28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00703797, version 2 - 7 Jun 2012<br />

2.2. A one-period mo<strong>de</strong>l<br />

where λ j⋆ ∈ R 3 are Lagrange multipliers, see, e.g., Facchinei and Kanzow (2009). In the last<br />

part of equation (2.7), gj(x ⋆ j )T λ j⋆ = 0 is the complementarity equation implying that the l<br />

constraint gl j is either active (gl j (x⋆j ) = 0) or inactive (gl j (x⋆j ) > 0), but λj⋆<br />

l = 0.<br />

We suppose that x⋆ j ∈]x, x[. Hence, λj⋆ 2 = λj⋆ 3 = 0. There are two cases: either the solvency<br />

constraint g1 j is active or not. Let us assume the solvency constraint is inactive. Insurer j’s<br />

premium equilibrium verifies ∇xjOj(x ⋆ ) = 0, i.e.<br />

nj<br />

n<br />

<br />

x<br />

1 − 2βj<br />

⋆ j<br />

mj(x⋆ ) + βj<br />

πj<br />

+ βj<br />

mj(x⋆ <br />

= 0. (2.8)<br />

)<br />

Let x j y be the premium vector with the j component being y, i.e. x j y = (x1, . . . , xj−1, y, xj+1, . . . , xI).<br />

We <strong>de</strong>note by z a parameter of interest and <strong>de</strong>fine the function F as<br />

F j x(z, y) = ∂Oj<br />

(x<br />

∂xj<br />

j y, z),<br />

where the objective function <strong>de</strong>pends (also) on the interest parameter z. Equation (2.8) can<br />

be rewritten as F j<br />

x⋆(z, x⋆j ) = 0.<br />

By the continuous differentiability of F with respect to z and y and the fact that F j x(z, y) =<br />

0 has at least one solution (z0, y0), we can invoke the implicit function theorem, see Appendix<br />

2.6.1. So there exists a function ϕ <strong>de</strong>fined in a neighborhood of (z0, y0) such that F j x(z, ϕ(z)) =<br />

0 and ϕ(z0) = y0. Furthermore, if ∂F j x<br />

∂y (z0, y0) = 0, the <strong>de</strong>rivative of ϕ is given by<br />

In our case, we have<br />

∂F j x<br />

ϕ ′ (z) = −<br />

∂F j x<br />

∂z<br />

∂F j x<br />

∂y<br />

<br />

<br />

(z, y) <br />

<br />

<br />

(z, y)<br />

y=ϕ(z)<br />

∂y (z, y) = ∂2Oj (x j y, z) = −2αj < 0.<br />

nmj(x)<br />

∂x 2 j<br />

As a consequence, the sign of ϕ ′ is simply<br />

Let us consi<strong>de</strong>r z = πj. We have<br />

sign ϕ ′ (z) = sign<br />

<br />

.<br />

nj<br />

∂F j x<br />

(z, ϕ(z))<br />

∂z<br />

∂F j x njβj<br />

(z, y) = > 0.<br />

∂z nmj(x)<br />

Thus, the function πj ↦→ x ⋆ j (πj) is increasing.<br />

Let z be the sensitivity coefficient βj. We have<br />

∂F j <br />

x nj<br />

(z, y) = −2βj<br />

∂z n<br />

y<br />

mj(x)<br />

<br />

<br />

πj<br />

+ 1 + .<br />

mj(x)<br />

.<br />

103

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!