13.05.2013 Views

Enzyme in Food & Agricultural Products

Enzyme in Food & Agricultural Products

Enzyme in Food & Agricultural Products

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Enzyme</strong> <strong>in</strong> <strong>Food</strong> &<br />

<strong>Agricultural</strong> <strong>Products</strong>


Future Applications of <strong>Food</strong> <strong>Enzyme</strong>s<br />

(1)Tailor<strong>in</strong>g <strong>Enzyme</strong> Properties & Functions<br />

To <strong>in</strong>crease the efficiency of the process<br />

ultimately lower the cost of operations<br />

Example : two key enzymes <strong>in</strong>volved <strong>in</strong> corn syrup production<br />

* Gelat<strong>in</strong>ization & Complete liquiefaction by α-amylase &<br />

Ca 2+ for heat stabilization at 105 o C<br />

must be cooled<br />

to 60 o C & pH ~4.5<br />

* Saccharify<strong>in</strong>g enzyme by glucoamylase<br />

Low heat stability & acidic pH optimum<br />

Highly desirable enzymes : glucoamylase that is heat stable<br />

at liquifaction temperature<br />

Simultant process of liquifaction & saccharification


Example : Saccharify<strong>in</strong>g <strong>Enzyme</strong>s<br />

Glucoamylase : catalyze the hydrolysis of α-1,4 about 30-50<br />

times faster than the branch<strong>in</strong>g (α-1,6) l<strong>in</strong>kage.<br />

The yield ~96% but takes long time (~48 hours)<br />

It is desirable to add a debranch<strong>in</strong>g enzyme or<br />

Glucoamylase must be modified to enhance its action on (α-1,6)<br />

bonds.<br />

Dextrozyme (mixture of glucoamylase & pullulanase)<br />

Reduce the process time


Example : Lipase<br />

Transesterification of <strong>in</strong>expensive oils (e.g. palm) oil to produce<br />

substitutes for cocoa butter<br />

Melt<strong>in</strong>g properties (low and sharp melt<strong>in</strong>g po<strong>in</strong>t at 30-40 o C)<br />

Palm oil with most of its 1,3 position occupied by palmitic acid<br />

can be transesterified with stearic acid to produce CBS<br />

Desirable enzyme : High stability & high catalytic effiency lipase<br />

Example : Addition of lipase & protease to accelerate the cheeseripen<strong>in</strong>g<br />

process is of economic significance<br />

Delicate control a proper flavor profile


(2) In vivo modification of <strong>Food</strong> Quality<br />

The potential use of modification of enzymatic pathways <strong>in</strong> plants<br />

(1) Improv<strong>in</strong>g functional properties of prote<strong>in</strong> & other components<br />

more suitable for food & feed formulation & process<strong>in</strong>g<br />

e.g. high lys<strong>in</strong>e corn, golden rice<br />

(2) Tailor<strong>in</strong>g the chemical composition and physical properties of<br />

food components for value added products.<br />

e.g. high starch amylose & low moisture potato french fries<br />

absorb less oil on fry<strong>in</strong>g<br />

(3) Remov<strong>in</strong>g or reduc<strong>in</strong>g toxicants or undesirable compounds <strong>in</strong><br />

food crops to improve their nutritional value.<br />

e.g. Low HCN cassava


Amylolytic <strong>Enzyme</strong><br />

β-amylase<br />

pullulanase<br />

α-amylase


Amylolytic Activity Assay<br />

Dur<strong>in</strong>g hydrolysis, there is :<br />

1. Decrease <strong>in</strong> viscosity<br />

2. Loss <strong>in</strong> ability to give a blue color with iod<strong>in</strong>e<br />

3. An appearance of reduc<strong>in</strong>g groups<br />

4. An <strong>in</strong>crease <strong>in</strong> maltose, glucose & dextr<strong>in</strong><br />

•Depolymeration Process<br />

•Change : Degree of Polymerization (DP)<br />

Dextrose Equivalent (DE)


Optimum pH & Temperature<br />

<strong>Enzyme</strong> pH Temperature<br />

( o C)<br />

α-amylase 6.0-7.0 (mammalia)<br />

4.8-5.8 (A. oryzae)<br />

5.8-6.0 (B. subtilis)<br />

5.5-7.0 (B. licheniformis)<br />

β amylase 5.0 (wheat, malt & sweet potato)<br />

6.0 (soybean & pea)<br />

70-72<br />

90<br />

Glucoamylase 4.0-4.4 40-65


Criteria α-amylase β-amylase Glucoamylase<br />

Reduc<strong>in</strong>g group<br />

formation<br />

Fixed as equal Fixed as equal Fixed as equal<br />

Loss <strong>in</strong> viscosity Fast Slow Slow<br />

Loss <strong>in</strong> iod<strong>in</strong>e<br />

colour<br />

Maltose<br />

Production<br />

Glucose<br />

Production<br />

Relative Rate of Amylolytic Activity<br />

Fast Slow Slow<br />

Slow Fast None<br />

None None Fast


Applications of Amylase <strong>in</strong> Process<strong>in</strong>g<br />

(1)Starch Process<strong>in</strong>g<br />

as process<strong>in</strong>g aids to convert starch to starch derivatives<br />

& saccharification products.<br />

(2) Gelat<strong>in</strong>ization & liquefaction of starch<br />

(3) Saccharification of starch<br />

Glucose syrup Production : acid & enzyme catalyst<br />

The advantages of enzyme usage :<br />

- Improved the yield<br />

- Favourable economics<br />

* milder reaction condition (low T & neutral pH)<br />

reduc<strong>in</strong>g unwanted side reaction<br />

off-flavor & off-color of HMF & salts<br />

* low energy requirements<br />

* elim<strong>in</strong>ate neutralization steps.


Penyiapan beberapa gula dari pati<br />

secara enzimatis (Ka<strong>in</strong>uma, 1995)<br />

Enzim :<br />

(1) α-amilase<br />

(2) β-amilase<br />

(3) Glukoamilase<br />

(4) CGT-ase<br />

(cyclodextr<strong>in</strong><br />

glukanotransfer<br />

ase)<br />

(5) Glukosa-<br />

Fruktosa<br />

Isomerase<br />

Maltitol<br />

Hidrogenasi<br />

Maltosa<br />

Maltooligosakarida Siklodekstr<strong>in</strong><br />

Starch Syrup<br />

Starch Syrup Solid<br />

Amilase<br />

Khusus<br />

Asa<br />

m/<br />

(1)<br />

Hidrogena<br />

si<br />

Manitol<br />

PATI<br />

(2)<br />

Glukosa<br />

(5)<br />

(1) &<br />

(3)<br />

(4)<br />

(4)<br />

Hidrogena<br />

si<br />

Fruktosa Sorbitol<br />

Coupl<strong>in</strong>g sugar


Larutan Pati<br />

Pengenceran<br />

Dekstr<strong>in</strong>isasi<br />

Sakarifikasi<br />

Purifikasi<br />

Isomerisasi<br />

Pemurnian<br />

Likuifikasi<br />

Maltodekstr<strong>in</strong><br />

Sirup maltosa<br />

Sirup glukosa<br />

Sirup campuran<br />

Sirup fruktosa


Aplikasi Produk Hidrolisis Pati<br />

Produk Hidrolisis Pati DE Aplikasi<br />

Maltodekstr<strong>in</strong> 3-20 Stabilizer, thickener,<br />

filler, lem dan pasta<br />

Sirup Maltosa 48-63 Permen keras,<br />

mencegah higroskopis,<br />

bahan baku untuk fermentasi<br />

Sirup Glukosa 96-98 Soft dr<strong>in</strong>k, bahan baku untuk<br />

fermentasi<br />

Sirup Fruktosa - Industri makanan-m<strong>in</strong>uman<br />

kaleng, soft dr<strong>in</strong>k, produk susu<br />

Sirup Campuran 42-63 Soft dr<strong>in</strong>k, bahan baku <strong>in</strong>dustri<br />

pangan<br />

Sumber : Kennedy et al. (1995)


(4) Bak<strong>in</strong>g<br />

Ma<strong>in</strong> reasons for supplementation of flour with amylase<br />

• Amylase <strong>in</strong>crease the level of fermentable sugar <strong>in</strong> dough.<br />

• Amylase improve crust colour reduc<strong>in</strong>g sugars produced<br />

reacts with other components <strong>in</strong> bread to give Maillard<br />

Reaction products golden crust<br />

• The flavor of bread is improved by simple sugar and Maillard<br />

reaction products.<br />

• Gas retention properties of the dough are improved by<br />

starch modification result<strong>in</strong>g from amylase<br />

• The crumb has improved moisture retention properties<br />

• Heat stable amylase retard the stal<strong>in</strong>g of bread<br />

Amylase as anti-stal<strong>in</strong>g agents


Five general types of cellulases based<br />

on the type of reaction catalyzed<br />

1. Endo-cellulase breaks <strong>in</strong>ternal bonds to disrupt the crystall<strong>in</strong>e<br />

structure of cellulose and expose <strong>in</strong>dividual cellulose polysaccharide<br />

cha<strong>in</strong>s<br />

2. Exo-cellulase cleaves 2-4 units from the ends of the exposed cha<strong>in</strong>s<br />

produced by endocellulase, result<strong>in</strong>g <strong>in</strong> the tetrasaccharides or<br />

disaccharide such as cellobiose. There are two ma<strong>in</strong> types of exocellulases<br />

(or cellobiohydrolases, abbreviate CBH) - one type work<strong>in</strong>g<br />

processively from the reduc<strong>in</strong>g end, and one type work<strong>in</strong>g<br />

processively from the non-reduc<strong>in</strong>g end of cellulose.<br />

3. Cellobiase or beta-glucosidase hydrolyses the exo-cellulase product<br />

<strong>in</strong>to <strong>in</strong>dividual monosaccharides.<br />

4. Oxidative cellulases that depolymerize cellulose by radical reactions,<br />

as for <strong>in</strong>stance cellobiose dehydrogenase (acceptor).<br />

5. Cellulose phosphorylases that depolymerize cellulose us<strong>in</strong>g<br />

phosphates <strong>in</strong>stead of water.


The three types of reaction catalyzed by cellulases:<br />

1. Breakage of the non-covalent <strong>in</strong>teractions present <strong>in</strong> the crystall<strong>in</strong>e structure<br />

of cellulose (endo-cellulase)<br />

2. Hydrolysis of the <strong>in</strong>dividual cellulose fibers to break it <strong>in</strong>to smaller sugars<br />

(exo-cellulase)<br />

3. Hydrolysis of disaccharides and tetrasaccharides <strong>in</strong>to glucose (betaglucosidase).


Mechanisms of enzymatically hydrolysis of<br />

cellulose


Microscopic structure of cellulose fraction after<br />

164 hours hydrolysis by several bacteria isolates<br />

(Light microscope, 400 x magnificence)<br />

C4-4 C5-1<br />

C11-1<br />

Mixed Culture


Microscopic structures of cellulose<br />

before and after hydrolysis<br />

Light microscope (magnificence 400x)<br />

Light polarized microscope (magnificence 400x)


Classification of Pectic Substances<br />

1. Pectic acid pectates<br />

2. Pect<strong>in</strong>ic acids pect<strong>in</strong>ates<br />

3. Pect<strong>in</strong>s


Pect<strong>in</strong> <strong>Enzyme</strong>s<br />

1. Polygalacturonase (PG) α-1,4 glycosidic bonds<br />

- exo-PG : cleaves from non-reduc<strong>in</strong>g ends<br />

- endo-PG : attacks the substrate randomly<br />

2. Pect<strong>in</strong>esterase (PE)<br />

catalyse the hydrolysis of the methyl ester group<br />

3. Pectat Lyase (PEL)<br />

catalyse the cleavage of non-esterified galacturonate unit<br />

via α-elim<strong>in</strong>ation – endo PEL & exo-PEL<br />

substrate : pectate and low methoxyl pect<strong>in</strong><br />

4. Pect<strong>in</strong> lyase (PNL)<br />

catalyse cleavage of esterified galaturonate unit by β-elim<strong>in</strong>ation<br />

(endo-enzyme)


Activity Assay of Polygalacturonase<br />

1. The rate of decrease <strong>in</strong> viscosity of the reaction mixture<br />

2. The rate of formation of reduc<strong>in</strong>g sugars<br />

3. The decrease <strong>in</strong> optical rotation or<br />

4. The decrease <strong>in</strong> precipitability by calcium ions or non polar solvents<br />

Reduction <strong>in</strong> ~50% of viscosity<br />

Endo-PG : 3-5% of glycosidic bonds<br />

Exo-PG : 10-15% of glycosidic bonds<br />

Effects of M<strong>in</strong>erals<br />

The role of NaCl to prevent product <strong>in</strong>hibition of enzyme<br />

Ca2+ performs a role <strong>in</strong> b<strong>in</strong>d<strong>in</strong>g and or catalysis, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

the conformation of the enzyme<br />

pH optima for most PG enzymes are pH 4.5-6.0


Activity Assay of Pect<strong>in</strong>esterase (PE)<br />

• The rate of methanol production<br />

• The Ca 2+ precipitability of the pectic acid formed<br />

Activity Assay of Pectate Lyase (PEL)<br />

Acidic (pH 4-5), neutral (pH 7-8.5) & alkal<strong>in</strong>e (pH 9-10)<br />

Activator : Ca 2+<br />

Activity of trans-elim<strong>in</strong>ases can be measured as PGs<br />

Splitt<strong>in</strong>g of the glycosidic bond by observ<strong>in</strong>g the <strong>in</strong>crease<br />

at 235 nm due to formation of the double bonds


Application <strong>in</strong> <strong>Food</strong> Process<strong>in</strong>g<br />

(1)Fruit Juice Clarification<br />

larger use of pect<strong>in</strong>ase ma<strong>in</strong>ly to deciduous juice & grape juice<br />

Effects : lower viscosity<br />

causes cloud partics to aggregate to larger units<br />

sediments are removed easily by centrifugation or<br />

ultrafiltration


(2) Treatment of pulp for Juice Extraction<br />

release of anthocyan<strong>in</strong>s of red fruits <strong>in</strong>to juice<br />

e.g. Blackcurrant juice<br />

Red w<strong>in</strong>e


( (3) Liquefaction<br />

Liquified juices are almost :<br />

- clear (papaya, cucumber)<br />

- cloudy (apples, peaches)<br />

-pulpy (carrots)<br />

(4) Maceration

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!