28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

(iv) If fΘ is C ∞ on [θ0, +∞[, then we have<br />

ψ(u) ∼<br />

u→+∞ FΘ(θ0)<br />

+∞<br />

+<br />

i=0<br />

4.3. Asymptotics – the A + B/u rule<br />

h (i) (0)<br />

.<br />

ui+1 Proof. (i) From (4.1) and (4.2), the ruin probability is given by<br />

ψ(u) = FΘ(θ0) +<br />

+∞<br />

θ0<br />

ψu(θ)dFΘ(θ), with ψu(θ) = θ0<br />

θ e−u(θ−θ0) ,<br />

where θ0 = λ/c.<br />

Both ψu and FΘ are boun<strong>de</strong>d functions on [θ0, +∞[. They also have boun<strong>de</strong>d variations<br />

since they are monotone. In addition, ψu is continuous. So by Corollary 7.1.23 of Silvia (1999)<br />

or Theorem 12.1 of (Hil<strong>de</strong>brandt, 1971, Chap. 2), FΘ is Stieltjes integrable with respect to<br />

the function ψu.<br />

Then, we apply the integration by part theorem on ψudFΘ reported in Appendix 4.6.5.<br />

We get<br />

ψ(u) = FΘ(θ0) + lim<br />

b→+∞ ψu(b)FΘ(b) − ψu(θ0)FΘ(θ0) −<br />

+∞<br />

θ0<br />

FΘ(t)dψu(t).<br />

Since ψu is continuously differentiable, the Stieltjes integral FΘdψu reduces to a Riemann<br />

integral. We have<br />

ψ ′ u(θ) = −1<br />

θ2 θ0e −u(θ−θ0) θ0<br />

+<br />

θ (−u)e−u(θ−θ0) <br />

1 u<br />

= −θ0 + e<br />

θ2 θ<br />

−u(θ−θ0)<br />

.<br />

Furthermore, ψu(θ0) = 1 and<br />

Therefore, we obtain<br />

ψ(u) = θ0<br />

We get<br />

+∞<br />

θ0<br />

FΘ(t)<br />

lim<br />

b→+∞ ψu(b)FΘ(b) = 0.<br />

<br />

1 u<br />

+ e<br />

t2 t<br />

−u(t−θ0)<br />

dt ≤ θ0 max<br />

t∈[θ0,+∞[ FΘ(t)<br />

<br />

1 u<br />

+ ×<br />

t2 t<br />

ψ(u) ≤ FΘ(θ0) + 1<br />

u<br />

FΘ(θ0)<br />

× .<br />

θ0<br />

+∞<br />

θ0<br />

e −u(t−θ0) dt.<br />

(ii) Let I(u, θ0) = +∞<br />

θ0 ψu(θ)dFΘ(θ). We assume a continuous distribution for the mixing<br />

variable Θ and make the change of variable t = θ − θ0, we get<br />

I(u, θ0) =<br />

+∞<br />

0<br />

θ0<br />

θ0 + t fΘ(t + θ0)e −ut dt.<br />

We easily recognize a Laplace transform of the function h <strong>de</strong>fined as<br />

h(t) = θ0<br />

θ0 + t fΘ(t + θ0).<br />

The minimum condition to apply an integration by part theorem is to require h to be absolutely<br />

continuous, see Appendix 4.6.5. Heil (2007) reports a version of the Fundamental Theorem of<br />

183

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!