19.05.2013 Views

R3B Status Report - GSI WWW-WIN

R3B Status Report - GSI WWW-WIN

R3B Status Report - GSI WWW-WIN

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

T. Aumann (<strong>GSI</strong>)<br />

NuSTAR Annual<br />

Meeting 2009<br />

<strong>R3B</strong> <strong>Status</strong> <strong>Report</strong>


Calorimeter<br />

Target-recoil<br />

detector<br />

Diamond- and Si-Strip detectors<br />

NeuLAND<br />

Largeacceptance<br />

mode<br />

High-resolution mode<br />

NeuLAND<br />

Kinematically complete measurement of reactions with high-energy secondary beams<br />

Nuclear Astrophysics<br />

Structure of exotic nuclei<br />

Neutron-rich matter<br />

Reactions with Relativistic Radioactive Beams<br />

alternative: active target<br />

alternative: multi-track detector


RIB from<br />

Super-FRS<br />

Reactions with Relativistic Radioactive Beams<br />

• Target<br />

• Tracker<br />

• Calorimeter<br />

<strong>R3B</strong> Start version:<br />

2014<br />

Large<br />

acceptance<br />

dipole magnet<br />

Protons<br />

Heavy<br />

fragments<br />

Neutrons


new: beam<br />

tracking with<br />

Diamond detectors<br />

Extended Experimental Setup at Cave C@<strong>GSI</strong><br />

new: proton tracking<br />

around the target with<br />

Si-strip detectors<br />

new: proton tracking<br />

Exclusive measurement of all interesting reaction channels<br />

- knockout plus decay of residual system<br />

- inelastic excitation plus proton decay (nuclear, electromagnetic)<br />

- quasi-free scattering: (p,2p) (p,pn) (p,pα)<br />

behind magnet with drift chambers


Diamond tracking detectors (TU München)<br />

Large-area prototype New APV-front-end board for 128 channels<br />

Two-dimensional amplitude scan of a 50 µm<br />

segmentation gap (left), and its y-projection<br />

Position correlation of two<br />

diamond strip detectors (200 µm)


Si-strip detectors – Test 8 B breakup to 7 Be + p<br />

• AMS type detectors<br />

• DSSDs, 300 µ m thick, 41 × 72 mm2<br />

• Strip pitch 100 µm<br />

• Readout chips – VA64HDR9a (64 ch,<br />

very low power dissipation)<br />

• Energy resolution – 50 keV<br />

• Dynamic range – 100 keV - 14 MeV<br />

• 1024 readout channels/detector<br />

• Designed to work in vacuum (total<br />

power dissipation < 3 W/detector)


Quasi-free scattering in inverse kinematics<br />

Measurement of proton recoils after knockout reactions with a CH 2 target<br />

projectile Z,A<br />

• kinematical complete measurement of<br />

(p,pn), (p,2p), (p,pd), (p,a), .... reactions<br />

• redundant experimental information:<br />

kinematical reconstruction from proton momenta<br />

plus gamma rays, recoil momentum, invariant mass<br />

• sensitivity not limited to surface<br />

→ spectral functions<br />

→ knockout from deeply bound states<br />

• cluster knockout reactions<br />

CH2<br />

target<br />

n,p, ...<br />

proton<br />

CsI, NaI<br />

Si, strip<br />

x, ∆E<br />

B


Deviation from the independent-particle picture:<br />

Correlations: Configuration mixing,<br />

Coupling to collective phonons<br />

Short-range correlations → high momenta<br />

→ reduced single-particle strength<br />

(occupations, spectroscopic factors)<br />

single-particle structure


Spectroscopic factors for<br />

neutron-proton asymmetric nuclei<br />

weakly bound<br />

nucleons<br />

Figure from Alexandra Gade, Phys. Rev. C 77, 044306 (2008)<br />

strongly bound<br />

nucleons<br />

?<br />

Origin<br />

unclear<br />

isospin<br />

dependence<br />

of<br />

correlations<br />

?


Subedi et al.<br />

Correlations in asymmetric nuclei<br />

and nuclear matter<br />

ρ = 0.32 fm −3<br />

protons<br />

ρ = 0.16 fm −3<br />

Electron-induced<br />

knockout (JLab)<br />

neutrons


• box of DSSDs for<br />

proton tracking<br />

• polar angle coverage ≈<br />

15°≤ θ ≤ 80°<br />

• resolution: ∆x ~ 100<br />

µm; ∆E ~ 50 keV<br />

• range: 100 keV < E < 14<br />

MeV<br />

Experimental Setup: LAND@Cave C<br />

Target<br />

Beam<br />

“New” Target Recoil Detector for Quasifree Scattering<br />

• Crystal Ball detector<br />

• 162 20cm long NaI(Tl)<br />

crystals<br />

• additional low gain<br />

readout of forward 64<br />

crystals<br />

• 4π gammas<br />

• 2π light particles


Setup for quasi-free scattering experiment<br />

Pilot Experiments:<br />

12 C, 17 Ne beams around 500 MeV/u<br />

(p,2p) reactions in complete kinematics<br />

plus detection of projectile-like fragments/ejectiles<br />

→ Test of principle<br />

→ Physics of 2p-halo nucleus


• Frontend electronics of CB<br />

crystal:s now with addtitional<br />

low gain readout:<br />

New Crystal Ball Readout<br />

for (p,2p) Protons: Design & Tests<br />

Test: CB NaI crystals with ~ 200 MeV protons<br />

new!<br />

200 ns<br />

1000 ns<br />

250 mV<br />

3 mV<br />

88 Y signal as in the two readouts<br />

NaI crystal (L=20cm) setup<br />

Counts<br />

Measurement<br />

E 0 = 451 MeV<br />

∆E = 142 MeV<br />

σ = 4.5 %<br />

E 0 = 237 MeV<br />

∆E = 237 MeV σ = 1.4 %<br />

ε ≈ 40 %<br />

Raw Energy / QDC ch.<br />

• NaI Crystals absorb protons with<br />

energies up to 274 MeV<br />

• Energy resolution of σ = 1.5% for<br />

~200 MeV protons<br />

• Full energy peak efficiency ≈ 40%<br />

Felix Wamers (<strong>GSI</strong>)


Nucleus of interest Excited Fragment<br />

q<br />

A<br />

Bound Proton<br />

0<br />

Free Target Proton<br />

Internal Momentum<br />

= − p −1<br />

Recoil q<br />

q A = p + p −<br />

1<br />

2<br />

Quasifree Scattering with Exotic Nuclei<br />

p<br />

2<br />

0<br />

1<br />

A-1<br />

Separation Energy<br />

Photon(s)<br />

Scattered Protons:<br />

ES = T1<br />

+ T2<br />

+ TA−1<br />

Evaporation<br />

p,n,d,t,...<br />

•≈ opposite ϕ angles<br />

• opening angle ≈ 90°<br />

Pilot experiments with 12 C, 17 Ne and Ni<br />

isotopes already performed in Cave C are<br />

under analysis …<br />

Correlations in Crystal Ball for 17Ne(p,2p) 16F ∆θ ∆θ=180°, ∆θ<br />

∆φ ∆φ=83° ∆φ<br />

(as for free pp)<br />

Felix Wamers (<strong>GSI</strong>)<br />

−T<br />

0<br />

(p,2p), (p,pn), (p,pα) to study:<br />

• single particle structure (valence and<br />

deeply bound nucleons)<br />

• clustering<br />

• nucleon-nucleon correlations


PhD Stefanos Paschalis (Liverpool)<br />

Quasifree n knockout reaction<br />

with a 57 Ni radioactive beam<br />

57 Ni (p,pn) 56 Ni at 500 MeV in inverse kinematics<br />

1 hit in plastic<br />

(p)<br />

2 hits in CsI<br />

(p+n)<br />

typical<br />

angular<br />

correlations


Experiment S174: Proton elastic<br />

scattering (P. Egelhof et al.)<br />

6 He + p → α + p' + X<br />

L. Chulkov et al., NPA 759(2005) 43<br />

Quasi-free cluster knockout<br />

Momentum distribution<br />

Spectroscopic factors:<br />

neutron: 1.7(2)<br />

alpha: 0.8(1)


<strong>R3B</strong> Si Recoil Tracker WG<br />

Tasks:<br />

• Simulations of target-recoil detector<br />

• elastic, inelastic, quasifree …<br />

• Si-microstrip prototype testing<br />

• micro-strip, MAPS …<br />

• Si tracker mechanical design<br />

• Mechanical integration of target-recoil detector sub-systems<br />

• with LH2 target and calorimeter<br />

• FEE and DAQ<br />

Fully funded in UK<br />

• £5M project inc. capital, manpower …<br />

• project starts 1 April 2009<br />

• Installation at <strong>R3B</strong> in 2013<br />

<strong>R3B</strong> conceptual design<br />

for Si tracker FEE and DAQ<br />

NUSTAR<br />

DABC<br />

DAQ<br />

BUTIS<br />

<strong>R3B</strong><br />

input<br />

code<br />

module<br />

• 100k channels, new ASIC design (low thresholds, self-triggering)<br />

• Si-tracker construction, assembly and installation<br />

• Liverpool Semiconductor Centre (ATLAS, LHCb, etc)<br />

• Si-ladder assembly testing<br />

fibre<br />

links<br />

Gbit Ethernet fibre(s)<br />

BUTIS<br />

Fan-out<br />

either fibre<br />

or HDMI links<br />

Si Ladder<br />

DSSD<br />

FEE<br />

Card<br />

ASIC<br />

ASIC<br />

Handles<br />

16 ASICs,<br />

each 64ch<br />

= 1024ch.<br />

Total approx<br />

100 FEE cards<br />

Slow<br />

Control<br />

Fibre<br />

Ethernet<br />

WG Coordinator: Roy Lemmon – STFC Daresbury Laboratory, UK


~130 ~40<br />

Beam<br />

CALIFA/<strong>R3B</strong> R&D status<br />

General design of the detector based on kinematical considerations<br />

BARREL<br />

~20<br />

FORWARD<br />

ENDCAP<br />

Crystal and photosensors<br />

WG coordinator: D. Cortina-Gil (SAntiago de Compostela)<br />

Barrel CsI+APD<br />

“Egg” shape<br />

Highly segmented<br />

Thick detection volume<br />

Scintillation based<br />

performant photo-sensors<br />

1cm 3 and 662 keV γ<br />

Real shape, 1MeV γ<br />

∆Ε/Ε ∼5 %<br />

13 cm


CALIFA/<strong>R3B</strong> R&D status<br />

WG coordinator: D. Cortina-Gil (SAntiago de Compostela)<br />

Forward Endcap Phoswich solution is being investigated<br />

Engineering design and Mechanical structure based on carbon fiber


250<br />

Φ 500<br />

Test in<br />

SCHEMA<br />

1200<br />

Large Acceptance Dipole Magnet<br />

• Superconducting cable (18 km) produced, delivered & controlled : OK<br />

• Thermo-mechanical parameters measurements on coil samples and halfscale<br />

mock-up (coil + coil casing) performed at cryogenic temperature,<br />

• R&D on Thermosiphon with quasi-horizontal tubes: positive conclusions,<br />

• New simplified magnetic design in order to get a mechanical structure that<br />

contains the high level of magnetic forces (300 to 400 t/m) and controls the<br />

shear stresses inside the coils (< 20 MPa). (figure ->)<br />

• This design also provides mechanical and superconducting stability to the<br />

magnet, with a good blocking of the coils at cold temperature (4.5 K), and<br />

ensuring the required temperature margin (> 1.5 K)<br />

• PRR in July 2008 : Cold Mass design Review : Specifications approved<br />

• Cold mass ordered, end of 2008 – Delivery planned for January 2010.<br />

The market includes Coil windings + coil casings & blank assembly +<br />

precise integration 1 of the 6 coils in their boxes.<br />

• Ongoing schedule:<br />

– Cryostat design, review (T3 2009) & order (T4 2009)<br />

– T4, 2009: Mock-up test with current @ 4.5 K in SCHEMA facility<br />

– T2, 2010: Cold mass and MSS test in W7X cryostat (figure ->)<br />

– 2011: Integration 2 in the final cryostat<br />

– 2012: Installation @ <strong>GSI</strong>-FAIR<br />

B. Gastineau,<br />

CEA Saclay


σ t<br />

σ x,y,z<br />

σ E*<br />

size<br />

area<br />

# ch.<br />

weight<br />

< 100 ps<br />

≈ 1 cm<br />

20 keV<br />

2 x 2 x 0.8 m 3<br />

~ 140 m 2<br />

~ 10.000 channels<br />

~ 15 t<br />

Neutron detector NeuLAND<br />

Working group coordinator: K. Boretzky (<strong>GSI</strong>)<br />

detection principle based<br />

on<br />

Resistive Plate Chambers<br />

plus<br />

iron converters<br />

status:<br />

proof of principle: RPC excellent for slow protons<br />

prototypes with included converter as electrodes:<br />

efficiency of 99%, time resolution ~50 ps<br />

next steps:<br />

test with neutrons in 2009 and full size prototype in 2010<br />

4×50 cm<br />

200 cm


Requirements:<br />

Large Area ToF-wall for heavy ions: iToF<br />

Conceptual design<br />

RPC technology<br />

Cu<br />

tape<br />

adapted to heavy ions<br />

time resolution:


R&D prgress: Technical Design and <strong>Status</strong> <strong>Report</strong>s<br />

<strong>R3B</strong>: <strong>Status</strong> March 2009<br />

NeuLAND neutron detector: Technical <strong>Status</strong> <strong>Report</strong> of November 2008<br />

(attached to German funding applications)<br />

TDR will be issued in Q4 2010<br />

CALIFA calorimeter: Technical <strong>Status</strong> <strong>Report</strong> of November 2008 (attached to German application)<br />

TDR barrel part in Q1 2010, TDR forward cap Q2 2011<br />

Target Recoil Detector: entire R&D and construction by UK groups,<br />

detailed project plan, regular reporting foreseen for UK funding, ready by 2013<br />

Heavy-Ion Tracking: TSR available for diamond detectors (attached to German application)<br />

RPC ToF wall TSR available (final EURONS report)<br />

<strong>GSI</strong> Si-strip detectors (final EURONS report)


Time Plan<br />

2009-2010: remaining R&D and prototyping<br />

2011: Start production<br />

2011 (Q4): 20% of CALIFA and NeuLAND ready<br />

2012: Experiments with <strong>R3B</strong> detectors in Cave C<br />

2013: Setting up in <strong>R3B</strong> hall<br />

2014: Commissioning of full setup, first experiments<br />

<strong>R3B</strong>: Time Plan and funding<br />

Funding situation:<br />

✔ 5.5 MEuro (3.0 EU + 1.5 <strong>GSI</strong> + 0.5 CEA) (Dipole)<br />

✔ 0.7 MEuro (+ R&D+Menpower) UK (Recoil Detector)<br />

►BMBF application German universities<br />

►BMBF project application (<strong>GSI</strong>)<br />

open: Spain, Sweden, India, Russia, China, Poland<br />

Proposal spectrometer: MSU, <strong>GSI</strong>, Berkely, Tennessee;<br />

RIKEN

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!