28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 2. Theorie <strong><strong>de</strong>s</strong> jeux et cycles <strong>de</strong> marché<br />

x ⋆ 1 x ⋆ 2 x ⋆ 3 ||x ⋆ − ā|| 2 ||x ⋆ − ¯m|| 2 ∆ ˆ N1 ∆ ˆ N2 ∆ ˆ N3 Nb<br />

1 1 1 0.1132 0.0084 -19 -16 35 1<br />

1.3041 1.025 1.0283 0.0497 0.0645 -2479 1264 1216 13<br />

1 1.3183 1.0065 0.0964 0.0754 1001 -1899 898 4<br />

1 1.0001 1.3427 0.1162 0.0896 722 701 -1423 3<br />

1.0185 1.3694 1.3993 0.133 0.2215 2646 -1507 -1139 114<br />

1.3856 1.0844 1.4501 0.1144 0.2696 -1729 2758 -1029 142<br />

1.419 1.4541 1.1247 0.1121 0.3004 -1564 -1233 2797 111<br />

1.0449 1.3931 3 3.4379 3.9075 3787 -1490 -2297 1<br />

3 1.1738 1.5381 3.2767 4.0418 -4490 5412 -922 3<br />

Table 2.7: Premium equilibria - PLN price ratio function<br />

x ⋆ 1 x ⋆ 2 x ⋆ 3 ||x ⋆ − a|| 2 ||x ⋆ − m|| 2 ∆ ˆ N1 ∆ ˆ N2 ∆ ˆ N3 Nb<br />

1.3644 1.0574 1.0661 0.1239 0.0611 -2635 1397 1239 10<br />

1 1.3942 1.0208 0.1201 0.1003 1315 -2258 943 1<br />

1 1.001 1.4206 0.1398 0.1192 851 818 -1670 3<br />

1.0044 1.4216 1.4569 0.0887 0.1781 3333 -1923 -1411 109<br />

1.4875 1.1726 1.5792 0.1836 0.2781 -1622 2696 -1075 116<br />

1.555 1.6092 1.2508 0.2323 0.3598 -1369 -1210 2579 97<br />

1.561 1.2526 3 3.0865 3.5394 -1405 3695 -2291 4<br />

1.7346 3 1.4348 3.2546 3.7733 -955 -3174 4129 5<br />

3 1.4664 3 6.226 6.8384 -4485 6746 -2261 2<br />

3 1.3699 1.7658 3.4794 3.7789 -4482 5299 -817 4<br />

3 1.9041 1.5497 3.6941 4.0712 -4462 -743 5205 12<br />

3 3 1.7542 6.407 7.0956 -4354 -2970 7324 4<br />

Table 2.8: Premium equilibria - NBLN price ratio function<br />

multipliers (not reported here). Those are not zero when a constraint g i j<br />

i = 1, 2, 3 and j = 1, . . . , I).<br />

is active, (where<br />

Tables 2.12 and 2.13 in Appendix 2.6.1 report the computation when we use the price<br />

difference function ˜ fj. The number of different premium equilibria is similar as in the previous<br />

case.<br />

This numerical application reveals that in our refined game, we have many generalized<br />

premium equilibria. In our insurance context, a possible way to <strong>de</strong>al with multiple equilibria<br />

is to choose as a premium equilibrium, the generalized Nash equilibrium x ⋆ that is closest to<br />

the average market premium ¯m. This option is motivated by the high level of competition<br />

present in most mature insurance markets (e.g. Europe and North America) where each<br />

insurer sets the premium with a <strong>vie</strong>w towards the market premium.<br />

However, this solution has drawbacks: while a single Nash equilibrium may be seen as<br />

a self-enforcing solution, multiple generalized Nash equilibria cannot be self-enforcing. We<br />

will not pursue this refined one-shot game further and focus on the simple insurance game of<br />

Section 2.2.<br />

114

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!