28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 4. Asymptotiques <strong>de</strong> la probabilité <strong>de</strong> ruine<br />

where γ(., .) <strong>de</strong>notes the incomplete lower gamma function. When x tends to infinity, only<br />

the term γ(b + 1, ˜x) changes and tends to Γ(b + 1). With the integral I2(λ, k − 1, α − 1, +∞),<br />

the resulting claim distribution has mass probability function<br />

k−1<br />

P (X = k) = qδk0 + (1 − δk0)(1 − q)<br />

j=0<br />

C j<br />

k−1 (−1)j λα .<br />

(λ + j) α<br />

Similarly with I2(λ, k, α − 1, +∞), the survival function is given by<br />

P (X > k) = (1 − q)<br />

k<br />

j=0<br />

<br />

k<br />

(−1)<br />

j<br />

j<br />

λα .<br />

(λ + j) α<br />

Using I2(λ − 1, u + 1, α − 1, θ0), the ruin probability can be <strong>de</strong>duced.<br />

Proposition 4.2.2. Let us consi<strong>de</strong>r the discrete time framework of Subsection 4.2.2 with a<br />

latent variable Θ gamma distributed Ga(α, λ).<br />

ψ(u) =<br />

Γ(α, λθ0)<br />

Γ(α)<br />

1 − q<br />

+<br />

qu+1 u+1<br />

<br />

u + 1<br />

(−1)<br />

j<br />

j γ(α, θ0(λ<br />

α + j − 1)) λ<br />

,<br />

Γ(α) λ + j − 1<br />

j=0<br />

with λ > 1, θ0 = − log(1 − q) and for u ≥ 0.<br />

Finally, consi<strong>de</strong>r Θ is Lévy distributed Le(α). We use the integral<br />

x <br />

I3(a, n, b, x) = e −θ a <br />

1 − e −θ n<br />

θ −3/2 b<br />

−<br />

e θ dθ.<br />

Using the change of variable, we have<br />

n<br />

<br />

n<br />

I3(a, n, b, x) = (−1)<br />

j<br />

n−j 2<br />

j=0<br />

0<br />

∞<br />

˜x<br />

a+n−j<br />

−<br />

e y2 e −by2<br />

dy.<br />

with ˜x = x−1/2 . This integral is linked to the generalized incomplete upper gamma function.<br />

Using Appendix 4.6.4, we get<br />

n<br />

<br />

n<br />

I3(a, n, b, x) = (−1)<br />

j<br />

j=0<br />

j<br />

√<br />

π<br />

2 √ <br />

e<br />

b<br />

2√ √<br />

b(a+j) b<br />

erfc √x + a + j √ <br />

x<br />

√<br />

b<br />

√x − a + j √ <br />

x .<br />

When x tends to infinity, we have<br />

I3(a, n, b) =<br />

n<br />

j=0<br />

+e −2√ b(a+j) erfc<br />

<br />

n<br />

(−1)<br />

j<br />

j<br />

√<br />

π<br />

√b e −2√b √ a+j<br />

.<br />

Using I3(0, k − 1, α 2 /4) and I3(0, k, α 2 /4), the mass probability and survival functions are<br />

given by<br />

k−1<br />

<br />

k − 1<br />

P (X = k) = (1 − q)<br />

(−1)<br />

j<br />

j e −α√ k<br />

<br />

j k<br />

and P (X > k) = (1 − q) (−1)<br />

j<br />

j e −α√j .<br />

180<br />

j=0<br />

j=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!