28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 2. Theorie <strong><strong>de</strong>s</strong> jeux et cycles <strong>de</strong> marché<br />

For the two consi<strong>de</strong>red price function, we have<br />

f ′ xj<br />

j2(xj, xl) = −αj<br />

x2 l<br />

and ˜ f ′ j2(xj, xl) = −˜αj,<br />

which are negative. So, the function φl will also be a <strong>de</strong>creasing function.<br />

Therefore the portfolio size xj ↦→ ˆ Nj(x) function has the following <strong>de</strong>rivative<br />

∂ ˆ ⎛<br />

Nj(x)<br />

= −nj ⎝<br />

∂xj<br />

<br />

f ′ j1(xj, xl) lg l ⎞<br />

j(x) ⎠ lg j<br />

<br />

j (x) + nlf ′ j2(xl, xj) lg j<br />

l (x)(1 − lgj l (x)).<br />

l=j<br />

Hence, it is <strong>de</strong>creasing from the total market size <br />

l nl to 0. So the function xj ↦→ ˆ Nj is both<br />

a quasiconcave and a quasiconvex function.<br />

Therefore, using the C 2 characterization of quasiconcave and quasiconvex functions, we<br />

have that<br />

∂ ˆ Nj(x)<br />

∂xj<br />

l=j<br />

= 0 ⇒ ∂2 ˆ Nj(x)<br />

∂x 2 j<br />

Note that the function ˆ Nj(x) is horizontal (i.e. has gradient of 0) when xj → 0 and xj → +∞<br />

for fixed x−j.<br />

Finally, we also need<br />

∂ 2 lg j<br />

j (x)<br />

∂x 2 j<br />

= − <br />

l=j<br />

f ′ j1(xj, xl) ∂ lgl j<br />

∂xj<br />

as f ′′<br />

j11 is 0 for the two consi<strong>de</strong>red functions. Since,<br />

<br />

<br />

<br />

∂ lg l j <br />

= − lg<br />

∂xj <br />

l=j<br />

l j f<br />

n=j<br />

′ j1(xj, xn) lg n j + lg l j f ′ j1(xj, xl) and<br />

then we get<br />

∂2 lg j<br />

j (x)<br />

∂x2 = − lg<br />

j<br />

j<br />

j<br />

Convexity concepts<br />

= 0.<br />

lg j<br />

j −<br />

⎛<br />

⎝ <br />

f ′ j1(xj, xl) lg l ⎞<br />

∂ lgj<br />

⎠ j<br />

j ,<br />

∂xj<br />

l=j<br />

∂ lgj<br />

j<br />

∂xj<br />

⎛<br />

= − ⎝ <br />

f ′ j1(xj, xl) lg l ⎞<br />

⎠<br />

j lg j<br />

j ,<br />

l=j<br />

′<br />

f j1(xj, xl) ⎛<br />

2 l<br />

lgj +2 ⎝ <br />

f ′ j1(xj, xl) lg l ⎞<br />

⎠<br />

j<br />

Numerical applications for refined one-period game<br />

l=j<br />

2.6.2 On the dynamic game<br />

Borel-Cantelli lemma and almost sure convergence<br />

A random variable sequence (Xn)n is said to converge almost surely to X, if P (Xn →<br />

X) = 1. A simple characterization of almost sure convergence is<br />

128<br />

Xn<br />

l=j<br />

p.s.<br />

−→ X ⇔ P (∩n0≥0 ∪n≥0 |Xn − X| ≥ ɛ) = 0, ∀ɛ > 0.<br />

2<br />

lg j<br />

j .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!