorem, we<br />

get<br />

(iii) As fΘ is Ck − 1 almost everywhere on [θ0, +∞[ and f (k)<br />

Θ<br />

I(u, θ0) =<br />

k−1<br />

i=0<br />

h (i) (0) 1<br />

+<br />

ui+1 uk +∞<br />

h<br />

0<br />

(k) (t)e −ut dt.<br />

Similarly if h (k) (t) is boun<strong>de</strong>d on [θ0, +∞[, then the latter term is controlled by o 1/uk . Let<br />

g be the function t ↦→ θ0<br />

θ0+t . The ith-or<strong>de</strong>r <strong>de</strong>rivative of h, if it exists, can be <strong>de</strong>rived by the<br />

Leibniz formula<br />

Thus, we have<br />

h (i) (t) =<br />

i<br />

j=0<br />

k−1<br />

ψ(u) = FΘ(θ0) +<br />

i=0<br />

(iv) if fΘ is C ∞ , we have<br />

<br />

i<br />

j<br />

g (j) (t)f (i−j)<br />

Θ<br />

h (i) <br />

(0) 1<br />

+ o<br />

ui+1 uk <br />

(t + θ0) with g (j) (t) = (−1)jj!θ0 .<br />

(θ0 + t) j+1<br />

with h (i) (0) =<br />

ψ(u) ∼<br />

u→+∞ FΘ(θ0)<br />

+∞<br />

+<br />

i=0<br />

i<br />

(−1) j<br />

j=0<br />

h (i) (0)<br />

.<br />

ui+1 i!<br />

(i − j)!θ j f<br />

0<br />

(i−j)<br />

Θ (θ0).<br />

Unsurprisingly, we get back to asymptotic result (2.3.2) of (Olver et al., 2010, Chapter 2),<br />

since I(u, θ) is a Laplace transform.<br />

184

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!