28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 2. Theorie <strong><strong>de</strong>s</strong> jeux et cycles <strong>de</strong> marché<br />

Using F j x(z, ϕ(z)) = 0, it leads to<br />

∂F j x<br />

nj −1<br />

(z, ϕ(z)) = < 0.<br />

∂z n z<br />

Thus, the function βj ↦→ x ⋆ j (βj) is <strong>de</strong>creasing. In such a case of an inactive constraint, the<br />

premium equilibrium is in<strong>de</strong>pen<strong>de</strong>nt of the initial portfolio size nj.<br />

i.e.<br />

When the solvency constraint is active, the premium equilibrium x ⋆ j verifies g1 j (x⋆ j<br />

) = 0,<br />

x ⋆ j = πj + k995σ(Y ) √ nj − Kj<br />

. (2.9)<br />

nj(1 − ej)<br />

Here, the implicit function theorem is not necessary since x⋆ j does not <strong>de</strong>pend on x⋆−j . We<br />

<strong>de</strong>duce that x⋆ j is an increasing function of πj, k995, σ(Y ), ej and a <strong>de</strong>creasing function Kj.<br />

The function nj ↦→ x⋆ j (nj) is not necessarily monotone. Let z be nj. Differentiating<br />

Equation (2.9) with respect to z, we get<br />

ϕ ′ (z) =<br />

1<br />

z3/2 <br />

<br />

kσ(Y ) Kj<br />

− + √z ,<br />

(1 − ej) 2<br />

whose sign <strong>de</strong>pends on the value of the other parameters.<br />

2.2.7 Numerical illustration<br />

All numerical applications are carried out with the R software, R Core Team (2012). Please<br />

refer to Appendix 2.6.1 for computation <strong>de</strong>tails.<br />

Base parameters<br />

We consi<strong>de</strong>r a three-player game operating a 10 000-customer insurance market, i.e. n =<br />

10000, I = 3. To ensure that insurers already have un<strong>de</strong>rwritten business, we provi<strong>de</strong> d-year<br />

history for portfolio size, where d = 3. Although we provi<strong>de</strong> a 3-year history in this section,<br />

we only consi<strong>de</strong>r the one-period equilibrium. So only the value at year 0 matters.<br />

Insurer portfolio size nj(t)’s are given in Table 2.2. The portfolio size is chosen such that<br />

player 1 is the lea<strong>de</strong>r, player 2 the challenger and player 3 the outsi<strong>de</strong>r with 45%, 32% and<br />

23% market shares, respectively.<br />

time P1 P2 P3<br />

-2 4200 3800 2000<br />

-1 4700 3200 2100<br />

0 4500 3200 2300<br />

Table 2.2: Insurer portfolio sizes<br />

We consi<strong>de</strong>r two types of loss mo<strong>de</strong>l: (i) loss E(Y ) = 1, σ(Y ) = 4.472, Poisson-Lognormal<br />

mo<strong>de</strong>l, (ii) loss E(Y ) = 1, σ(Y ) = 10, Negative Binomial-Lognormal mo<strong>de</strong>l. The loss history is<br />

such that the actuarially based premiums āj,0’s are given in Table 2.3 and the market premium<br />

¯m0 is 1.190, 1.299 for PLN and NBLN, respectively.<br />

104

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!