17.05.2013 Views

T - Academia Sinica

T - Academia Sinica

T - Academia Sinica

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

-TIGP course Dec. 2007<br />

Wei-Li Lee, IoP, <strong>Academia</strong> <strong>Sinica</strong>


-TIGP TIGP course on carbon nanostructure<br />

Dec. 15 th - Lecture Ι : 0D system, carbon-based buckyballs ( fullerene)<br />

Dec. 22 st - Lecture ΙΙ : 2D system, emerging material : graphene<br />

D 29th Dec. 29 L t ΙΙΙ 1D t b t b<br />

th - Lecture ΙΙΙ : 1D system, carbon nanotube<br />

Jan. 5 th at 3 pm : Study group oral presentation<br />

Jan. 12 th - Final exam


4 topics :<br />

Lecture - Monday 2pm - 5pm<br />

-TIGP course on carbon nanostructure<br />

20 minutes break from 3:20pm to 3:40 pm<br />

Study group – 2-3 2 3 people a group<br />

each person, 15 minutes oral presentation, 5 for questions<br />

0D system : Practical application of fullerene<br />

1D system : Recent progress of carbon nanotube composites as a space elevator<br />

2 D system : Graphene electronics : advantage and disadvantage<br />

3D system : Quantum information using diamond nanocrystals<br />

Reference Books:<br />

Introduction to Nanotechnology by Poole and Owens<br />

Science of Fullerenes and carbon nanotubes by Dresselhaus and Eklund<br />

Solid state Physics by Ashcroft/ Mermin


WMAP image of CMB (3 Kelvin) Angular spectrum<br />

WMAP<br />

Others<br />

Carbon<br />

Oxygen<br />

Baryonic ayo cmatter attein Universe U vese<br />

4600<br />

Helium<br />

Hydrogen<br />

0 200000 400000 600000 800000<br />

parts per million by mass


Dave Wilkinson<br />

James Peebles


Others<br />

Nitrogen<br />

Hydrogen<br />

Carbon<br />

Human Body<br />

OOxygen<br />

0 20 40 60 80<br />

mass percentage


• Carbon : atomic number 6, 1s 2 [2s 2 2px 1 2py 1 ]<br />

Orbitals used<br />

for bond<br />

Molecular orbital :<br />

ψ<br />

∑<br />

= i<br />

C<br />

X<br />

j<br />

ij i<br />

i<br />

Xi : atomic orbitals<br />

Shape &<br />

bond angle g<br />

Examples:<br />

Sp s, px Digonal 180 o C 2H 2 Acetylene<br />

S 2 Sp Ti l G hit C H<br />

2 s, px, py Trigonal<br />

120o Graphite, C2H4 Ethylene<br />

sp 3 s, px, py, pz Tetrahedra Diamond, CH 4<br />

109 o 28’ Methane


• Many stable and known forms at RR.T. T<br />

Examples: diamond, graphite, amorphous carbon, fullerene, carbon<br />

nanotube and nanobud…etc<br />

• TTwo main i structures t t : one with ith sp 3 hhybrid b id bbonds d (di (diamond) d) and d th the<br />

other with sp2 hybrid bonds (graphite, fullerene, nanotube and<br />

nanobud)<br />

• Dramatic different properties between diamond and graphite<br />

Diamond Graphite<br />

Electric Insulator Conductive<br />

Hardness 10 (Mohs scale) 11-2 2<br />

Appearance Transparent Opaque (black)<br />

Value Expensive cheap


• European Football like molecule containing 60 carbons<br />

- 12 pentagonal and 20 hexagonal faces<br />

- Double bond length 1.4 Å and single bond 1.46 Å<br />

• NNamed d after ft architect hit t R. R Buckminster B k i t Fuller F ll (1895 (1895-1983) 1983)<br />

Geodesic dome<br />

• Geometrically-allowed y fullerene C20+h*2 20+h 2<br />

12 pentagonal faces + arbitrary number<br />

of hexagonal faces (h)<br />

• Smallest Fullerene C 20<br />

• Smallest isolated (stable) Fullerene C 60


• “An An idea from outer space” space : 5.6 5 6 eV optical extinction<br />

• Robert Kurl, Harold Kroto and Richard Smalley<br />

-- Nobel Prize laureates in Chemistry 1996


• Carbon ball with a metal core<br />

• Mass production of Fullerene by astrophysicists D.<br />

R. Huffmann and W. Krätschmer<br />

• CCarbon b nanotube t b – special i l electric l t i and d<br />

mechanical properties<br />

•New superconducting p g crystals y M3C 3 60


• quasi-0D system : d < ℓ mfp<br />

• Di Discrete t energy llevel l resembles bl th the atomic t i llevel l of f a ffree atom t<br />

- ex : 3-D infinite rectangular square well<br />

2 2<br />

ππ h 2 2 2<br />

2<br />

En = ( )( nx<br />

+ ny<br />

+ nz<br />

) = E0n<br />

2ma<br />

6 degeneracy (including<br />

spin) at ground state<br />

QQuantum t number b = 0,1,2… 012 level Eo


LUMO<br />

• Shell model in a free fullerene : symmetry-based model<br />

• 60 πelectrons filling the molecular level<br />

Gap ~ 1.92 eV<br />

HOMO<br />

• Free C60 molecule should be a good insulator


• Molecular crystal : BCC stacking structure<br />

• Grown by slow evaporation from benzene solution<br />

filled with C60 molecules<br />

• Band calculation :<br />

LDA + Gaussian orbital basis set<br />

• Useful information :<br />

Insulator with direct band gap ~ 1.5 eV band width ~ 0.4 eV<br />

charge density map suggest weak coupling<br />

b/w fullerene molecule


• Two standard orientations of fullerene molecule<br />

TTwo fold f ld sym. axis i<br />

Two standard orientations<br />

• Merohedral disorder : random choice b/w one of the two possible standard<br />

orientations ( lack of four fold symmetry point)<br />

relative orientation b/w adjacent C 60 can affect its physical properties.


• Transport charges from doping alkali metal element M<br />

• Two competing process due to doping effect:<br />

- decrease of C 60 wave func. overlap<br />

- increase of the D.O.S<br />

• Best conductivity occurs at x ~ 3 (half filled band)<br />

-available available sites (octahedral and tetrahedral) all filled<br />

• undoped fullerene ρ 300K~ 10 8 Ωcm<br />

• Single crystal K K3CC 60 ρ ρ300K ~5mΩcm ~ 5 mΩcm<br />

•Strongly correlated electronics system<br />

-k Fℓ


• Discovered in K 3C 60 by Hebard (Bell lab, 1991) T c ~ 19.8 K<br />

• Highest Tc ~ 33K in Cs2RbC 2 60 60<br />

• The larger the radius of the dopant alkali atom the higher the Tc


• In weak-coupling limit ( ג


• Hall coefficient : R H = 1/ne<br />

Sign Sign change at 200K<br />

Both electron and hole like pockets<br />

•Transverse magnetoresistance :<br />

ρ ρ ρ C L,<br />

I<br />

ρ ρ ρ<br />

Δ<br />

Δ Δ<br />

= +<br />

0<br />

Classical orbital contribution :<br />

positive and quadratic in H<br />

0<br />

0<br />

Weak localization and ee-e e interaction:<br />

Negative, H 2 at low H and H 1/2 in high H


• Appeared In disordered and time reversal symmetric system<br />

• Negative MR : Strongly suppressed by applying magnetic field<br />

• Merohedral disorder and also missing alkali ion at the tetrahedral and<br />

octahedral sites<br />

origin<br />

Beff ⊙<br />

impurity<br />

∫ ∫ ⋅<br />

Constructive |2A| 2 localization<br />

B⋅<br />

dA = A dl<br />

: additional phase change


(Ι) Pauli susceptibility<br />

B<br />

• DOS D.O.S. :<br />

Spin down<br />

E<br />

K 3C 60 : 28 states/eV-C60<br />

Rb Rb3CC 60 : 38 states/eV states/eV-C60<br />

C60<br />

E F<br />

D.O.S.<br />

Spin up<br />

1<br />

n = ∫ d dε<br />

ε N ( εε<br />

+ μμ<br />

B H ) f ( εε<br />

)<br />

↑ ∫ 2<br />

M = μ ( n − n )<br />

P<br />

B<br />

2<br />

B<br />

↑<br />

χ = μ N(<br />

E<br />

F<br />

↓<br />

)


(ΙΙ) Specific Heat<br />

• In crystals with free electron gas model at low T<br />

C = Ce<br />

+ C p<br />

C<br />

e<br />

⎡ ⎡π<br />

= ⎢<br />

⎣ 3<br />

2<br />

k<br />

2<br />

B<br />

⎤<br />

N(<br />

ε F ) ⎥T<br />

,<br />

⎦<br />

C<br />

p<br />

=<br />

3<br />

4<br />

12 12π<br />

⎛ T ⎞<br />

n<br />

5 ⎜ ik<br />

B<br />

θ D<br />

• In amorphous system and also fullerene solids at low T<br />

Einstein mode (1907) ( )p plays y an important p role<br />

C = C<br />

e<br />

+ C<br />

p<br />

+ C<br />

2<br />

C = pnik<br />

B<br />

E B<br />

ω / k T<br />

E<br />

( hω<br />

/ k<br />

h E ( e<br />

E B<br />

T ) e<br />

−1)<br />

h hωω<br />

/ k T<br />

E<br />

2<br />

B<br />

⎝<br />

⎟ ⎟<br />


• From BCS theory :<br />

⎡C sup . − Cnorm<br />

. ⎤<br />

⎢ ⎥<br />

⎣ ⎦ C T<br />

norm<br />

Cnorm<br />

N(E ( F) F) ~ 12 states /eV-C 60<br />

= 1 1.<br />

43<br />

3 fold smaller than that from Pauli<br />

susceptibility measurement<br />

Many-body effect and spin fluctuation<br />

enhancement in χ pauli measurement<br />

(ΙΙ) Specific Heat<br />

E : Einstein term inter(intra)-molecule<br />

vibration modes with θ E~ 34K<br />

D : DDebye b tterm gives i θ θD ~70K 70K<br />

TL : electronic term


(ΙΙΙ) Thermopower<br />

• Current density<br />

r r t<br />

J e = σ E + α(<br />

−∇T<br />

) , α : peltier cond. tensor,<br />

turn on − ∇ T,<br />

and in steady state J = J = 0 , − ∇ T = 0,<br />

assume<br />

⇒<br />

e<br />

N<br />

Thermopower<br />

= ρα<br />

x<br />

isotropic ,<br />

xy<br />

− ρSσ<br />

xy<br />

,<br />

S<br />

• Sign convention of S<br />

Ex<br />

α xx ≡ = ,<br />

∇ T σσ<br />

x<br />

Nernst<br />

signal<br />

Positive for hole like carrier<br />

Negative for electron-like<br />

e<br />

N<br />

x<br />

≡<br />

E<br />

y<br />

y<br />

− ∇<br />

x<br />

z<br />

T<br />

x<br />

,<br />

y<br />

y<br />

−∇<br />

H<br />

x<br />

T<br />

θ<br />

α( ∇T<br />

)<br />

t<br />

α(<br />

−∇T<br />

)<br />

r<br />

E r t<br />

σ<br />

θα


(ΙΙΙ) Thermopower<br />

• Semiclassical theory<br />

S<br />

d<br />

2<br />

π<br />

= −<br />

2<br />

k<br />

e<br />

B<br />

⎛ k ⎞ BT<br />

⎜<br />

⎟<br />

⎟,<br />

linear in T<br />

⎝ ε F ⎠<br />

• Determination of E F from the slope dS/dT<br />

K 3C 60 : E F ~ 0.32 eV 5 states/eV-C 60-spin<br />

Rb 3C 60 : E F ~ 0.2 eV 9 states/eV-C60-spin<br />

•In<br />

K3C<br />

60,<br />

S<br />

p<br />

S = S + S<br />

: phonon drag effect<br />

d<br />

p<br />

contribution


• Fullerene structure : C 20+h*2<br />

• An example of strongly correlated electronic system<br />

Insulator – undoped C60 Metallic – Alkali-doped C60 SSuperconductivity d ti it – A A3CC 60 (A (A=K, K Rb,CsK,RbCs)<br />

Rb C K RbC )<br />

•T c increase linearly with lattice constant : BCS theory prediction<br />

• Reduced Hall coefficient and sign change at 200K : both electron and<br />

hole pocket<br />

• Weak localization effect associated with Merohedral disorder and<br />

missing alkali ions.<br />

• D.O.S. at Fermi Level in K K3C 3C60: 60:<br />

Pauli susceptibility : 28 states/eV-C60(spin fluctuation enhancement<br />

Thermopower S : 11 states/eV-C60<br />

states/eV C60<br />

Specific heat : 12 states/eV-C60

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!