28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00703797, version 2 - 7 Jun 2012<br />

2.3. Refinements of the one-period mo<strong>de</strong>l<br />

where the objective function <strong>de</strong>pends on the interest parameter z. Again, we apply the implicit<br />

function theorem with a function φ such that G j x(z, φ(z)) = 0. The first-or<strong>de</strong>r <strong>de</strong>rivative is<br />

given by<br />

∂G j x<br />

∂y (z, y) = ∂g1 j<br />

(z, y) > 0,<br />

∂xj<br />

since xj ↦→ ˜g 1 j is a strictly increasing function. Therefore, the sign of φ′ is<br />

sign φ ′ (z) = −sign<br />

Let z = πj be the actuarial premium. We have<br />

∂G j x<br />

∂z<br />

<br />

∂G j x<br />

(z, φ(z))<br />

∂z<br />

<br />

nj(1 − ej)<br />

(z, y) = − <br />

k995σ(Y ) ˆNj(x j < 0,<br />

y)<br />

in<strong>de</strong>pen<strong>de</strong>ntly of y or z. So, sign(φ ′ (z)) > 0, i.e. the function πj ↦→ x ⋆ j (πj) is increasing as in<br />

the previous case.<br />

Let z = Kj be the capital. We have<br />

∂G j x<br />

(z, y) =<br />

∂z<br />

1<br />

<br />

k995σ(Y ) ˆNj(x j > 0.<br />

y)<br />

So sign(φ ′ (z)) < 0, i.e. the function Kj ↦→ x ⋆ j (Kj) is <strong>de</strong>creasing.<br />

Let z = σ(Y ) be the actuarial premium. We have<br />

∂G j x 1<br />

(z, y) = −<br />

∂z<br />

z2 × Kj + nj(y − πj)(1 − ej)<br />

<br />

k995<br />

ˆNj(x j y)<br />

which simplifies to ∂Gj x<br />

∂z (z, φ(z)) = −1/z < 0 using the <strong>de</strong>finition of Gj . Thus, the function<br />

σ(Y ) ↦→ x ⋆ j (σ(Y )) is <strong>de</strong>creasing. By a similar reasoning, we have for z = k995, that φ is<br />

<strong>de</strong>creasing.<br />

2.3.4 Numerical application<br />

We use the same set of parameters as in Subsection 2.2.7. As discussed above, a generalized<br />

premium equilibrium is not necessarily unique: in fact there are many of them. In Tables 2.7<br />

and 2.8, we report generalized Nash equilibria found with different starting points (2 10 feasible<br />

points randomly drawn in the hypercube [x, x] I ). Premium equilibrium are sorted according<br />

to the difference with average market premium ¯m.<br />

In Table 2.8, this computation is done for the Negative Binomial-Lognormal loss mo<strong>de</strong>l<br />

(NBLN), whereas Table 2.7 reports the computation for Poisson-Lognormal mo<strong>de</strong>l (PLN).<br />

Both tables use the price ratio function ¯ fj. The last column of those tables reports the<br />

number of optimization sequences converging to a given equilibrium.<br />

Most of the time, other equilibriums found hit one of the barriers x, x. It may appear<br />

awkward that such points are optimal in a sense, but one must not forget the Lagrange<br />

.<br />

,<br />

113

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!