28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

3.2. Methods to solve <strong>non</strong>linear equations<br />

Therefore, the semismoothness of function H at x requires the Hadamard directional<br />

<strong>de</strong>rivative at x to exists along any direction converging to h and not only along h.<br />

Examples of semismooth functions are smooth, convex and piecewise linear functions. An<br />

important property is that composite, scalar products, sums, minimum, maximum preserve<br />

semismoothness. In<strong>de</strong>ed for the minimum function, the breakpoint is at (0, 0). By standard<br />

calculations, the directional <strong>de</strong>rivate of φ∧ at this point is φ∧((0, 0); (a, b)) = min(a, b).<br />

Futhermore, for all <strong>non</strong>zero vector (a, b), φ∧ is differentiable and is uniquely given by<br />

We <strong>de</strong>duce<br />

∂Bφ∧(0, 0) =<br />

<br />

1 0<br />

,<br />

0 1<br />

<br />

1a≤b<br />

∇φ∧(a, b) = .<br />

1a>b<br />

and ∂φ∧(0, 0) =<br />

Furthermore, for all V ∈ ∂φ∧(c, d), such that (c, d) → (a, b), we have<br />

V<br />

<br />

λ<br />

, λ ∈ [0, 1] . (3.17)<br />

1 − λ<br />

<br />

a<br />

− φ∧((0, 0); (a, b)) = a 1c≤d + b 1c>d − min(a, b) = o((a, b)) . (3.18)<br />

b<br />

By Appendix 3.5.1, we conclu<strong>de</strong> that φ∧ is semismooth at (0,0).<br />

Finally, we introduce the strong semismoothness, also called 1-or<strong>de</strong>r semismoothness, that<br />

will be used in most convergence theorems.<br />

Definition (strongly semismooth). A locally Lipschitzian function G is strongly semismooth<br />

at x if for all d → 0, ∀V ∈ ∂G(x + d), we have<br />

V d − G ′ (x, d) = O ||d|| 2 .<br />

Based on Equation (3.18), we conclu<strong>de</strong> that the minimum function φ∧ is not strongly<br />

semismooth at (0, 0). But, the Fischer-Burmeister function is strongly semismooth at (0, 0).<br />

In fact, by standard calculations, for all <strong>non</strong>zero vector (a, b), we have<br />

We <strong>de</strong>duce<br />

∇φF B(a, b) =<br />

<br />

√ a − 1<br />

a2 +b2 √ b − 1<br />

a2 +b2 ∂BφF B(0, 0) = {∇φF B(a, b), (a, b) = (0, 0)} and ∂φF B(0, 0) = ¯ B((−1, −1), 1), (3.19)<br />

where ¯ B <strong>de</strong>notes the closed ball.<br />

Furthermore, for all V ∈ ∂φF B(c, d), such that (c, d) → (a, b), we have<br />

Hence, we have<br />

V<br />

<br />

a<br />

= φF<br />

b<br />

B(a, b) and φF B((0, 0); (a, b)) = φF B(a, b).<br />

V<br />

<br />

<br />

a<br />

− φF<br />

b<br />

B((0, 0); (a, b)) = 0.<br />

.<br />

153

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!