28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00703797, version 2 - 7 Jun 2012<br />

In our case ∗ , we have<br />

and<br />

F j x(z, y) = nj<br />

n lgj<br />

j (xj y)[1 − Sj(x j y)(y − πj)],<br />

∂F j x<br />

∂z (z, y) = ∂2Oj (x<br />

∂z∂xj<br />

j y, z), and ∂F j x<br />

∂y (z, y) = ∂2Oj The first-or<strong>de</strong>r <strong>de</strong>rivative is given by<br />

2.3. Refinements of the one-period mo<strong>de</strong>l<br />

∂x 2 j<br />

(x j y, z).<br />

∂F j x<br />

(z, y) = 2nj<br />

∂y n lgj j (xjy)Sj(x j y) (y − πj)Sj(x j y) − 1 − nj<br />

n lgj j (xjy)(y−πj) <br />

Using F j x(z, ϕ(z)) = 0 whatever z represents, it simplifies to<br />

∂F j x<br />

(z, ϕ(z)) = −nj<br />

∂y n lgj j (xj ϕ(z)<br />

)(ϕ(z) − πj) <br />

Let z now be the insurer’s break-even premium z = πj. We have<br />

Thus, the <strong>de</strong>rivative of ϕ is<br />

l=j<br />

∂F j x<br />

∂z (z, y) = nj lg j<br />

j (xj y)Sj(x j y).<br />

ϕ ′ (z) =<br />

(ϕ(z) − z) <br />

Sj<br />

<br />

x j<br />

<br />

ϕ(z)<br />

f<br />

l=j<br />

′ j1 (ϕ(z), xl) 2 lg l j<br />

By <strong>de</strong>finition, F j x(z, ϕ(z)) = 0 is equivalent to<br />

<br />

1 = Sj x j<br />

<br />

ϕ(z) (ϕ(z) − z).<br />

l=j<br />

f ′ j1(ϕ(z), xl) 2 lg l j(x j<br />

ϕ(z) ).<br />

<br />

x j<br />

.<br />

ϕ(z)<br />

f ′ j1(y, xl) 2 lg l j(x j y).<br />

Thus ϕ(z) − z > 0. We conclu<strong>de</strong> that ϕ ′ (z) > 0, i.e. the function πj ↦→ x ⋆ j (πj) is increasing.<br />

Let z be the intercept lapse parameter z = µj. By differentiating the lapse probability, we<br />

have<br />

∂ lg j<br />

j<br />

∂z (xjy) = − lg j<br />

j (xjy) <br />

lg l j(x j y) and ∂ lgkj ∂z (xj <br />

<br />

<br />

y) <br />

We get<br />

l=j<br />

j=k<br />

= − lg k j (x j y) <br />

lg l j(x j y) + lg k j (x j y).<br />

∂F j x<br />

∂z (z, y) = −nj lg j<br />

j (xj y)(1 − lg j<br />

j (xj y)) 1 − Sj(x j y)(y − πj) − nj lg j<br />

j (xj y) 2 Sj(x j y).<br />

Note the first term when y = ϕ(z) since F j x(z, ϕ(z)) = 0. We finally obtain<br />

ϕ ′ <br />

Sj x<br />

(x) = −<br />

j<br />

<br />

ϕ(z) lg j<br />

<br />

j x j<br />

<br />

ϕ(z)<br />

(ϕ(z) − z) <br />

f ′ j1 (ϕ(z), xl) 2 lg l <br />

j x j<br />

.<br />

ϕ(z)<br />

∗. To simplify, we do not stress the <strong>de</strong>pen<strong>de</strong>nce of lg k<br />

j and Sj on f.<br />

l=j<br />

l=j<br />

111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!