28.05.2013 Views

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

Etude des marchés d'assurance non-vie à l'aide d'équilibres de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00703797, version 2 - 7 Jun 2012<br />

Chapitre 2. Theorie <strong><strong>de</strong>s</strong> jeux et cycles <strong>de</strong> marché<br />

MCR and SCR where regulators impose some specific actions to help returning to the SCR<br />

level.<br />

In our game, we choose to remove players which have a capital below MCR and to authorize<br />

players to continue un<strong>de</strong>rwriting when capital is between the MCR and the SCR. Note that<br />

the constraint function will be active when computing the Nash equilibrium, if the capital is<br />

between the MCR and SCR.<br />

2.2.6 Properties of the premium equilibrium<br />

In this subsection, we investigate the properties of premium equilibrium. We start by<br />

showing existence and uniqueness of a Nash equilibrium. Then, we focus on the sensitivity<br />

analysis on mo<strong>de</strong>l parameters of such equilibrium.<br />

Proposition 2.2.1. The I-player insurance game with objective function and solvency constraint<br />

function <strong>de</strong>fined in Equations (2.2) and (2.5), respectively, admits a unique (Nash)<br />

premium equilibrium.<br />

Proof. The strategy set is R = [x, x] I , which is <strong>non</strong>empty, convex and compact. Given<br />

x−j ∈ [x, x], the function xj ↦→ Oj(x) is a quadratic function with second-<strong>de</strong>gree term<br />

−βjx2 j /mj(x) < 0 up to a constant nj/n. Thus, this function is (strictly) concave. Moreover,<br />

for all players, the constraint functions g1 j are linear functions, hence also concave. By<br />

Theorem 1 of Rosen (1965), the game admits a Nash equilibrium, i.e. existence is guaranteed.<br />

By Theorem 2 of Rosen (1965), uniqueness is verified if we have the following inequality for<br />

all x, y ∈ R,<br />

I<br />

rj(xj − yj)∇xj Oj(y)<br />

I<br />

+ rj(yj − xj)∇xj Oj(x) > 0, (2.6)<br />

j=1<br />

j=1<br />

for some r ∈ R I with strictly positive components ri > 0. As the function xj ↦→ Oj(x)<br />

is a strictly concave and differentiable function for all x−j, we have ∇xj Oj(x)(yj − xj) ><br />

Oj(y) − Oj(x) and equivalently ∇xj Oj(y)(xj − yj) > Oj(x) − Oj(y). Thus,<br />

(xj − yj)∇xj Oj(y) + (yj − xj)∇xj Oj(x) > Oj(y) − Oj(x) + Oj(x) − Oj(y) = 0.<br />

Taking r = 1, equation (2.6) is verified.<br />

Proposition 2.2.2. Let x⋆ be the premium equilibrium of the I-player insurance game. For<br />

each player j, if x⋆ j ∈]x, x[, the player equilibrium x⋆j <strong>de</strong>pends on the parameters in the following<br />

way: it increases with break even premium πj, solvency coefficient k995, loss volatility σ(Y ),<br />

expense rate ej and <strong>de</strong>creases with sensitivity parameter βj and capital Kj. Otherwise when<br />

x⋆ j = x or x, the premium equilibrium is in<strong>de</strong>pen<strong>de</strong>nt of any parameters.<br />

Proof. The premium equilibrium x ⋆ j<br />

conditions:<br />

102<br />

∇xj Oj(x ⋆ ) + <br />

of insurer j solves the necessary Karush-Kuhn-Tucker<br />

1≤l≤3<br />

λ j⋆<br />

l ∇xj gl j(x ⋆ j) = 0,<br />

0 ≤ λ j⋆ , gj(x ⋆ j) ≥ 0, gj(x ⋆ j) T λ j⋆ = 0,<br />

(2.7)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!