28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 3. Calcul d’équilibre <strong>de</strong> Nash généralisé<br />

Fct. call Jac. call Time x ⋆ 1 x ⋆ 2 λ ⋆ 1 λ ⋆ 1 ||F (z ⋆ )|| Co<strong>de</strong><br />

Newton - GLS 96 24 0.008 2 -2 -2.8e-12 160 2.8e-12 1<br />

Newton - QLS 67 20 0.007 11 3<br />

Newton - PTR 322 217 0.102 7e-04 1 324 -2.3e-17 8.6e-09 1<br />

Newton - DTR 317 217 0.056 0.00066 1 324 -4.6e-17 6.9e-09 1<br />

Broy<strong>de</strong>n - GLS 78 4 0.005 -2 3 8 2.4e-09 3e-09 1<br />

Broy<strong>de</strong>n - QLS 52 3 0.005 -2 3 8 4.8e-13 1.2e-09 1<br />

Broy<strong>de</strong>n - PTR 91 3 0.006 -2 3 8 8.5e-09 1.2e-08 1<br />

Broy<strong>de</strong>n - DTR 127 3 0.008 -2 3 8 6.6e-13 1.1e-09 1<br />

LM min - GLS 29 29 0.02 -2 3 8 -1.4e-09 3.7e-09 1<br />

LM adaptive 368 184 0.111 0.00019 6<br />

Mod. CE Newton 1782 158 0.295 2500 6<br />

Table 3.2: Results with starting point (5, 5, 0, 0) and φF B<br />

z ⋆1 z ⋆2 z ⋆3 z ⋆4 ∞<br />

min Newton GLS 58 213 280 394 55<br />

FB Newton GLS 183 198 211 238 170<br />

min Broy<strong>de</strong>n PTR 106 362 45 385 102<br />

FB Broy<strong>de</strong>n PTR 104 381 35 248 232<br />

Table 3.3: Number of GNEs found for 1000 random initial points<br />

To further compare these methods and the complementarity function, we draw uniformly<br />

1000 random initial points such that z0 ∈ [−10, 10] × [−10, 10] × {1} × {1} and run algorithms<br />

on each of them. For simplicity, we restrict out comparison to Newton GLS and Broy<strong>de</strong>n<br />

PTR methods test the Newton GLS method both with the minimum and Fischer-Burmeister<br />

complementarity functions. Results are summarized in Table 3.3, the first four columns store<br />

the number of sequences converging to a particular GNE, while the last column contains<br />

the number of diverging sequences (termination criteria remain the same as in the previous<br />

example.). With this comparison, the best method seems to be the Newton GLS method<br />

combined with the minimum function. We observe that using the minimum function tends<br />

to get only two GNEs, namely z ⋆2 and z ⋆4 . The method finding almost equally all GNEs is<br />

the Newton GLS method with the Fischer-Burmeister function. Finally, the Broy<strong>de</strong>n PTR<br />

method with the Fischer-Burmeister function seems very poor on this example.<br />

3.4 Conclusion<br />

The generalized Nash equilibrium problem (GNEP) is a useful tool for mo<strong>de</strong>lling many<br />

concrete applications in economics, computer science and biology, just to name a few. The<br />

<strong>de</strong>mand for computational methods of the GNEP in general form is increasing. This survey<br />

paper aims to present and to compare the current optimization methods available for the<br />

GNEP. Our numerical experiments show an advantage for the KKT reformulation of the<br />

GNEP compared to the constrained equation reformulation. But, in Dreves et al. (2011), the<br />

164

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!