10.05.2013 Views

REZUMATUL - USAMV Cluj-Napoca

REZUMATUL - USAMV Cluj-Napoca

REZUMATUL - USAMV Cluj-Napoca

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UNIVERSITATEA DE ŞTIINŢE<br />

AGRICOLE ŞI MEDICINĂ<br />

VETERINARĂ, CLUJ-NAPOCA<br />

FACULTATEA DE ZOOTEHNIE ŞI<br />

BIOTEHNOLOGII<br />

DOMENIUL: BIOTEHNOLOGII<br />

<strong>REZUMATUL</strong><br />

TEZEI DE DOCTORAT<br />

SISTEME DE ÎNCAPSULARE A UNOR COMPUŞI<br />

BIOACTIVI EXTRAŞI DIN ULEIURI VEGETALE<br />

MONICA TRIF<br />

Ing. Dipl. Biotehnolog<br />

CONDUCĂTOR ŞTIINŢIFIC:<br />

PROF. Dr. Dr. h.c. HORST A. DIEHL<br />

2009


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

CUPRINS<br />

I. INTRODUCERE. SCOP ŞI OBIECTIVE............................................................................ III<br />

PARTEA II. CONTRIBUŢII PROPRII (ORIGINALE) .........................................................IX<br />

CAPITOL II. CARACTERIZAREA ULEIURILOR FUNCŢIONALE UTILIZATE LA<br />

BIOÎNCAPSULARE ...............................................................................................................IX<br />

II.1. MATERIALE ŞI METODE .........................................................................................IX<br />

II.2. REZULTATE ŞI DISCUŢII.......................................................................................... X<br />

II.3. CONCLUZII .............................................................................................................. XIV<br />

CAPITOLUL III. BIOÎNCAPSULAREA ULEIURILOR: PROTOCOALE DE PREPARE A<br />

CAPSULELOR ŞI CARACTERIZAREA LOR.................................................................... XV<br />

III.1. MATERIALE ŞI METODE...................................................................................... XV<br />

III.2. REZULTATE ŞI DISCUŢII .................................................................................... XVI<br />

III.3. CONCLUZII............................................................................................................XXII<br />

CAPITOL IV. EFICIENŢA ÎNCAPSULĂRII ŞI STUDII DE ELIBERARE A ULEIURILOR<br />

DIN CAPSULE....................................................................................................................XXII<br />

IV.1. MATERIALE ŞI METODE....................................................................................XXII<br />

IV.2. REZULATTE ŞI DISCUŢII ................................................................................. XXIII<br />

IV.3. CONCLUZII ......................................................................................................... XXVI<br />

CAPITOL V. CARACTERIZAREA FTIR A OXIDĂRII ULEIURILOR .....................XXVII<br />

V.1. MATERIALE ŞI METODE ..................................................................................XXVII<br />

V.2. REZULTATE ŞI DISCUŢII..................................................................................XXVII<br />

V.3. CONCLUZII.........................................................................................................XXVIII<br />

CONCLUZII GENERALE ................................................................................................ XXIX<br />

BIBLIOGRAFIE SELECTIVĂ ......................................................................................... XXXI<br />

PUBLICAŢII PE DURATA STAGIULUI DOCTORAL SI PARTICIPARI LA<br />

SIMPOZIOANE ŞI CONFERINŢE NATIONALE ŞI INTERNAŢIONALE............... XXXIV<br />

II


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

I. INTRODUCERE. SCOP ŞI OBIECTIVE<br />

BIOÎNCAPSULAREA reprezintă o tehnologie nouă, bazată pe inserţia şi imobilizarea<br />

moleculelor bioactive, în ‘’suporturi’’ specifice (matrici). Tehnologia încapsulării este bine<br />

dezvoltată şi utilizată în industria farmaceutică, chimică, cosmetică, alimentară precum şi în<br />

cea tipografică (Augustin et al., 2001; Heinzen, 2002). Potenţialul bioîncapsulării s-a<br />

concretizat tot mai mult în domeniile biotehnologiei, mai ales în cele agricole şi alimentare. În<br />

ultimele decenii, încapsularea compuşilor activi a devenit o tehnologie de mare interes şi<br />

însemnătate, fiind adecvată atât pentru ingredienţii alimentari cât şi pentru cei chimici,<br />

farmaceutici sau cosmetici.<br />

Aplicarea acestei metode de success, de bioîncapsulare a compuşilor bioactivi extraşi<br />

din uleiuri vegetale ar putea permite stabilirea combinaţilor şi a calitaţilor optime ale acestor<br />

substanţe. Este de luat în considerare că o asemenea metodă şi anume bioîncapsularea,<br />

aplicată în aria comercială, ar avea beneficii semnificative pentru industria farmaceutică,<br />

alimentară şi cosmetică. În afară de aceasta este de consemnat faptul că, cercetarea şi<br />

dezvoltarea în aceste domenii este semnificativă mai ales în ceea ce priveşte conservarea<br />

compuşilor naturali bioactivi extraşi din plante.<br />

Scopul acestei tezei constă în utilizarea diferitelor matrici naturale pentru<br />

bioîncapsularea moleculelor bioactive prin metoda gelării ionice (‘’ionotropically crosslinked<br />

gelation’’), precum şi în evaluarea diferenţelor de calitate şi a eficienţei parametrilor pentru<br />

produşii încapsulaţi şi nu în ultimul rând a eliberării controlate a moleculelor bioactive din<br />

matrici.<br />

Structura tezei. Prima parte a acestei teze este reprezentată de un studiu de literatură, partea a<br />

doua include rezultatele experimentale: materiale şi metode, rezultate şi discuţii, concluzii.<br />

Prima parte (Studiul de literatură) este compusă din patru capitole (I-IV):<br />

Capitolul I. Bioîncapsularea: definiţie, principii, aplicaţii, metode şi tehnici<br />

Capitolul II. Uleiuri vegetale funcţionale: caracterizarea fizică, chimică şi autentificarea<br />

Capitolul III: Încapsularea uleiurilor: matrici, metode şi tehnici de încapsulare, evaluarea<br />

eficienţei şi a stabilităţii<br />

Capitolul IV. Metode pentru caracterizarea capsulelor<br />

Partea a doua a tezei (Contribuţiile proprii) include patru capitole, dupa cum urmează:<br />

Capitolul V. Caracterizarea uleiurilor funcţionale utilizate pentru bioîncapsulare.<br />

Această parte caracterizează patru uleiuri funcţionale (ulei de cânepa, ulei de dovleac, ulei<br />

extra virgin de măsline şi ulei de cătină) analizate şi apoi încapsulate prin diferite tehnici:<br />

spectroscopie de absorbţie în ultraviolet (UV), cromatografie de gaze (GC) cu detecţie prin<br />

ionizare în flacără (FID) şi spectroscopie în infraroşu cu transformantă fourier echipată cu<br />

reflectanţă atenuată orizontală (FTIR-ATR), determinările chimice fiind realizate în<br />

conformitate cu metodele descrise în A.O.A.C. şi IOOC.<br />

III


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

Capitolul VI. Optimizarea protocoalelor de obţinere a caspsulelor utilizând matrici<br />

naturale şi caracterizarea capsulelor ce conţin ulei încapsulat. Acest capitol descrie<br />

protocoalele pentru: sinteza capsulelor goale de diferite mărimi şi concentraţii, sinteza<br />

capsulelor de diferite mărimi şi concentraţii ce încorporează ulei, caracterizarea capsulelor<br />

goale şi a celor ce conţin uleiuri (în funcţie de mărime şi morfologie), cuprinzând de<br />

asemenea şi analiza FTIR-ATR şi termică a capsulelor.<br />

Capitolul VII. Studierea eficienţei încapsulării şi a eliberării uleiurilor încapsulate. Acest<br />

capitol conţine studii cu privire la eficienţa încapsulării uleiurilor funcţionale în diferite<br />

matrici, determinarea ratei de eliberare a uleiurilor din capsule în timp şi în diferiţi solvenţi,<br />

precum şi eliberarea in vitro a uleiurilor din capsule.<br />

Capitolul VII. Caracterizarea FTIR-ATR a oxidării uleiurilor. Acest capitol include<br />

analize comparative a uleiurilor libere şi încapsulate supuse oxidării în timp în condiţii UV.<br />

Planul experimental se bazeaza pe urmatoarele obiective:<br />

Utilizarea diferitelor matrici naturale (precum alginatul, alginatul în complex cu k-<br />

caragenan şi gume: xantan şi guar, şi chitosan) în scopul încapsulării uleiurilor<br />

funcţionale (ulei de dovleac, ulei extra virgin de măsline, ulei de cânepă şi ulei de<br />

cătină)<br />

Îmbunătăţirea şi optimizarea metodelor de bioîncapsulare pentru uleiurile vegetale cu<br />

proprietăţi funcţionale<br />

Investigarea morfologiei diferitelor capsule obţinute (microscopie electronică de<br />

scanare), caracterizarea capsulelor (suprafaţă, diametru, perimetru, elongaţie,<br />

sfericitate şi compactitate), analize FTIR<br />

Investigarea uleiurilor funcţionale bioîncapsulate: eficienţa şi stabilitatea încapsulării,<br />

eliberarea controlată a uleiurilor încapsulate, materialul şi funcţionalitatea capsulelor<br />

obţinute, caracterizarea FTIR a uleiurilor libere, a capsulelor obţinute şi oxidarea<br />

uleiurilor libere şi încapsulate.<br />

Cercetările prezentate au fost efectuate la Departamentul de Chimie şi Biochimie din<br />

cadrul Universităţii de Ştiinţe Agricole şi Medicină Veterinară, <strong>Cluj</strong>-<strong>Napoca</strong>, în colaborare cu<br />

Universitatea Tehnică Berlin (TU Berlin), Germania, Departamentul de Tehnologie a<br />

Enzimelor, sub supravegherea Prof. Dr. rer. nat. Marion Ansorge-Schumacher. Aş dori de<br />

asemenea să mulţumesc în mod special sponsorilor (Deutsche Bündestiftung Umwelt (DBU)<br />

Germany şi EU COST 865) ce au facut aceste cercetări posibile, acordându-mi cele două<br />

burse pentru studiile doctorale.<br />

IV


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

INTRODUCERE<br />

Microîncapsularea este procesul de producere a capsulelor la o scară micrometrică sau<br />

milimetrică, fiind cunoscute sub numele de capsule.<br />

Bioîncapsularea beneficiază de principiile fundamentale ale încapsulării şi implică<br />

învelirea efectivă a unei forme vii într-o membrană care este inertă, non-toxică pentru celulă,<br />

şi stabilă la condiţiile interioare ale reacţiilor biochimice precum agitarea (Muralidhar R.V. et<br />

al., 2001).<br />

Microcapsula este o capsulă mică, iar procedura de preparare a acesteia este numită<br />

microîncapsulare. Aceasta poate încorpora diferite tipuri de forme materiale pentru a<br />

suplimeta funcţiile secundare şi/sau pentru a compensa în diferite condiţii de mediu.<br />

Microcapsulele pot fi clasificate în trei categorii de bază în funcţie de morfologia<br />

acestora: mononuleare, polinucleare sau de tip matrice.<br />

Microcapsulele mononucleare conţin membrana care protejează compusul bioactiv; în<br />

Fig.1. sunt prezentate câteva tipuri de capsule.<br />

Fig. 1. Diferite tipuri de capsule utilizate (Birnbaum D.T. şi Brannon-Peppas L., 2003)<br />

Capsulele polinucleare prezintă mai mulţi compuşi bioactivi încorporaţi în interiorul<br />

unei membrane. Încapsularea de tip matrice conţine cmpusul bioactiv distribuit omogen pe<br />

toată suprafaţa interioară.<br />

Scopul microîncapsulării<br />

În general există numeroase motive pentru care substanţele ar trebui încapsulate (Li S.P. şi<br />

col., 1988; Finch C.A., 1985; Arshady, R., 1993):<br />

• Creştera stabilităţii pentru protejarea compuşilor activi de mediul extern<br />

• Pentru convertirea componenţilor lichizi activi într-un sistem solid uscat<br />

• Pentru separarea componenţilor incompatibili din punct de vedere funcţional<br />

• Pentru a masca proprietăţile nedorite a componenţilor activi<br />

• Pentru a proteja mediul extern al microcapsulelor de componenţi activi<br />

• Pentru a controla eliberarea compuşilr activi de procesel de eliberare întârziată sau<br />

eliberarea susţinută<br />

• Separarea omponenţilor incompatibili<br />

V


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

• Conversia lichidelor în solide<br />

• Mascarea mirosului, activităţii, etc.<br />

• În scop farmaceutic<br />

Tehnologia de încapsulare este foarte bine dezvoltată fiind acceptată în multe industrii<br />

precum: farmaceutică, chimică, cosmetică, alimentară (Augustin et al., 2001; Heinzen, 2002).<br />

În industria alimetară, grăsimile şi uleiurile, compuşii aromatizanţi şi oleorezinele,<br />

vitaminele, mineralele, coloranţii şi enzimele au fost deja încapsulate (Dziezak, 1988; Jackson<br />

şi Lee, 1991; Shahidi şi Han, 1993).<br />

Alegerea unei tehnici adecvate de bioîncapsulare depinde de utilizarea finală a<br />

produsului şi de condiţiile de procesare implicate în obţinerea produsului final.<br />

Bioîncapsularea îşi găseşte aplicaţie din ce mai multă aplicabilitate în domeniul<br />

biotehnologiilor şi în special în alimentaţie şi agricultură. În ultimele decenii, încapsularea<br />

compuşilor activi a devenit un process de mare interes şi însemnătate, fiind adecvat atât<br />

pentru ingredienţii alimentari cât şi pentru cei chimici, farmaceutici sau cosmetici.<br />

Pfutze S. (2003) consideră că tehnologiile de încapsulare pot fi divizate în două<br />

categorii:<br />

• formarea matricea capsulelor: un ingredient activ şi protector formează granule<br />

omogene. Produsul activ este uniform distribuit în granulă fiind înconjurat din<br />

abundenţă de material protector, formând matricea activă.<br />

• formarea învelişului capsulelor: materialul activ este granulat şi acoperit de un strat<br />

protector. Materialul activ şi protector este bine separat.<br />

Obiectivul principal este construirea unei bariere între particulele componente şi<br />

mediu. Această barieră reprezintă o protecţie împotriva oxigenului, apei, luminei; evitarea<br />

contactului cu alte particule sau ingrediente; sau controlul eliberării lor în timp. Protecţia<br />

compuşilor bioactivi pe parcursul procesării şi păstrării, precum şi eliberarea controlată în<br />

tractusul gastrointestinal este o prioritate în exploatarea potenţialului benefic al multor<br />

compuşi bioactivi.<br />

Tehnicile utilizate la bioîncapsulare necesită un material drept înveliş şi o substanţă<br />

protejată. Materialul utilizat trebuie aprobat de Administraţia Alimentaţiei şi Farmacie (US)<br />

sau de Autoritatea Europeană pentru Securitatea Alimentelor (Europa) (Amrita şi col., 1999).<br />

Coacervarea: încapsularea lichidelor<br />

Coacervarea complexelor (sau faza de separare), este prima aplicaţie la scară largă a<br />

tehnologiei de microîncapsulare. Coacervarea este un proces care are loc în soluţii coloidale şi<br />

de multe ori privită ca metoda originală de încapsulare (Risch, 1995).<br />

Aplicabilitate coacervării complexelor este enormă dar are şi limite datorită costurilor<br />

ei ridicate, în unele aplicaţii. Aceasta include încapsularea:<br />

aromelor<br />

vitaminelor<br />

cristaleor lichide pentru dispozitivele de display<br />

sisteme de imprimare<br />

VI


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

ingredienţi activi pentru industria farmaceutică<br />

bacteri şi celule<br />

Matricile – materiale pentru încapsulare<br />

Există diferite materiale ce pot fi utilizate pentru încapsulare precum: polielectroliţi<br />

sintetici (Sukhorukov şi col., 1998; Donath şi col., 1998), polielectroliţi naturali (Shenoy şi<br />

col., 2003), nanoparticule anorganice (Caruso şi col., 2001), grăsimi (Moya şi col., 2000),<br />

coloranţi (Dai şi col., 2001), ioni polivalenţi (Radtchenk şi col., 2005), şi biomacromolecule<br />

(Yang şi col., 2006).<br />

În general trei clase de materiale au fost utilizate: materiale naturale derivate (colaen ş<br />

alginat), matrici tisulare acelulare (submucoase intestinale) şi polimeri sintetici (acid<br />

poliglicolic, etc.). Aceste clase de biomateriale au foste testate în concordanţă cu<br />

biocomapatibilitatea lor (Pariente şi col., 2002).<br />

Biopolimerii sunt polimeri care provin din surse naturale, sunt biodegradabili, şi<br />

nontoxici. Pot fi produşi de sisteme biologice (ex: microorganisme, plante şi animale), sau<br />

chimic sintetizate din materiale biologice (ex: amidon, grăsimi sau uleiuri, etc.).<br />

Polimeri naturali şi derivaţi ai acestora: polimeri anionici: acid alginic, pectină,<br />

caragenan; polimeri cationici:chitosan, polilizină; polimeri amfipatici: colagen (and gelatină),<br />

chitină; polimeri neutri: dextran, agaroză, pululan.<br />

Guma guar (E412, numită şi guaran) este extrasă din seminţele leguminoaselor din<br />

familia Cyamopsis tetragonoloba. Guma guar prezintă vâscozitate scăzute dar este un bun<br />

agent de întărire. Fiind un polimer non-ionic, nu este influenţat de pH, dar este influenţat de<br />

temperaturi extreme la anumite pH-uri (ex: pH=3 la 50°C).<br />

Alginatul (E400-E404) este produs extras din algele brune (Phaeophyceae, în special<br />

Laminaria). Proprietăţile de gelifiere depind de interacţia cu unii ioni (Mg 2+


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

Uleiul de măsline conţine trigliceroli şi cantităţi mici de acizi graşi liberi, glicerol,<br />

pigmenţi, compuşi aromatizanţi, steroli, tocoferoli, fenoli, componenţi răşinoşi neidentificaţi,<br />

etc.(Kiritsakis A., 1998).<br />

Uleiul de dovleac este foarte sănătos, de caliate superioară, fiind în clasamentul<br />

primelor 3 uleiuri nutritive. Seminţele de dovleac au un gust intens şi sunt bogate în acizi<br />

graşi polinesaturaţi. Uleiul brun are un gust amărui. Conţinutul în tocoferoli ai uleiurilor<br />

oscilează de la 27,1 la 75,1 μg/g de ulei pentru α-tocoferol, de la 74.9 la 492.8 μg/g pentru γtocoferol,<br />

şi de la 35.3 la 1109.7 μg/g pentru δ-tocopherol (Stevenson şi col., 2007)<br />

Uleiurile de cătină conţin o cantitate ridicată de acizi esenţiali, linoleic şi alfa linoleic<br />

(Chen şi col., 1990), care sunt precursori ai altor acizi graşi polinesaturaţi cum ar fi acidul<br />

arahidonic sau eicosapentanoic. Este stocat în organitele extracitoplasmatice numite vezicule<br />

de ulei, o formă naturală de încapsulare (Socaciu et all, 2007, 2008). Uleiul din pulpa frutelor<br />

de cătină este bogat în acid palmitoleic şi acid oleic (Chen şi col., 1990).<br />

Uleiurile conţin de asemenea flavonoizi (Chen şi col., 1991), carotenoizi, steroli liberi<br />

şi esterificaţi, triterfenoli şi izoprenoli (Goncharova şi Glushenkova, 1996). Conţinutul în<br />

carotenoizii variază de asemenea în funcţie de sursa de provenienţă a uleiului.<br />

Proprietăţile fizice şi chimice ale uleiurilor funcţionale<br />

Proprietăţile fizice şi chimice ale uleiurilor, incluzând indicele de iod, de saponificare<br />

şi valorile de aciditate şi pentru peroxizi, indicele de refracţie, densitate şi materia<br />

nesaponificabilă sunt determinate conform procedurilor standard. Indicele de iod măsoară<br />

gradul de nesaturare al uleiurilor. Valoarea acestuia sub 100 demonstrază că uleiul prezintă un<br />

grad redus de saturare (Pa Quart, 1979; Pearson, 1981). Indicele de saponificare este un<br />

indicator al mediei masei moleculare a acizilor graşi prezenţi în ulei (AOAC, 1980; Pearson,<br />

1981). Indicele de peroxid este frecvent utilizat pentru măsurarea stadiului de oxidare al<br />

uleiului. Acesta indică oscilarea oxidativă a uleiului (deMan, 1992).<br />

Tehnicile pentru caracterizarea şi autentificarea uleiurilor funcţionale<br />

Există diferite tehnici pentru caracterizarea şi autentificare produselor alimetare.<br />

Metodele de autentificare aplicate pentru uleiuri şi grăsimi pot fi clasificate ca şi chimice (de<br />

separative) sau fizice (non-separative).<br />

Spectrometrele de infraroşu cu transformantă fourier (FTIR) prezintă multe avantaje în<br />

comparaţie cu instrumentele convenţionale de dispersie, printr-o excelentă reproductibilitate<br />

şi acurateţe a lungimilor de undă, precisa manipulare spectrală şi utilizarea unor programe<br />

chemometrice pentru calibrare. Accesoriile HATR au fost de asemenea larg utilizate în<br />

dezvoltarea metodelor FTIR pentru analizarea uleiurilor şi a grăsimilor, deoarece acestea pot<br />

oferi mijloace convenable şi simple pentru o manipulare uşoară (Sedman şi col., 1999).<br />

Spectroscopia infraroşu de mijloc (MIR) poate fi utilizată pentru identificarea compuşilor<br />

organici deoarece unele grupe de atomi prezintă proprietăţi ale frecvenţei de absorbţie a<br />

vibraţiilor în regiunea infraroşie a spectrului electromagnetic. Reflectanţa orizontală totală<br />

atenuată (HATR) este accesoriul cel mai des utilizat in metoda FTIR pentru analizele<br />

uleiurilor şi a grăsimilor (Sedman şi col., 1999).<br />

VIII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

O largă varietate de alimente utilizează pentru încapsulare aromatizanţi, acizi, baze,<br />

îndulcitori artificiali, coloranţi, antioxidanţi, agenţi cu arome nedorite, mirosuri, etc. Aceştia<br />

îşi păstreză bioactivitatea şi rămân accesibili agenţilor externi.<br />

Fitosterolii, flavonoizii şi compusii organici cu sulf, reprezintă trei grupe de compuşi<br />

caracteristici fructelor şi legumelor, care ar putea prezenta importanţă în reducerea riscului de<br />

ateroscleorză. (Howard şi Kritchevsky, 1997). Unele substanţe fitochimice, cu ar fi acidul<br />

ascorbic, carotenoizii, vitamina E, fitofenoli, izoflavoni şi fitosteroli, au fost evidenţiate ca<br />

ingredienţi fiziologic activi ce îmbunătăţesc rezistenţa la anumite boli.<br />

Încapsularea poate fi utilizată pentru condiţionarea uleiurilor în forme solide sau<br />

solubile în apă, extinzând utilizarea lor în multe alte aplicaţii. Încapsularea uleiurilor include<br />

ca metode şi tehnici: spray-drying, spray-chilling, fluid bed encapsulation, extrusion<br />

encapsulation şi încapsularea prin coacervare.<br />

Extrudarea este utilizată pentru încapsularea mineralelor şi vitaminelor în uleiuri<br />

(grăsimi saturate) într-o matrice de tip polizaharidic (Van Lengerich şi Lakis, 2002). Protecţia<br />

împotriva oxidării metil-linoleatului încapsulat cu gumă acacia prin metoda spray drying şi<br />

freeze drying, depinde de umiditatea relativă a mediului (Minemoto şi col., 1997).<br />

În majoritatea cazurilor matricile utilizate pentru încapsularea uleiurilor şi grăsimilor<br />

sunt gume (acacia, arabică), proteine, carbohidraţi (cazeină/zaharuri), maltodextrină, betaciclodextrine,<br />

alginat de sodiu, gelatină.<br />

PARTEA II. CONTRIBUŢII PROPRII (ORIGINALE)<br />

CAPITOL II. CARACTERIZAREA ULEIURILOR FUNCŢIONALE UTILIZATE LA<br />

BIOÎNCAPSULARE<br />

Uleiurile extrase din plante (floarea-soarelui, dovleac, soia, rapita, etc.) sunt foarte<br />

utilizate in domeniul alimentar, dar si in alte industrii (cosmetică, farmaceutică, etc.).<br />

PrezintĂ o deosebita insemnatate datorita numerosilor componenţi benefici care intră în<br />

alcătuirea lor. Calitatea şi autenticitatea acestor uleiuri se realizează prin diferite tehnici. Cele<br />

mai utilizate trei tehnici în vederea caracterizării acestor uleiuri sunt: spectrometriA UV-Vis,<br />

cromatografia gaz cu detecţie prin ionizare în flacără FID, şi spectroscopia infraroşu cu<br />

transformantă fourier (FTIR).<br />

II.1. MATERIALE ŞI METODE<br />

Au fost alese în vederea încapsulării patru uleiuri de mare interes: cătină (SBO) extras<br />

din fructele de catina, colectate din regiunea <strong>Cluj</strong>ului (Transilvania, nordul Romaniei), ulei de<br />

măsline extra virgin (EVO) din Italia, cânepă (HP) şi dovleac (PK) din Romania.<br />

Analizele chimice au fost determinate conform metodelor descrise de: A. O. A. C. şi<br />

IOOC sau de Comisia Uniunii Europene (EU): aciditatea şi indicele de iod. Toate probele au<br />

fost analizate în triplicat. Aciditatea a fost calculată luându-se în considerare conţinutul de<br />

IX


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

acizi graşi liberi ale uleiurilor analizate, determinat prin titrare conform metodei oficiale Ca<br />

5a-40. Indicele de iod a fost determinat prin metoda AOCS Cd 1c-85 (1997).<br />

II.2. REZULTATE ŞI DISCUŢII<br />

Determinarea acidităţii şi a indicelui de iod<br />

Rezultatele analizelor chimice prezentate în Tabelul II.1. au demonstrat o bună<br />

corelaţie a valorilor obţinute cu cele publicate în literatură.<br />

Tabel II.1. Caracteristicile chimice şi fizice ale uleiurilor analizate în comparaţie cu literatura<br />

Aciditate<br />

(mg KOH/g ulei)<br />

Ulei de Cânepa Ulei de măsline<br />

extra virgin<br />

Caracteristicile fizice si chimice<br />

Ulei de dovleac Ulei de cătină<br />

1.93 / 4.0* 2.64 / 6.6* 1.32 / 4.0* 3.7 / 4.0*<br />

Indicele de iod** 162 / 145-166* 87 / 75-95* 130 / 116-133* 71 / 98-119*<br />

**Indicele de Iod a fost calculat cu metoda AOCS Cd 1c-8<br />

* Date din literatura<br />

Aceste date demonstrează faptul că valorile acestor uleiuri corespund cu indicii de<br />

calitate ai iodului din Codex, excepţie uleiul de cătină, a cărui valori în cazul acidităţii nu<br />

corespund intervalelor acidităţii precizate în literatură.<br />

Determinarea amprentei uleiurilor prin spectrometrie ultra violet/visibil (UV-Vis)<br />

Caracterizarea spectrală (fingerprintul) specifică fiecărui ulei analizat prin UV-Vis<br />

este prezentat in Fig. I.1. Diferenţele dintre un ulei autentic si un ulei falsificat a fost<br />

demonstrate prin poziţia şi absorbanţa peakurilor caracteristice fiecărui ulei (Socaciu C. et al.,<br />

2005).<br />

Ulei de cânepă (Cannabis sativa L)<br />

Amprenta spectrală UV-Vis caracteristică uleiului de cânepă în conformitate cu datele<br />

precizate de OMLC, este dat de conţinutul ridicat în pigmenţi clorofilici, având absorbanţa<br />

maximă la 411 nm (Fig.II.1.A.).<br />

X


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

A. B<br />

C. D.<br />

Fig.II.1. Spectrele UV-Vis ale uleiurilor analizate (amprenta specifică în regiunea 350-600 nm<br />

continând detalii referitoare la maximul absorbantei peakului specific: A. Ulei de cânepă; B.<br />

Ulei de măsline extra virgin (EVO); C. Ulei de dovleac (PK); D. Ulei de cătină (SB)<br />

Ulei de măsline extra virgin (Olea europaea )<br />

Culoarea caracteristică uleiului de măsline depinde de majoritatea pigmenţilor<br />

conţinuţi, în principiu acest ulei având un conţinut ridicat în carotenoide şi clorofile. Uleiul<br />

provenit din măslinele ajunse la maturitate prezintă o culoare galbenă datorită continutului în<br />

pigmenţi carotenoidici galbeni. În general culoarea acestui ulei variază şi este datorată<br />

combinaţiei şi diferetelor proporţii de pigmenţi. Exista o simplă ecuaţie: Culoarea= clorofilă<br />

(verde) + carotenoide (galben) + alţi pigmenţi.<br />

Conţinutul în pigmenţi clorofilici se diminueaza odată cu atingerea maturităţii<br />

fructelor. Fingărprintul specific uleiului de măsline analizat este atribuit ‘’ecuaţiei culorii’’<br />

menţionată anterior (Fig.II.1.D.).<br />

Ulei de dovleac (Cucurbita pepo)<br />

Amprenta spectrală (fingerprintul) a acestui ulei este acceptat ca avand doua umere,<br />

unul la 418 nm cu absorbanţă mai mică, şi unul la 435 nm cu absorbanţă mai mare<br />

XI


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

(Fig.II.1.C.), în cazul falsificării sau oxidării, acest ulei prezintă absorbanţele celor două<br />

umere schimbate (Lankmayr şi col., 2004).<br />

Uleiul de cătină (Hippophae rhamnoides)<br />

Spectrului acestui ulei demonstrează ca fingărprintul este dat de cele trei umere care<br />

dau spectrul, care sunt caracteristice carotenoidelor, mai exact beta-carotenului, intre 400 şi<br />

500 nm (Fig.II.1.A.), acesta fiind compusul principal al acestui ulei (Lichtenthaler şi<br />

Buschmann, 2001).<br />

Analiza uleiurilor prin spectroscopia infrarosu cu furie transformata (FTIR)<br />

Studiile FTIR ale uleiurilor analizate au demonstrate existenta relatiei intre fecventele<br />

si absorbantele benzilor specifice si compozitia acestora. Aceste frecvenţe şi valoarea<br />

absorbanţei lor, au fost utilizate în continuare pentru evaluarea oxidarii uleiurilor (Guillen, M.<br />

D. şi Cabo, N, 1997, 1998, 1999, 2000, 2002).<br />

În conformitate cu aceste spectre au fost identificate principalele benzi şi frecvente în<br />

domeniul infraroşu ale uleiurilor analizate ( Tabel II.2.).<br />

Nr.<br />

banda<br />

HP<br />

(cm -1 )<br />

EOV<br />

(cm -1 )<br />

Tabel.II.2. Benzile infraroşu relevante ale uleiurilor investigate<br />

PK<br />

(cm -1 )<br />

SB<br />

(cm -1 )<br />

Grupul functional Modul de vibratie<br />

1 3008 3005 3008 3006 =C-H (cis-) de întindere<br />

2 2956 2956 2956 2956 -C-H (CH3) de întindere (asimetrică)<br />

3 2923 2923 2923 2922 -C-H (CH2) de întindere (asimetrică)<br />

4 2853 2853 2854 2853 -C-H (CH2) de întindere (asimetrică)<br />

5 1742 1742 1742 1742 -C=O (ester) de întindere<br />

6 1654 1653 1653 1653 -C=C- (cis-) de întindere<br />

7 1463 1464 1464 1464 -C-H (CH2, CH3)<br />

8 1456 1456 1456<br />

9 1418 1417 1418 1417 =C-H (cis-) de deformare<br />

10 1396 1402 1398 1402 de deformare<br />

11 1377 1377 1377 1377 -C-H (CH3) de deformare (simetrică)<br />

12 1317 1319 de deformare<br />

13 1236 1238 1238 1238 -C-O, -CH2- de întindere, de deformare<br />

XII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

14 1155 1159 1157 1161 -C-O, -CH2- de întindere, de deformare<br />

15 1120 1118 1120 1116 -C-O de întindere<br />

16 1097 1097 1099 1095 -C-O de întindere<br />

17 1028 1028 1029 1033 -C-O de întindere<br />

18 958 962 968 -HC=CH- (trans-) de deformare înafara<br />

planului<br />

19 914 914 -HC=CH- (cis-) de deformare înafara<br />

planului<br />

20 721 721 721 721 -(CH2)n-, -HC=CH-<br />

(cis-)<br />

de deformare ( rocking)<br />

Spectrele uleiurilor analizate par a fi in principiu similare, însă diferenţele în<br />

intensitatea benzilor ca de altfel şi a frecvenţelor fac posibilă diferenţierea foarte clară a<br />

compoziţiei acestor uleiuri (see Fig. II.2.).<br />

Fig.II.2. Spectrul FTIR-ATR al zonei de fingerprint (1700-800 cm -1 ) a uleiurilor analizate<br />

HP= cânepă, EVO (EOV) = măsline extra virgin; PK= dovleac; SB= cătină<br />

XIII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

Profilul acizilor graşi prin cromatografia gaz<br />

Compoziţia acizilor grasi analizaţi prin GC-FID in acest studio sunt evidentiati in<br />

Tabelul II.3. Profilul acizilor graşi a fost comparat cu al uleiurilor din literature.<br />

Acizi grasi %<br />

Tabel.II.3. Compoziţia procentuală a acilor graşi din uleiurile analizate<br />

Ulei de Canepa Ulei de masline<br />

extra virgin<br />

Ulei de dovleac Ulei de catină<br />

Palmitic (16:0) 7.48 7.28 6.29 7.76<br />

Stearic (18:0) 1.66 2.67 3.64 0.3<br />

Arachidic (20:0) 1.06 - - 0.11<br />

Σ saturati % 10.02 9.95 9.93 8.17<br />

Palmitoleic<br />

(C16:1)<br />

Oleic<br />

(C18:1)<br />

Linoleic<br />

(C18:2)<br />

Linolenic<br />

(18:3n3)<br />

Eicosadienoic<br />

(C20:2)<br />

-<br />

14.94<br />

72.6<br />

-<br />

0.55<br />

-<br />

36.81<br />

43.14<br />

0.93<br />

-<br />

-<br />

42.44<br />

46.71<br />

Σ nesaturati % 87.54 80.88 90.07 12.5<br />

C18:1/C18:2 0.21 0.85 0.91 6.3<br />

omega 3 : omega<br />

6 acizi grasi<br />

II.3. CONCLUZII<br />

0.92<br />

- 0.022 0.02 -<br />

Prin GC-FID, s-a determinat compoziţia în acizi graşi a uleiurilor analizate şi s-a facut<br />

comparaţia cu datele din literatură. În urma acestei analize s-au concluzionat urmatoarele:<br />

• compoziţia uleiului de cânepă nu corespunde cu valorile precizate în literatură pentru<br />

acizii graşi, acesta avand un conţinut mai scăzut. Acidul oleic se incadrează in<br />

intervalul prevăzut in literatură<br />

• principalii acizi graşi în uleiul de măsline extra virgin sunt acidul oleic şi linoleic, şi de<br />

asemenea în cantitate mai mică acidul lonoleic<br />

-<br />

5.4<br />

6.3<br />

-<br />

0.8<br />

-<br />

XIV


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

• în cazul uleiului de dovleac, compoziţia în acizi graşi corespunde cu valorile precizate<br />

în litaratura, excepţie facând acizii palmitic şi stearic care sunt prezenţi in concentrţii<br />

mai mici<br />

• profilul acizilor graşi a uleiului de cătină a demonstrat faptul că acest ulei provine din<br />

pulpa/pielea fructelor şi nu din seminţe, fiind foarte bogat in acidul palmitic şi oleic<br />

CAPITOLUL III. BIOÎNCAPSULAREA ULEIURILOR: PROTOCOALE DE<br />

PREPARE A CAPSULELOR ŞI CARACTERIZAREA LOR<br />

III.1. MATERIALE ŞI METODE<br />

În vederea realizării parţii experimentale din acest capitol s-au utilizat urmatoarele:<br />

• matrici pentru încapsulare: alginat, k-caragenan, chitosan, gumă xantan şi<br />

gumă guar, procurate de la Sigma Aldrich<br />

• solvenţii si reactanţii necesari de asemenea de la Sigma Aldrich<br />

• uleiurile utilizate la încapsulare au fost prezentate in capitolul anterior<br />

Protocol pentru sintetizarea capsulelor goale de diferite mărimi şi concentraţii<br />

Diferite concentratii de alginat (1%, 1.5%, 2% w/v), amestec de: alginat si caragenan,<br />

alginat si guma xantha, alginat si guma guar au fost dizolvate in apa deionizata pentru ~ 30<br />

minute. Diferite concentratii de chitosan (1%, 1.5%, 2% w/v) au fost dizolvate 0.7% v/v acid<br />

acetic glacial.<br />

Alginatul şi amestecul de alginat au fost pipetate într-o solutie de 2% CaCl2 în apa (ca şi<br />

baie de întărire), utilizând o pompa peristaltica cu un injector de 0.4 x 20mm, iar capsulele au<br />

fost formate instantaneu.<br />

Chitosanul a fost pipetat in 5% (w/v) solutie de NaTPP in apa (ca si baie de intarire),<br />

utilizând pipeta pentru control.<br />

Dupa ~ 1h, capsulele au fost separate din baia de intarire şi transferate în placi “Petri”<br />

pentru protecţie si conservare.<br />

Protocol pentru sintetizarea capsulelor de diferite mărimi şi concentraţii cu uleiri<br />

încorporate<br />

S-au luat în considerare doar concentraţiile de matrici care au prezentat emulsiile cele mai<br />

stabile. De asemenea vâscozitatea soluţiilor a fost considerat un factor principal în vederea<br />

alegerii concentraţiilor de matrici. Protocolul pentru obţinerea capsulelor a fost descris<br />

anterior.<br />

XV


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

Evaluarea microscopica a emulsiilor înaintea încapsulării<br />

Evaluarea microscopică a emulsiilor înaintea încapsulării a fost determinată utilizând<br />

un microscop Olimpus optical microscope BX51M, echipat cu camera digitală.<br />

Caracterizarea capsulelor: dimensiuni şi morfologie, analize FTIR şi termice<br />

Parametri luaţi in considerare în vederea caracterizării capsulelor, precum dimensiune,<br />

arie, perimetru, elongaţie si compactitate, au fost determinaţi utilizând UTHSCSA ImageTool<br />

ca şi software.<br />

Morfologia suprafeţei capsulelor a fost determinată utilizându-se microspia electronică<br />

scanată (Hitachi S-2700, iMOXS, cu detector BSE). Capsulele analizate au fost suflate şi<br />

învelite în aur înaintea supunerii analizelor microscopice.<br />

III.2. REZULTATE ŞI DISCUŢII<br />

Evaluarea microscopica a emulsiilor înaintea încapsulării<br />

Stabilitatea emulsiilor este un factor cheie în evaluarea în condiţii de temperatura în<br />

vederea păstrării timp mai îndelungat a produselor pe baze de emulsii.<br />

Mărimea picăturilor de ulei dispersate in structura matricilor dizolvate care au fost<br />

comparate in vederea evaluarii stabilitatii emulsiilor obtinute. Emuliile cu cea mai bună<br />

stabilitate în timp au fost utilizate mai departe pentru încapsulare. Mărimea picăturilor de<br />

uleiuri au fost dispersate uniform in matrici, în funcţie de stabilitatea matricei, uniformitatea<br />

crescând odată creşterea concentraţiei matricilor (Fig.III.1.).<br />

Caracterizarea capsulelor<br />

Dupa obtinerea emulsiilor, si pipetarea lor in baile de intarire, datorita interactiilor cu<br />

ionii de legare in vederea formarii gelurilor.<br />

Capsulele continand uleiuri au avut o forma aproximativ sferica, culoare variind intre<br />

alb-galbui si portocaliu.<br />

Luându-se in considerare toate caracteristicile capsulelor obtinute, si facand o<br />

comparatie intre aceste caracteristici ale capsulelor goale şi a celor continand uleiuri, s-a<br />

constatat ca incorporarea uleiurilor în capsule modifica aceste caracteristici (Fig.III.2.).<br />

Compararea capsulelor între ele continand uleiuri, a demonstrat ca sfericitatea şi<br />

compactitatea nu au fost prea mult afectate de incorporarea uleiurilor. Insa in cazul<br />

diametrului, ariei, elongatia, au fost clar determinate diferente foarte mari.<br />

XVI


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

A. B.<br />

C. D.<br />

Fig. III.1. Imagini microscopice ale diferitelor emulsii: A. alginat 2%; B. alginat 1%; C. complex alginat-gumă<br />

guar; D. complex alginat-gumă xantan. Scala reprezintă 5 μm.<br />

Parameter values/Valoarea parametrilor<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

AG-CAR (0.5:0.5)<br />

AG-XG (0.75:0.75)<br />

AG-CAR (0.75:0.75)<br />

AG-XG (0.5:0.5)<br />

AG-GG (0.75:0.75)<br />

AG-GG (0.5:0.5)<br />

Samples/Probele<br />

AGoil2%<br />

AGoil1.5%<br />

AGoil1%<br />

CHoil2%<br />

CHoil1.5%<br />

CHoil1%<br />

Area / Aria (cm2)<br />

Perimeter / Perimetru<br />

Elongation (axes ratio)/<br />

Elongatia (raportul axelor)<br />

Roundness (up to 1) /<br />

Sfericitatea val. max. 1<br />

Diameter / Diametrul (cm)<br />

Compactness (up to 1)/<br />

Compactitatea (val. max. 1)<br />

Fig.III.2. Reprezentarea grafică comparată a caracteristicilor capsulelor din complexul alginat cu k-caragenan,<br />

gume xantan şi guar, alginat şi chitosan continând ulei: AG-CAR (0.5:0.5) = complex alginat-k-carrageenan<br />

(raport 0.5:0.5) continând ulei; : AG-CAR (0.75:0.75) = complex alginat-k-carrageenan (raport 0.75:0.75)<br />

continând ulei; AG-XG (0.75:0.75) = complex alginate-guma xantan (raport 0.75:0.75) continând ulei; AG-XG<br />

(0.5:0.5) = complex alginate-guma xantan (raport 0.5:0.5) continând ulei;AG -GG (0.75:0.75) = complex<br />

alginate-guma guar (raport 0.75:0.75) continând ulei; AG -GG (0.5:0.5) = complex alginate-guma guar (raport<br />

0.5:0.5) continând ulei; AGoil2% = capsule alginat 2% continând ulei; AGoil1.5% = capsule alginat 1.5%<br />

continând ulei; AGoil1% = capsule alginat 1% continând ulei; ; CHoil2% = capsule chitosan 2% continând<br />

ulei; CHoil1.5% = capsule chitosan 1.5% continând ulei; CHoil1% = capsule chitosan 1% continând ulei<br />

XVII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

Microscopia electronică scanată (SEM)<br />

Scopul acestor analize a fost de a evalua si caracteriza topologia capsulelor obtinute<br />

continand uleiuri. Suprafata capsulelor a fost non-regulara, aceasta datorita picaturilor de ulei<br />

prezente, exceptand chitosanul care prezinta o suprafata mult mai mata (Fig.III.3.A).<br />

Fotografiile SEM ale capsulelor nu prezintă porozitate (Fig.III.3.).<br />

A. B.<br />

Fig.III.3. Morfologia suprafetei diferitelor capsule obtinute continand uleiuri utilizand microscopia electronica<br />

de scanare: A. alginat-caragnan complex; B. chitosan. Bara indicand scala este reprezentata in fiecare poza.<br />

Magnificatia 70x.<br />

Analizele FTIR<br />

Caracterizarea FTIR a matricilor<br />

În urma analizelor FTIR-ATR s-a realizat caracterizarea matricilor utilizate la<br />

încapsulare, realizându-se astfel o comparaţie între matrici (AG, CAR, CH, GG, XG).<br />

Principalele frecvenţe caracteristice matricilor în vederea identificării individuale sunt: 3244-<br />

3302 cm -1 (O-H stretch), 1400-1474 cm -1 (CH2 bending), 1000-1200 cm -1 (C-O şi C-C<br />

stretch), 924-1000 cm -1 ( poly OH şi CH2 twist), 776-892 cm -1 (glycoside).<br />

Vibraţiile şi grupurile<br />

funcţionale<br />

O–H intindere 3244 3514<br />

AG CAR GG XG CH<br />

grupul poliOH<br />

3299 3302 3289<br />

O-H +<br />

N-H de<br />

întindere<br />

XVIII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

C–H întinderea grupului CH2 2926 2953, 2911, 2894 2884 - 2935<br />

C-O de întindere ( COOH) 1597 - 1636 - 1651<br />

deformarea grupării CH2 1408 1474, 1400 1408 1400 1428<br />

O-H deformare - 1223 ( S=O vibraţia<br />

de întindere a sulfet<br />

esterului)<br />

1350 1247 -<br />

C-O şi C-C întindere 1200-1000 - 1145 1150 1151<br />

–CH2OH modul de întindere 1054 1063 1054 1061<br />

Gruparea C–OH alcolică<br />

(C-O întinderea zaharidelor)<br />

–CH2 vibraţie 948, 902,<br />

1024 1024 - 1025 1024<br />

Provenite de la<br />

acizii: guluronic<br />

şi maluronic<br />

924, 910<br />

Grupările<br />

polihidroxi<br />

legaturile glicozidice 809 842<br />

Sulfatul galactozic,<br />

legatura glicozidică<br />

FTIR characterization of different beads containing oils<br />

1016 - -<br />

866,777<br />

(1,4; 1,6) legatura<br />

galactozei şi<br />

manozei<br />

785<br />

C-H de<br />

deformare<br />

C-C întindere<br />

Spectrele matricelor, ale capsulelor goale, capsulelor continand uleiuri au fost<br />

analizate. Concentratia matricelor nu a influentat caracteristicile capsulelor prin FTIR. Un<br />

exemplu concludent este reprezentat in Fig.III.4., spectrele uleiului de cătină (SB) şi ale<br />

capsulelor din alginat 2% conţinand ulei SB.<br />

În urma încapsulării uleiului de SB în capsule de alginate, se produce o creştere a<br />

intensităţii absorbanţei la 3400 cm -1 (care este direct proporţională cu creşterea concentraţiei<br />

de alginate utilizată la încapsulare) precum şi o shiftare a unor peakuri spre valori şi frecvenţe<br />

mai scăzute în regiunea 1000-1500 cm -1 , regiune specifică uleiului de SB<br />

Spectrele amestecului de uleiuri si capsule au demonstrat prezenta peakurilor specifice<br />

uleiurilor in doua zone distuncte (2800-2900 cm -1 şi 1700-900 cm -1 ), confirmându-se astfel<br />

prezenţa uleiurilor în capsule.<br />

892,<br />

776<br />

XIX


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

Fig.III.4. Spectru FTIR-ATR înregistrat pentru: A. Capsule de alginat 2% conţinând SB; B. pudră alginat; C.<br />

ulei SB; D. capsule goale de alginat 2%<br />

Analize termice<br />

Analize DSC<br />

Termogramele DSC ale uleiurilor libere si ale diferitelor capsulelor continand uleiuri,<br />

au fost masurate.<br />

Cateva dintre peakurile endotermice, ca si exemplu ale uleiului de catina, si ale unor<br />

capsule continand ulei de catina, sunt prezentate in reprezentarea grafica din Fig.III.5.;<br />

temperature peakurilor cerste direct proportional cu cresterea temperaturii, fiecare peak fiind<br />

characteristic fiecărui tip de capsula obţinută.<br />

Analize termogravimetrice<br />

Termogramele TGA ale uleiurilor libere si ale diferitelor capsulelor continand uleiuri,<br />

au fost masurate.<br />

Cateva rezultate referitoare la pierderea in masa a diferitelor tipuri de capsule<br />

obtinute, este prezentata in graficul din Fig.III.6.. Pierderea în greutate, reprezentata in figura<br />

anterioara, demonstreaza ca aceasta se datoreaza continutului ridicat in apa a unor capsule.<br />

Uleiurile nu influenteaza foarte mult pierderea in greutate, la un ulei liber aceasta fiind de<br />

99.44%. Dar in timpul procesului de oxidare aceste uleiuri pierd din greutate, datorita<br />

reactiilor oxidarii.<br />

XX


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

Temperature (°C)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

AG 2% AG<br />

1.5%<br />

Alginate<br />

1%<br />

AG-CAR<br />

(0.75%)<br />

CH 2% CH 1% AG-GG AG-KG SB<br />

Fig. III.5. Reprezentarea grafica a peakurilor endotermice ale unor tipuri de capsule<br />

DSC si TGA au fost in ultimul timp foarte mult utilizate in monitorizarea stabilitatii, a<br />

comportamentului termic, a parametrilor de cinetica in diferite uleiuri (Jayadas et al., 2006;<br />

Milovanovic et al., 2006; Bahruddin et al., 2008). În acest studiu analizele termice au fost<br />

efectuate pana la temperatura de 300°C. Diferenţele nu foarte mari între probe se datoreaza<br />

tocmai acestei temperature, deoarece conform cu literatura, oxidarea uleiuriloe prin metode<br />

termice se poate determina la expunerea probelor la o temperatura mai mare de 300°C, iar<br />

pierderea in greutate poate fi pana la 10%, aceasta depinzând de natura uleiului (Jayadas et<br />

al., 2006; Milovanovic et al., 2006; Bahruddin et al., 2008).<br />

Restmass %<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

AG 2% AG 1.5% AG-CAR<br />

(0.75%)<br />

AG-GG AG-KG SB<br />

Fig.III.6. Reprezentarea grafică a pierderii de masă % a probelor analizate TGA<br />

Scopul acestor analize termice a fost acela de a analiza şi a determina stabilitatea<br />

termică a capsulelor obţinute continând diferite uleiuri, în vederea viitoarelor aplicaţii ale<br />

acestora în domeniul alimentar şi cosmetic. În astfel de aplicaţii se cunoaşte necesitatea<br />

XXI


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

sterilizării probelor sau expunerea la presiuni înalte în vederea evitării biohazardului sau<br />

contaminării, aceste tratamente fiind facute în timpul proceselor tehnologice.<br />

III.3. CONCLUZII<br />

Studiile experimentale realizate, cu scopul bioîncapsulării unor uleiuri funcţionale în<br />

matrici naturale, utilizând ca şi metodă ‘’ionotropically crosslinked gelation’’, au demonstrate<br />

posibilitatea utilizării acestei tehnici în vederea bioîncapsulării unor compuşi naturali şi<br />

eliberarea lor condiţionată.<br />

Cele mai bune matrici în vederea bioîncapsulării uleiurilor s-au dovedit a fi: alginatul<br />

şi chitosanul în concentrţii de 2%, 1.5% şi 1%, complexele alginatului cu k-caragenan, şi<br />

gume guar şi xantan în raport de concentraţie 0.75:0.75.<br />

Rezultatele au arătat faptul că bioîncapsularea uleiului a afectat diametrul capsulelor,<br />

acesta crescând direct proporţional cu cantitatea de ulei utilizată pentru încapsulare. De<br />

asemenea şi ceilalţi parametri masuraţi în vederea caracterizării capsulelor au fost influenţaţi<br />

şi de cantitatea de ulei utilizată.<br />

Prin analizele FTIR-ATR, diferitele capsule conţinând uleiuri au prezentat peakuri<br />

care sunt atribuite atat uleiurilor cât şi capsulelor goale (regiunile dintre 2800-2900 cm -1 şi<br />

1700-900 cm -1 ). Astfel se demonstrează prezenţa uleiurilor în capsule, deci încapsularea<br />

acestora.<br />

CAPITOL IV. EFICIENŢA ÎNCAPSULĂRII ŞI STUDII DE ELIBERARE A<br />

ULEIURILOR DIN CAPSULE<br />

IV.1. MATERIALE ŞI METODE<br />

Eficinţa încapsulării e uleiurilor în capsule<br />

Încapsularea uleiurilor a fost determinată calculând cantitatea de beta-caroten sau<br />

cantitatea de carotenoid care este principalul component major al fiecărui ulei analizat înainte<br />

şi după încapsulare. Această determinare a fost realizată spectrofotometric, iar eficinţa<br />

încapsulării (EE%) a fost calculată conform ecuaţiei:<br />

EE% = C1/C2 x 100, C1= concentraţia carotenoid din ulei iniţială<br />

C2= concentraţia carotenoid din ulei după încapsulare<br />

XXII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

Măsurarea ratei de eliberare a uleiurilor din capsule<br />

Eliberarea controlată a uleiurilor din capsule a fost determinata de asemenea<br />

spectrofotometric, utilizând un spectrofotometru CarWin 50 UV-VIS. Măsurătorile au fost<br />

facute în triplicat la temperatura camerei, utilizându-se cuvete de cuarţ de 2 mm.<br />

Eliberarea in vitro a uleiurilor din capsule<br />

Stimularea fluidului gastric a fost realizată conform urmatorul protocol:<br />

• timp de o ora la pH 1.2 intr-o solutie de 0.1N HCl cu⁄si 5 ml Sanzyme (sirop de<br />

enzime continand 80 mg papaina, 40 mg pepsina and 10 mg sanzyme 2000)<br />

• in urmatoarele 2-3 ore capsulele au fost transferate in intr-o solutie in vederea<br />

stimulatii fluidului intestinal pH 4.5 tot asa cu⁄si fara enzyme<br />

• urmatoare ore au fost transferate in solutie stimuland fluidul intestinal la pH 7.4,<br />

aceasta fiind formata din KH2PO4 1.074g in 30 ml de 0.2N NaOH, si pancreatina 275<br />

mg (utilizand “Triferment”)<br />

• toate testările s-au efectuat la 37ºC cu barbotare continuă de CO2<br />

IV.2. REZULATTE ŞI DISCUŢII<br />

Eficinţa încapsulării e uleiurilor în capsule<br />

Eficienţa încapsulării este reprezentata în graficul din Fig.IV.1. pentru diferite tipuri de<br />

capsule. Valorile prezentate sunt ale uleiului de cătină, însa pentru toata uleiurile analizate<br />

aceasta eficienţă a prezentat aceleaşi valori.<br />

După cum se poate observa şi în graficul prezentat, eficienţa încapsulării este direct<br />

proporţionala cu creşterea concentraţiei matricilor. Dintre toate matricile şi complexele de<br />

matrici utilizate, după cum se poate observa şi in graficul din Fig.IV.1., s-a obţinut cea mai<br />

bună eficienţa a încapsulării utilizând ca şi matrici: alginatul în concentraţie de 2%, chitosanul<br />

in aceeaşi concentraţie, urmate de concentraţiile de 1.5%, şi de alginatul în complex cu kcaragenan<br />

şi gume în raport de 0.75:0.75%.<br />

XXIII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

Fig.IV.1. Reprezentarea grafica comparata a eficientei incapsularii a uleiurilor in capsule din complexul alginat<br />

cu k-caragenan, gume xantan si guar, alginat si chitosan : AG2% = capsule alginat 2% ; CH2% = capsule<br />

chitosan 2% ; CH1.5% = capsule chitosan 1.5% ; AG1.5% = capsule alginat 1.5% ; AG-CAR (0.75:0.75) =<br />

complex alginat-k-carrageenan (raport 0.75:0.75) ; AG-XG (0.75:0.75) = complex alginate-guma xantan (raport<br />

0.75:0.75); CH1% = capsule chitosan 1%; AG -GG (0.75:0.75) = complex alginate-guma guar (raport<br />

0.75:0.75) ; AG1% = capsule alginat 1% ; AG -CAR (0.5:0.5) = complex alginat-k-carrageenan (raport<br />

0.5:0.5); AG -GG (0.5:0.5) = complex alginate-guma guar (raport 0.5:0.5); AG-XG (0.5:0.5) = complex<br />

alginate-guma xantan (raport 0.5:0.5)<br />

Măsurarea ratei de eliberare a uleiurilor din capsule<br />

Ca şi sisteme de eliberare s-au luat in considerare 3 solvenţi: tetrahidrofuran (THF),<br />

metanol si hexan. În toate cazuri s-a evidentiat o rapida eliberare in THF ca si solvent din<br />

toate capsule obtinute, si o mai lenta eliberare in cazul metanolului si o foarte slaba in cazul<br />

hexanului (vezi Fig.IV.2., graficele fiind parte din lucrarea publicata in revista Chemické<br />

Listy Journal (IF=0.683)). THF este considerat şi în litaratura ca fiind solventul cel mai<br />

eficient în extracţia carotenoidelor, lucru dovedit şi în acest studiu. Rata de eliberare a<br />

uleiurilor din capsule depinde de difuzitatea şi solubilitatea uleiului în matrice.<br />

Eliberarea uleiurilor din capsule a demonstrat faptul ca alginatul, complexul dintre<br />

alginat cu k-caragenan şi gume, precum şi chitosanul, sunt matrici pretabile la încapsularea<br />

uleiurilor vegetale.<br />

XXIV


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

A.<br />

B.<br />

Absorbance (u.a.)<br />

Absorbance (a.u.)<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

0 100 200<br />

Wavelenght (nm)<br />

300 400<br />

0 100 200<br />

Wavelenght (nm)<br />

300 400<br />

Fig.IV.2. Reprezentarea grafica a eliberarii in timp din diferitele capsule in metanol si hexan, ca si solventi<br />

Eliberarea in vitro a uleiurilor din capsule<br />

Alginate-carrageenan<br />

complex in hexane<br />

Alginate-carrageenan<br />

complex in methanol<br />

Alginate 2% in methanol<br />

Alginate 2% in hexane<br />

Chitosan 1.5% in methanol<br />

Chitosan 1% in methanol<br />

Chitosan 1% in hexane<br />

Chitosan 1.5% in hexane<br />

Alginate 2% in methanol<br />

Alginate 2% in hexane<br />

În cazul mimării mediului digestiv s-a demosntrat stabilitatea capsulelor la pH 1.2 si pH<br />

4.5, dizolvarea acestora si eliberarea continutului realizandu-se la pH 7.4, atat in cazul<br />

solutiilor continand enzime cat si a celor fara continut enzimatic în cazul capsulelor din<br />

alginat şi alginat în complex cu k-caragenan şi gume (Fig.IV.3.), ceea ce demonstreaza<br />

aplicabilitatea viitoare a acestor capsule continand ulei de catina ca si nutraceutice sau in<br />

industria farmaceutica. Capsulele de chitosan nu s-au dizolvat la nici unul dintre pH-urile<br />

testate.<br />

XXV


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

A. B.<br />

C. D.<br />

Fig.IV.3. Eliberarea ”in vitro” a uleiului de catina din capsulele de alginate 2% de la stanga la dreapta in fiecare<br />

poza fluidele stimulatoare fara enzyme si cu adios de enzyme (Sanzyme): A. capsulele obtinute; B. dupa 1 ora in<br />

stimulatul fluid gastric la pH 1.2; C. dupa 3 ore in mixul dintre fluidul gastric si fluidul intestinal la pH 4.5; D. in<br />

stimulatul fluid intestinal pH 7.4 dupa 30 minute<br />

IV.3. CONCLUZII<br />

Studiile referitoare la eficienţa încapsulării şi stabilitatea capsulelor conţinând uleiuri au<br />

demonstrat:<br />

1. Creşterea concentraţiei matricilor sau a complexului de matrici determină obţinerea<br />

unei mai bune eficienţe la încapsulare. s-a obţinut cea mai bună eficienţa a încapsulării<br />

utilizând ca şi matrici: alginatul în concentraţie de 2%, chitosanul in aceeaşi<br />

concentraţie, urmate de concentraţiile de 1.5%, şi de alginatul în complex cu kcaragenan<br />

şi gume în raport de 0.75:0.75%.<br />

2. Rata de eliberare a uleiurilor din capsule depinde de difuzitatea şi solubilitatea uleiului<br />

în matrice. Eliberarea a fost mai lentă in cazul hexanului, mai ridicată în cazul<br />

metanolului şi cea mai buna eliberare fiind in THF, indiferent de matricea sau<br />

concentraţia utilizată la încapsulare.<br />

3. Stabilitatea capsulelor la pH 1.2 si pH 4.5, dizolvarea acestora şi eliberarea<br />

continutului realizandu-se la pH 7.4.<br />

XXVI


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

CAPITOL V. CARACTERIZAREA FTIR A OXIDĂRII ULEIURILOR<br />

V.1. MATERIALE ŞI METODE<br />

Analiza spectrala in domeniul IR s-a utilizat spectrofotometru FT-IR Shimadzu<br />

Prestige-21, echipat cu Reflectanta Totala Atenuata Orizontala (HATR), cu accesoriu de<br />

ZnSe. Masuratorile au fost efectuate in domeniul infrarosu 650-4000 cm -1 , 100 scanari fiecare<br />

proba la rezolutia 2 cm -1 . Dupa fiecare proba accesoriul a fost spalat cu acetona.<br />

Uleiurile libere si capsulele cu uleiuri au fost supuse in vederea oxidarii la temperatura<br />

de 105ºC, si la iradiere UV (254µm) timp de o ora, 4 ore si 6 ore.<br />

S-au inregistrat spectrele FTIR-ATR dupa fiecare oxidare, atat la uleiul liber cat si<br />

extras din capsule. In cazul analizelor FTIR-ATR au fost posibile inregistrarea spectrelor<br />

capsulelor cu ulei, nefiind necesara extracţia uleiului din capsule.<br />

V.2. REZULTATE ŞI DISCUŢII<br />

În cazul analizelor FTIR-ATR a fost stabilit stadiul oxidării, calculandu-se raportul<br />

între intensităţile principalele peakuri considerate markeri ai oxidarii conform literaturi<br />

(Guillén and Cabo, 1999, 2000, 2002): A2853/A3005, A1746/A3006, A1474/A3006, A1377/A3006 and<br />

A1163/A3006, înainte şi după tratamentul UV.<br />

S-a constat ca uleiul liber avea un stagiu mai avansat al oxidarii 2 sau 3, in timp ce<br />

uleiul incapsulat se afla in stagiu 1 al oxidarii. S-a demosntrat astfel ca uleiul de catina<br />

incapsulat in diferitele capsule obtinute din matricile utilizate a fost mult mai protejat<br />

impotriva oxidarii in urma diferitelor tratamente, comparativ cu uleiul liber (ex: la uleiul de<br />

cătină, Fig.V.1.).<br />

Cea mai bună protecţie împotriva oxidării a fost asigurată de urmatoarele capsule<br />

formate din matrcile şi concentraţiile urmatoare: alginat 1%, chitosan 1.5%, complexele<br />

alginate-gumă gum şi alginat-gum xantan în raport 0.5:0.5, şi alginat-k-caragenan complex în<br />

raport 0.75:0.75.<br />

XXVII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

Ratio values/Valoarea raportelor<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

A B C D E A B C D E A B C D E<br />

After 1h UV/Dupa 1h<br />

UV<br />

After 4h UV/Dupa 4h<br />

UV<br />

After 6h UV/Dupa 6h<br />

UV<br />

Types of ratios on time/Tipul rapoartelor in timp<br />

Oil free/Ulei liber<br />

Oil from AG 1%/Ulei din AG 1%<br />

Oil from AG 1.5%/Ulei din AG 1.5%<br />

Oil from AG 2%/Ulei din AG 2%<br />

Fig. V.1. Reprezentarea grafica a uleiului de canepa liber si incapsulate (in diferite capsule<br />

de alginate) in timpul oxidarii<br />

(A= A2853/A3005-3008, B= A1744/ A3005-3008, C= A1464/ A3005-3008, D= A1377/ A3005-3008, E= A1160/<br />

A3005-3008)<br />

V.3. CONCLUZII<br />

Uleiurile încapsulate prezintă o mai buna stabilitate împotriva oxidării provocate de<br />

diferite conditii comparativ cu uleiurile libere.<br />

Cea mai bună protecţie împotriva oxidării a fost asigurată de urmatoarele capsule<br />

formate din matrcile şi concentraţiile urmatoare: alginat 1%, chitosan 1.5%, complexele<br />

alginate-gumă gum şi alginat-gum xantan în raport 0.5:0.5, şi alginat-k-caragenan complex în<br />

raport 0.75:0.75.<br />

Spectroscopia FTIR este considerată o foarte buna tehnică de monitorizare a oxidării<br />

uleiurilor libere şi încapsulate, dovedindu-se totodată a fi o tehnică rapidă, acurată şi simplă.<br />

XXVIII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

CONCLUZII GENERALE<br />

În conformitate cu scopul si obiectivele acestei teze de doctorat, s-a realizat<br />

bioîncapsularea a patru uleiuri funcţionale din plante în diferite matrici naturale, precum şi<br />

evaluarea eficienţei încapsulării, stabilitatea şi eliberarea uleiurilor din capsulele obtinute.<br />

S-a realizat o evaluare comparativă si sistematică a calităţii celor patru uleiuri<br />

funcţionale din plante înaintea încapsulării lor: uleiul de cânepă (HP), uleiul extra virgin de<br />

măsline (EVO), uleiul de dovleac (PK) şi uleiul de cătină (SB) (de provenienţă din România<br />

şi Italia).<br />

Având în vedere obiectivele propuse s-a realizat:<br />

I. S-au identificat caracteristicile uleiurilor înainte de încapsulare, stabilindu-se<br />

markeri de calitate si autenticitate:<br />

1. Majoritatea uleiurilor analizate prezintă indicele de iod în conformiatte cu<br />

specificaţiile din CODEX 210, excepţie uleiul de cătină care prezintă a valoare mai<br />

scazută.<br />

2. Spectrele UV-Vis ale uleiurilor au relevant peakurile specifice, ca şi markeri ai<br />

autenticităâii.<br />

3. Studiile FTIR-ATR au demonstrat relaţia dintre benzile aparute în spectre şi<br />

compoziţia specifică fiecarui ulei, putându-se astfel stabili fingerprintul specific<br />

uleiurilor studiate.<br />

4. Analizele GC-FID au demonstrate faptul rpofilul acizilor din compoziţia uleiurilor<br />

analizate este în conformitate cu datele din literatură.<br />

II. Studiile experimentale utilizând ca şi metodă gelarea ionicăde<br />

numită:‘’ionotropically crosslinked gelation’’, în vederea bioîncapsulării uleiurilor<br />

funcţionale în matrici naturale, au demonstrat stabilitatea şi eliberarea controlată a<br />

uleiurilor bioîncapsulate<br />

1. S-a reusit obţinerea diferitelor tipuri de capsule utilizănd matrici naturale şi<br />

complexe dintre acestea, fiind incorporate uleiuri<br />

2. Caracteristicile capsulelor obţinute (aria, perimetrul, compactitatea, sfericitatea şi<br />

elongaţia), în special mărimea lor, au fost influenţate de conţinutul de uleiuri<br />

încapsulate.<br />

3. Cele mai bune matrici pentru bioîncapsularea uleiurilor au fost: alginat 2%,<br />

chitosan 2%, şi alginate în complex cu k-caragenan, gumă guar şi gumă xantan în<br />

raport de 0.75:0.75.<br />

III. Caracterizarea capsulelor a fost realizată prin diferite metode: SEM, FTIR,<br />

analize DSC şi TGA<br />

1. Suprafata capsulelor analizată prin SEM, a fost non-regulara, aceasta datorita<br />

picaturilor de ulei prezente, exceptand chitosanul care prezinta o suprafata mult<br />

mai mata<br />

XXIX


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

2. Prin analizele FTIR-ATR, diferitele capsule conţinând uleiuri au prezentat peakuri<br />

care sunt atribuite atat uleiurilor cât şi capsulelor goale (regiunile dintre 2800-2900<br />

cm -1 şi 1700-900 cm -1 ).<br />

3. Termogramele DSC au arătat faptul că temperature peakurilor creşte direct<br />

proportional cu cresterea temperaturii, fiecare peak fiind characteristic fiecărui tip<br />

de capsula obţinută.<br />

4. Analizele TGA au demonstrate ca pierderea în greutate se datoreaza continutului<br />

ridicat in apa a unor capsule. Încapsularea uleiurilor nu afectează pierderea în<br />

greutate a capsulelor.<br />

IV. Evaluarea eficienţei încapsulării<br />

1. Creşterea concentraţiei matricilor sau a complexului de matrici determină<br />

obţinerea unei mai bune eficienţe la încapsulare. s-a obţinut cea mai bună eficienţa<br />

a încapsulării utilizând ca şi matrici: alginatul în concentraţie de 2%, chitosanul in<br />

aceeaşi concentraţie, urmate de concentraţiile de 1.5%, şi de alginatul în complex<br />

cu k-caragenan şi gume în raport de 0.75:0.75%.<br />

2. Rata de eliberare a uleiurilor din capsule depinde de difuzitatea şi solubilitatea<br />

uleiului în matrice. Eliberarea a fost mai lentă in cazul hexanului, mai ridicată în<br />

cazul metanolului şi cea mai buna eliberare fiind in THF, indiferent de matricea<br />

sau concentraţia utilizată la încapsulare.<br />

3. Stabilitatea capsulelor la pH 1.2 si pH 4.5, dizolvarea acestora şi eliberarea<br />

continutului realizandu-se la pH 7.4.<br />

V. Protecţia bioîncapsulării a uleiurilor împotriva<br />

1. Uleiurile încapsulate prezintă o mai buna stabilitate împotriva oxidării provocate<br />

de diferite conditii comparativ cu uleiurile libere.<br />

2. Cea mai bună protecţie împotriva oxidării a fost asigurată de urmatoarele capsule<br />

formate din matrcile şi concentraţiile urmatoare: alginat 1%, chitosan 1.5%,<br />

complexele alginate-gumă gum şi alginat-gum xantan în raport 0.5:0.5, şi alginatk-caragenan<br />

complex în raport 0.75:0.75.<br />

XXX


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

BIBLIOGRAFIE SELECTIVĂ<br />

1. AOAC, 1980, Official Methods of Analysis of the Association of Official Analytical<br />

Chemistry. 13th Ed., AOAC, Washington DC<br />

2. AOAC, 1984, Iodine absorption number of oils and fats. In AOAC official methods<br />

of analysis (14th ed.). Washington, DC, 506<br />

3. BAETEN, V., AND APARICIO, R., 2000, Edible oils and fats authentication by<br />

Fourier transform Raman spectrometry, Biotechnol. Agron. Soc. Environ. 4 (4), 196–<br />

203.<br />

4. BAETEN, V., AND PIERNA, J. A. F., 2005, Detection of the presence of hazelnut<br />

oil in olive oil by FTRaman and FT-MIR spectroscopy, Journal of Agricultural and<br />

Food Chemistry, 53, 6201-6206.<br />

5. BENITA S., 2006, Microencapsulation-Methods and Industrial Applications, 2 nd<br />

edition, Taylor&Francis, CRC Press, New York.<br />

6. BIRNBAUM, D.T., AND BRANNON-PEPPAS, L., 2003, Molecular weight<br />

distribution changes during degradation and release of PLGA nanoparticles containing<br />

epirubicin HCl, Journal of Biomaterials Science, Polymer Edition, 14 (1), 87-102.<br />

7. CODEX ALIMENTARIUS, CODEX STANDARD FOR OLIVE OIL, VIRGIN<br />

AND REFINED, AND FOR REFINED OLIVE-POMACE OIL CODEX STAN 33-<br />

1981 (Rev. 1-1989), 25-39.<br />

8. CODEX-STAN 210, CODEX STANDARD FOR NAMED VEGETABLE OILS,<br />

(Amended 2003, 2005), 1-13.<br />

9. CODEX-STAN 210, Other quality and composition factors Commission Regulation<br />

(EEC) no. 2568/91, J. Eur. Commun., No. L, 248, 5.9.91, CODEX STANDARD FOR<br />

OLIVE OIL, VIRGIN AND REFINED, AND FOR REFINED OLIVE-POMACE<br />

OIL CODEX STAN 33-1981 (Rev. 1-1989).<br />

10. DAI, Z., VOIGT, A., DONATH, E., MÖHWALD, H., 2001, Novel Encapsulated<br />

Functional Dye Particles Based on Alternately Adsorbed Multilayers of Active<br />

Oppositely Charged Macromolecular Species, Macromolecular Rapid<br />

Communications, 22 (10), 756 – 762.<br />

11. DE MAN J.M., 1992, Chemical and physical properties of fatty acids, In: Chow CK<br />

(ed) Fatty Acids in Foods and Their Health Implications. Marcel Dekker Inc. New<br />

York, 18 – 46.<br />

12. DHANIKULA AB, AND PANCHAGNULA R., 2004, Development and<br />

Characterization of Biodegradable Chitosan Films for Local Delivery of Paclitaxel,<br />

The AAPS Journal, 6 (3), Article 27.<br />

13. DULIEU, C., PONCELET, D., NEUFELD, R., 1999, Encapsulation and<br />

immobilization techniques, In: Cell Encapsulation Technology and Therapeutics,<br />

W.M. Kühtreiber, R.P. Lanza and W.L. Chick, eds., Birkhäuser, Boston, 3-17<br />

14. DZIEEZAK, J.D., 1988, Microencapsulation and encapsulated ingredients, Food<br />

Technol. 45(4), 136.<br />

15. GUILLEN, M. D. AND CABO, N., 1997, Characterization of edible oils and lard by<br />

Fourier transform infrared spectroscopy. Relationships between composition and<br />

frequency of concrete bands in the fingerprint region, J. Am. Oil Chem. Soc., 74 (10),<br />

1281–1286.<br />

16. GUILLEN, M. D. AND CABO, N., 1997, Infrared Spectroscopy in the Study of<br />

Edible Oils and Fats, J Sci Food Agric., 75, 1-11.<br />

17. GUILLEN, M. D. AND CABO, N., 1998, Relationships between the composition of<br />

edible oils and lard and the ratio of the absorbance of specific bands of their Fourier<br />

XXXI


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

transform infrared spectra. Role of some bands of the fingerprint region, J. Agric.<br />

Food Chem., 46 (5), 1788–1793.<br />

18. GUILLEN, M. D. AND CABO, N., 1999, Usefulness of the frequencies of some<br />

Fourier transform infrared spectroscopic bands for evaluating the composition of<br />

edible oil mixtures. Fett-Lipid, 101 (2), 71– 76.<br />

19. GUILLEN, M. D. AND CABO, N., 1999, Usefulness of the frequency data of the<br />

Fourier transform infrared spectra to evaluate the degree of oxidation of edible oils, J.<br />

Agric. Food Chem., 47 (2), 709– 719.<br />

20. GUILLEN, M. D. AND CABO, N., 2000, Some of the most significant changes in<br />

the Fourier transform infrared spectra of edible oils under oxidative conditions, J. Sci.<br />

Food Agric., 80 (14), 2028– 2036.<br />

21. GUILLEN, M. D. AND CABO, N., 2002, Fourier transform infrared spectra data<br />

versus peroxide and anisidine values to determine oxidative stability of edible oils,<br />

Food Chem., 77 (4), 503–510.<br />

22. GUILLEN, M.D., CARTON, I., GOICOECHEA, E. AND URIARTE, P.S., 2008,<br />

Characterization of Cod Liver Oil by Spectroscopic Techniques. New Approaches for<br />

the Determination of Compositional Parameters, Acyl Groups, and Cholesterol from<br />

1H Nuclear Magnetic Resonance and Fourier Transform Infrared Spectral Data, J.<br />

Agric. Food Chem., 56, 9072–9079.<br />

23. HEINZEN, C., 2002, Microencapsulation solve time dependent problems for<br />

foodmakers. European Food and Drink Review, 3, 27–30.<br />

24. KRAJEWSKA, B., 2005, Membrane-based Processes Performed with use of<br />

Chitin/Chitosan Materials, Separation & Purification Technology, 41, 305–312.<br />

25. LAPITSKY, Y. AND KALER, E. W., 2006, Surfactant and polyelectrolyte gel<br />

particles for encapsulation and release of aromatic oils, Soft Matter, 2, 779-784.<br />

26. LICHTENTHALER H.K., BUSCHMANN C., 2001, Chlorophylls and carotenoids:<br />

measurement and characterization by UV-VIS spectroscopy. Curr. Prot. Food Anal.<br />

Chem. F4.3.1 – F 4.3.8.<br />

27. MADDUR NAGARAJU SATHEESH KUMAR, SIDDARAMAIA, 2007,<br />

Thermogravimetric Analysis and Morphological Behavior of Castor Oil Based<br />

Polyurethane–Polyester Nonwoven Fabric Composites, Journal of Applied Polymer<br />

Science, 106, 3521–3528.<br />

28. MATEA, C.T., NEGREA, O., HAS, I., IFRIM, S., BELE, C., 2008, Tocopherol and<br />

fatty acids contents of selected Romanian cereals grains, Chem. Listy, 99, 1234-2345.<br />

29. OZEN, B. F. AND MAUER, L. J., 2002, Detection of Hazelnut Oil Adulteration<br />

Using FT-IR Spectroscopy, J. Agric. Food Chem., 50 (14), 3898–3901.<br />

30. OZEN, B. F., WEISS, I., et al., 2003, Dietary supplement oil classification and<br />

detection of adulteration using Fourier transform infrared spectroscopy, Journal of<br />

Agricultural and Food Chemistry, 51, 5871-5876.<br />

31. PARTANEN, R., YOSHII, H., KALLIO, H., YANG, B. AND FORSSELL, P.,<br />

2002, Encapsulation of sea buckthorn kernel oil in modified starches. Journal of the<br />

American Oil Chemists' Society (JAOCS), 79 (3), 219-223.<br />

32. PEREIRA, L., SOUSA, A., COELHO, H., AMADO, A.M., RIBEIRO-CLARO,<br />

P.J.A., 2003, Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification<br />

of some seaweed phycocolloids, Biomolecular Engineering, 20, 223-228.<br />

33. PFUTZE, S., 2003, Encapsulatation and granulation, XI International Workshop on<br />

Bioencapsulation, 3-6.<br />

34. PONCELET D., 2006, Microencapsulation: Fundamentals, methods and<br />

applications, in Surface Chemistry in Biomedical and Environmental Science ( Brlitz<br />

J. and Gunko K. eds), NATO Science Series, Springer verlag, 23-34.<br />

XXXII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

35. SOCACIU C., C., MIHIS, A., NOKE, 2008, Oleosome Fractions Separated From<br />

Sea Buckthorn Berries: Yield And Stability Studies. in : Seabuckthorn, A<br />

Multipurpose Wonder Plant, ed. V.Singh, vol.III, Indus International, India, ISBN:<br />

978-81-7035-520-525, 322-326,.<br />

36. SOCACIU C., C.MIHIS, M.TRIF, H.A.DIEHL, 2007, Seabuckthorn fruit oleosomes<br />

as natural, micro-encapsulated oilbodies:separation, characterization, stability<br />

evaluation, Proc.15th Int. Symposium on Bioencapsulation, 6-8 Sept, Univ. Viena,<br />

Austria, P3-19, 1-3.<br />

37. SOCACIU C., RANGA F., DIEHL, H., 2005, UV-VIS spectrometry applied for the<br />

quality and authenticity evaluation of edible oils from Romania, Buletin <strong>USAMV</strong>-CN,<br />

62, 1454-2382.<br />

38. TRIF M., M.ANSORGE-SCHUMACHER, C.SOCACIU, H.A.DIEHL, 2007,<br />

Application of FTIR spectroscopy to evaluate the oxidation of encapsulated<br />

seabuckthron oil, 15th Int. Symposium on Bioencapsulation, Universitatea din Viena,<br />

Austria, P3-07, 1-3<br />

39. TRIF M., M.ANSORGE-SCHUMACHER, CHEDEA, V., SOCACIU, C., 2007,<br />

Release rates measurement of encapsulated castor oil using alginate as<br />

microencapsulation matrix, Proc.Int.Symp., Nanotech Insight, 10-17 martie, Luxor,<br />

Egipt, 157-159.<br />

40. TRIF, M., 2007, Determination of encapsulated seabuckthorn oil oxidation usiing<br />

FTIR-ATR spectroscopy, 63-64, Buletin <strong>USAMV</strong>-CN, 06-51, 1-3.<br />

41. ZELLER, B.L., SALEEB, F.Z., LUDESCHER, R.D., 1999, Trends in Development<br />

of Porous Carbohydrate Food Ingredients for Use in Flavor Encapsulation. Trends in<br />

Food Science & Technology, 9, 389-394<br />

XXXIII


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

2009<br />

PUBLICAŢII PE DURATA STAGIULUI DOCTORAL SI PARTICIPARI LA<br />

SIMPOZIOANE ŞI CONFERINŢE NATIONALE ŞI INTERNAŢIONALE<br />

1. Socaciu C., Trif. M, A. Baciu, T. Nicula, A. Nicula, ‘’ Encapsulation of plant oleosomes<br />

and oleoresins in mixed carbohydrate matrices’’, COST865, Spring Meeting<br />

"Microcapsule property assesment", Luxemburg 2009, Proceeding<br />

2008<br />

1. Monica Trif, Ansorge-Schumacher M., Socaciu C., Diehl H.A. „Bioencapsulated<br />

seabuckthorn oil: controlled release rates in different solvents”, Bull. <strong>USAMV</strong>-CN,<br />

65/2008, ISSN 1454-2382, Romania<br />

2. Pece Aurelia, D. Vodnar, Monica Trif, C. Coroian, Camelia Raducu, G. Muresan,<br />

“Study of the physico-chemical parameters from buffalo raw milk during different<br />

lactations”, Bull. <strong>USAMV</strong>-CN, 65/2008, ISSN 1454-2382, Romania<br />

3. Pece Aurelia, D. Vodnar, Monica Trif, “Corelation between microbiological and<br />

physico-chemical parameters from buffalo raw milk during different lactations”, Bull.<br />

<strong>USAMV</strong>-CN, 65/2008, ISSN 1454-2382, Romania<br />

4. Carmen Socaciu, Baciu A., Trif M., “Oleosome-rich pectin network as a new, natural<br />

bioencapsulation matrix”, XVI International Conference on Bioencapsulation Dublin,<br />

Ireland ; September 2008, Proceeding<br />

5. Monica Trif, Carmen Socaciu, Andreea Stanila, “The evaluation of encapsulated<br />

Seabuckthorn oil properties usind FTIR”, CIGR - International Conference of<br />

Agricultural Engineering XXXVII Congresso Brasileiro de Engenharia Agrícola,<br />

Processing Conference - 4 th CIGR Section VI International Symposium On Food And<br />

Bioprocess Technology, September 2008, Iguaccu, Brazil, ISSN 1982-3797<br />

6. Andreea Stanila and Monica Trif, “Antioxidant activity of carotenoide extracts from<br />

HIPPOPHAE RHAMNOIDES”, CIGR - International Conference of Agricultural<br />

Engineering XXXVII Congresso Brasileiro de Engenharia Agrícola, Processing<br />

Conference - 4 th CIGR Section VI International Symposium On Food And Bioprocess<br />

Technology, September 2008, Iguaccu, Brazil, ISSN 1982-3797<br />

7. Monica Trif, Carmen Socaciu and Horst Diehl, “Evaluation of effiency, release and<br />

oxidation stability of seabuckthorn encapsulated oil using FTIR spectroscopy”, 7 th Joint<br />

Meeting of AFERP, ASP, GA, PSE & SIF, August 2008, Athens, Greece, Book of<br />

Abstracts, pg.39<br />

8. Monica Trif and Carmen Socaciu, “Evaluation of effiency, release and oxidation<br />

stability of Seabuckthorn microencapsulated oil using Fourier Transformed Infrared<br />

Spectroscopy”, 4th Meeting on Chemistry and Life, and accepted to be published in<br />

Chemické Listy Journal (current IF=0.683)<br />

XXXIV


Sisteme de încapsulare a unor compuşi bioactivi extraşi din uleiuri vegetale<br />

________________________________________________________________________________________<br />

2007<br />

1. Monica Trif, Marion Ansorge-Schumacher, Veronica S. Chedea, Carmen Socaciu,<br />

‘’Release rates measurement of encapsulated castor oil using alginate as<br />

microencapsulation matrix’’, The International Conference on Nanotechnology: Science<br />

and Application (NanoTech Insight), Luxor, 10-17 March 2007, Egipt<br />

2. Chedea V.S., Kefalas P., Trif M. and Socaciu C. ‘’Stability studies of encapsulated<br />

carotenoid extract from orange waste using pullulan as microencapsulation matrice’’,<br />

Nano Tech Insight, Luxor, 10-17 March 2007, Egipt<br />

3. Monica Trif, Marion Ansorge-Schumacher, Carmen Socaciu, ‘’Application of FTIR<br />

Spectroscopy for determination of oxidation of encapsulated sea buckthorn oil’’,<br />

Proc.XV International workshop on Bioencapsulation and COST865 Meeting, 2007,<br />

Wien, Austria, published in extenso<br />

4. Carmen Socaciu, Cristina Mihis, Monica Trif, Horst A. Diehl, ‘’Seabuckthorn fruit<br />

oleosomes as natural, microencapsulated oilbodies: separation, characterization, stability<br />

evaluation oil’’, Proc. XV International workshop on Bioencapsulation and COST865<br />

Meeting, 2007, Wien, Austria, published in extenso<br />

5. Socaciu C., Trif M., Ranga F., Fetea F., Bunea A., Dulf F., Bele C. and Echim C.<br />

‘’Quality and authenticity of seabuckthorn oils using succesive UV-Vis, FT-IR, NMR<br />

spectroscopy and HPLC-, GC- chromatography fingerprints’’, 3 rd Conf. Int.<br />

Seabuckthorn Assoc., 2007, Quebec, Canada<br />

6. Monica Trif, Ansorge-Schumacher M., Socaciu C., Diehl H.A. ‘’Determination of<br />

encapsulated Sea buckthorn oil oxidation using FTIR-ATR spectroscopy’’, Bull.<br />

<strong>USAMV</strong>-CN, 63-64/2007, ISSN 1843-5262, Romania<br />

2006<br />

1. Monica Trif, “Seabuckthorn oleosomes as stabilized bioactive nanostrustures with<br />

applications in microencapsulation nutraceuticals”, Symposium IRC Transylvania<br />

“Innovations in Agriculture, Biotechnologies, Animal Breeds and Veterinary Medicine”,<br />

2006, <strong>USAMV</strong> <strong>Cluj</strong>-<strong>Napoca</strong>, Romania<br />

2004<br />

1. Veerle Minne, Monica Trif, J.M.C. Geuns, Corina Catana, “Steviozide and steviol<br />

determination in callus culture of Stevia rebaudiana Bertoni”, Bull. <strong>USAMV</strong>-CN,<br />

61/2004, ISSN 1454-2382, Romania<br />

XXXV


UNIVERSITY OF AGRICULTURAL<br />

SCIENCES AND VETERINARY<br />

MEDICINE, CLUJ-NAPOCA<br />

FACULTY OF ANIMAL BREEDS<br />

AND BIOTECHNOLOGY<br />

BIOTECHNOLOGY FIELD<br />

PHD THESIS<br />

BIOENCAPSULATION SYSTEMS OF BIOACTIVE<br />

COMPOUNDS EXTRACTED FROM PLANT OILS<br />

(SUMMARY)<br />

MONICA TRIF<br />

Dipl. Eng. Biotechnologist<br />

SCIENTIFIC SUREVISOR:<br />

PROF. Dr. Dr. h.c. HORST A. DIEHL<br />

2009


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

TABLE OF CONTENTS<br />

I. INTRODUCTION. AIMS AND OBJECTIVES .................................................................. III<br />

PART II. ORIGINAL CONTRIBUTIONS .............................................................................. X<br />

CHAPTER II. CHARACTERIZATION OF FUNCTIONAL OILS USED FOR<br />

BIOENCAPSULATION........................................................................................................... X<br />

II.1. MATERIALS AND METHODS................................................................................... X<br />

II.2. RESULTS AND DISCUSSIONS.................................................................................. X<br />

II.3. CONCLUSIONS......................................................................................................... XV<br />

CHAPTER III. BIOENCAPSULATED OILS: BEADS PREPARATION PROTOCOLS AND<br />

CHARACTERIZATION……. ............................................................................................. XVI<br />

III.1. MATERIALS AND METHODS ............................................................................. XVI<br />

III.2. RESULTS AND DISCUSSIONS ...........................................................................XVII<br />

III.3. CONCLUSIONS ................................................................................................... XXIII<br />

CHAPTER IV. ENCAPSULATION EFFICIENCY AND RELEASE STUDIES............ XXIII<br />

IV.1. MATERIALS AND METHODS .......................................................................... XXIII<br />

IV.2. RESULTS AND DISSCUSIONS ......................................................................... XXIV<br />

IV.3. CONCLUSIONS ..................................................................................................XXVII<br />

CHAPTER V. FTIR CHARACTERIZATION OF OIL OXIDATION ..........................XXVIII<br />

V.1. MATERIALS AND METHODS .........................................................................XXVIII<br />

V.2. RESULTS AND DISCUSSIONS.........................................................................XXVIII<br />

V.3. CONCLUSIONS .................................................................................................... XXIX<br />

GENERAL CONCLUSIONS............................................................................................. XXX<br />

SELECTED BIBLIOGRAPHY ........................................................................................XXXII<br />

PUBLICATIONS RELEASED DURING PhD..................................................... .........XXXVI<br />

II


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

I. INTRODUCTION. AIMS AND OBJECTIVES<br />

BIOENCAPSULATION is a novel technology which use bioactive molecules to be<br />

inserted , immobilized on specific supports ( matrices). Encapsulation technology is now well<br />

developed and accepted within the pharmaceutical, chemical, cosmetic, foods and printing<br />

industries (Augustin et al., 2001; Heinzen, 2002). It appears that bioencapsulation has a strong<br />

potential in most biotechnology fields and especially in agriculture and food. The<br />

encapsulation of active components has become a very attractive process in the last decades,<br />

being adequate for food ingredients as well as for chemicals, drugs or cosmetics.<br />

The application of a successful method to bioencapsulate bioactive compounds<br />

extracted from plant oils could enable the optimum combinations and qualities of these<br />

substances to be established. It is envisaged that such a combination be bioencapsulated into a<br />

commercial field would have significant benefits for the pharmaceutical, food and<br />

cosmeceutical industry. Furthermore, research and development in these fields are of<br />

significant benefits for the preservation of natural bioactive compounds extracted from plants.<br />

The aim of this thesis was to use different natural matrices to bioencapsulate of<br />

bioactive molecules (plant oils) using as method ionotropically crosslinked gelation, and to<br />

evaluate different quality and efficiency parameters for the bioencapsulated products, as well<br />

the controlled release of bioactive molecules from the matrix.<br />

Thesis structure. The first part of the thesis is a bibliographic report and the second part<br />

contains the experimental procedures: material and methods, results and discussions, and<br />

conclusions.<br />

The first part (Literature studies) includes four chapters (I-IV):<br />

Chapter I. Bioencapsulation: definition, principles, applications, methods and techniques<br />

Chapter II. Functional plant oils: physical and chemical characterization and authentification<br />

Chapter III. Oil encapsulation: matrices, encapsulation methods and techniques, efficiency<br />

and stability evaluation<br />

Chapter IV. Methods for beads characterization<br />

Part two (Original Contribution) is included in four chapters as follows:<br />

Chapter V. Characterization of functional oils used for bioencapsulation. This part<br />

characterize the functional fourth oils (hemp oil, pumpkin oil, extra virgin olive oil and<br />

seabuckthorn oil) analyzed and encapsulated by different techniques: ultraviolet (UV)<br />

spectrometry, Gas-Chromatography (GC) with Flame Ionization Detection (FID) and Fourier<br />

transformed Infrared spectroscopy equipped with horizontal attenuated total reflectance<br />

(FTIR-ATR), and chemical determinations were carried out according to the methods<br />

described in the A. O. A. C. and IOOC.<br />

Chapter VI. Bioencapsulated oils: beads preparation protocols and characterization. This<br />

chapter describes the protocols: for synthesis of empty beads of different sizes and<br />

concentrations and for synthesis of beads of different sizes and concentrations incorporating<br />

small oil droplets, characterizes the beads empty and containing oils (by sizes, morphology)<br />

and analyses the beads by FTIR and thermal (differential scanning calorimetry and<br />

termogravimetric).<br />

III


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Chapter VII. Encapsulation efficiency and release studies. This chapter includes the studies<br />

regarding encapsulation efficiency of functional oils encapsulated in different matrices,<br />

release rate measurements of oils from beads on time and in different solvents, and in vitro<br />

release oils from the beads.<br />

Chapter VIII. FTIR characterization of oil oxidation. This chapter includes the comparative<br />

analysis of oil free and encapsulated oxidized on time under UV conditions.<br />

The experimental work is focused on following objectives:<br />

Use of different natural matrices (such as alginate, alginate in complex with kcarrageenan<br />

and gums: xanthan and guar, chitosan) to encapsulate functional oils<br />

(pumpkin oil, extra virgin olive oil, hemp oil and seabuckthorn oil)<br />

Improvement and optimization of bioencapsulation methods for vegetable oils with<br />

functional properties<br />

Investigations of different obtained beads: morphology (scanning electron<br />

microscopy), characterization of beads (area, diameter, perimeter, elongation,<br />

compactness), Fourier transform infrared spectroscopy (FTIR) analysis<br />

Investigations of bioencapsulated functional oils: encapsulation efficiency and<br />

stability, control release of oils encapsulated, material and functionality of the beads<br />

obtained , FTIR characterization of: free oils, obtained beads and oxidation of free and<br />

encapsulated oils<br />

The work presented was carried out in the Department of Chemistry and Biochemistry<br />

at the University of Agricultural Sciences and Veterinary Medicine (<strong>USAMV</strong>), <strong>Cluj</strong>-<strong>Napoca</strong>,<br />

Romania, in collaboration with the Technical University Berlin (TU Berlin), Germany,<br />

Department of Enzyme Technology, under supervision of Prof. Dr. rer. nat. Marion Ansorge-<br />

Schumacher. I would like to thank the sponsors who made this work possible providing<br />

scholarships to pursue doctoral studies: Deutsche Bündestiftung Umwelt (DBU) Germany and<br />

EU COST 865.<br />

IV


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

INTRODUCTION<br />

Microencapsulation is a process to produce capsules in the micrometer to millimeter<br />

range known as microcapsules.<br />

A microcapsule is a tiny capsule and its preparation procedure, called<br />

microencapsulation, can endow various traits to the core material in order to add secondary<br />

functions and/or compensate for shortcomings.<br />

Microcapsules can be classified in three basic categories according to their<br />

morphology as mono-cored (mononuclear), poly-cored (polynuclear), and matrix types.<br />

The schematic presentation of different types of microcapsules is shown in the<br />

following figure Fig.1.:<br />

Fig. 1. Variations on microcapsules formulation<br />

(Birnbaum D.T. and Brannon-Peppas L., 2003)<br />

Mono-cored (mononuclear) microcapsules contain the shell around the core. Polycored<br />

(polynuclear) capsules have many cores enclosed within the shell. In matrix<br />

encapsulation, the core material is distributed homogeneously into the shell material.<br />

Purposes of microencapsulation<br />

Generally, there are a numbers of reasons why substances should be encapsulated (Li S.P. et<br />

a.l, 1988; Finch C.A., 1985; Arshady, R., 1993):<br />

• Increasing stability to protect reactive substances from the environment.<br />

• To convert liquid active components into a dry solid system.<br />

• To separate incompatible components for functional reasons.<br />

• To mask undesired properties of the active components.<br />

• To protect the immediate environment of the microcapsules from the active<br />

components.<br />

• To control release of the active components for delayed (timed) release or long-acting<br />

(sustained) release.<br />

• Separation of incompatible components.<br />

• Conversion of liquids to free-flowing solids.<br />

• Masking of odor, activity, etc.<br />

• Protection of immediate environment.<br />

• Targeting of drugs.<br />

V


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Encapsulation technology is now well developed and accepted within the<br />

pharmaceutical, chemical, cosmetic, foods and printing industries (Augustin et al., 2001;<br />

Heinzen, 2002).<br />

It appears that bioencapsulation has a strong potential in most biotechnology fields<br />

and especially in agriculture and food. The encapsulation of active components has become a<br />

very attractive process in the last decades, being adequate for food ingredients as well as for<br />

chemicals, drugs or cosmetics.<br />

The main objective is to build a barrier between the component in the particle and the<br />

environment. This barrier may protect against oxygen, water, light; avoid contact with other<br />

ingredients, e.g. a heavy meal; or control diffusion. The preservation of bioactive food<br />

ingredients through product processing and storage, and their controlled release in the<br />

gastrointestinal tract is yet a major obstacle for the full exploitation of the health potential of<br />

many food bioactive components. Challenges facing introduction of bioactive compounds into<br />

foods are not limited solely to their inclusion in free flowing powder or solution.<br />

In food products, fats and oils, aroma compounds and oleoresins, vitamins, minerals,<br />

colorants, and enzymes have been encapsulated (Dziezak, 1988; Jackson and Lee, 1991;<br />

Shahidi and Han, 1993).<br />

The choice of appropriate bioencapsulation technique depends upon the end use of the<br />

product and the processing conditions involved in the manufacturing product.<br />

All bioencapsulation techniques require a core material and an enveloping solution.<br />

The material has to be approved by the Food and Drug Administration (US) or European<br />

Food Safety Authority (Europe) (Amrita et al., 1999).<br />

Pfutze S. (2003) considers that the technologies to accomplish encapsulation can be<br />

divided into two groups:<br />

• formation of matrix capsules : an active and protective ingredient form homogeneous<br />

granules. The active is well distributed within the granule and is enclosed by the<br />

abundance of the protective material, forming a matrix for the active.<br />

• formation of defined shell capsules : the active material is granules and coated with a<br />

protective layer. Active and protective material is clearly separated.<br />

Coacervation: encapsulation of liquids<br />

Complex coacervation, (or phase separation), is the first large application of a<br />

microencapsulation technology. Coacervation, which is a phenomenon occurring in colloidal<br />

solutions, is often regarded as the original method of encapsulation (Risch, 1995).<br />

The applicability of complex coacervation is enormous but has been limited due to its<br />

relatively high costs. It includes the encapsulation of:<br />

Flavors<br />

Vitamins<br />

Fragrances (scratch and sniff)<br />

Liquid Crystals for display devices<br />

Ink systems for carbonless copy paper<br />

VI


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Active ingredients for drug delivery<br />

Bacteria and cells<br />

Matrices – materials for encapsulation<br />

Enormous range of different materials can be used for encapsulation, such as synthetic<br />

polyelectrolytes (Sukhorukov G.B. et al., 1998; Donath E. et al., 1998), natural<br />

polyelectrolytes (Shenoy D.B. et al., 2003) inorganic nanoparticles (Caruso F. et al., 2001),<br />

lipids (Moya S. et al., 2000), dye (Dai Z. et al., 2001), multivalent ion (Radtchenko I.L. et al.,<br />

2005), and biomacromolecules (Yang H. et al., 2006).<br />

Biopolymers are polymers that are generated from renewable natural sources, are<br />

often biodegradable, and not toxic to produce. They can be produced by biological systems<br />

(i.e. micro-organisms, plants and animals), or chemically synthesized from biological starting<br />

materials (e.g. sugars, starch, natural fats or oils, etc.).<br />

Natural polymers and their derivatives: anionic polymers: HA, alginic acid, pectin,<br />

carrageenan, chondroitin sulfate, dextran sulfat; cationic polymers: chitosan, polylysine;<br />

amphipathic polymers: collagen (and gelatin), carboxymethyl chitin, fibrin; neutral polymers:<br />

dextran, agarose, pullulan.<br />

The ability of carbohydrates, such as starches, maltodextrins, corn syrup solids and<br />

gums, to bind flavours is complemented by their diversity, low cost, and widespread use in<br />

foods and makes them the preferred choice for encapsulation.<br />

Guar gum (E412, also called guaran) is extracted from the seed of the leguminous<br />

shrub Cyamopsis tetragonoloba, where it acts as a food and water store. Guar gum shows<br />

high low-shear viscosity but is strongly shear-thinning. Being non-ionic, it is not affected by<br />

ionic strength or pH but will degrade at pH extremes at temperature (for example, pH 3 at<br />

50°C).<br />

Alginates (E400-E404) are produced by brown seaweeds (Phaeophyceae, mainly<br />

Laminaria). Gelling properties depends on the ion binding (Mg 2+


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Many components naturally present in vegetable oils have been shown to have beneficial<br />

properties.<br />

Hempseed oil is pressed from the seed of the hemp plant (i.e., non-drug varieties of<br />

Cannabis sativa L). The Oleic Acid (Omega 9) contained in Hemp Seed Oil helps keep<br />

arteries supple because of its fluidity. In excess Oleic acid can interfere with EFA's and<br />

prostaglandin's.<br />

Olive oil contains triacylglycerols and small quantities of free fatty acits, glycerol,<br />

pigments, aroma compounds, sterols, tocopherols, phenols, unidentified resinous components<br />

and others (Kiritsakis A., 1998). Among these constituents the usaponifiable fraction , which<br />

covers a small percentage (0,5-15%) plays a significant role on human health (Waterman and<br />

Lockwood, 2007). Olive oil is considerably rich in monounsaturated fats, most notably oleic<br />

acid.<br />

Pumpkin oil is a healthy, high quality, specialty oil, ranked in the top 3 most nutritious.<br />

Pumpkin seed oil has an intense nutty taste and is rich in polyunsaturated fatty acids. Brown<br />

oil has a bitter taste. The tocopherol content of the oils is ranging from 27.1 to 75.1 μg/g of<br />

oil for α-tocopherol, from 74.9 to 492.8 μg/g for γ-tocopherol, and from 35.3 to 1109.7 μg/g<br />

for δ-tocopherol (Stevenson D.G. et al., 2007).<br />

Most often seabuckthorn oil is called “Nature's anti-oxidant cocktail”, because it has a<br />

unique composition, combining a cocktail of components usually only found separately. The<br />

seabuckthorn oil is stored in extra-chromoplastic organelle, named oil bodies, a natural form<br />

of encapsulation (Socaciu et al., 2007, 2008). Seabuckthorn seed oil contains a high content of<br />

the two essential fatty acids, linoleic acid and α-linolenic acid (Chen et al., 1990), which are<br />

precursors of other polyunsaturated fatty acids such as arachidonic and eicosapentaenoic<br />

acids. The oil from the pulp/peel of seabuckthorn berries is rich in palmitoleic acid and oleic<br />

acid (Chen et al. 1990).<br />

Oils include also flavonoids (Chen et al., 1991), carotenoids, free and esterified<br />

sterols, triterphenols, and isoprenols (Goncharova and Glushenkova, 1996). Carotenoids also<br />

vary depending upon the source of the oil.<br />

The physical and chemical properties of functional oils<br />

The physical and chemical properties of oils, including iodine, saponification, acid and<br />

peroxide values, refractive index, density and unsaponifiable matter are determined according<br />

to standard procedures. Iodine value measures the unsaturation of oil. The fact that the iodine<br />

value is lower than 100 shows that the oil is of lower degree of saturation (Pa Quart, 1979;<br />

Pearson, 1981). The saponification value is an indication of the average molecular mass of<br />

fatty acids present in oil. The acid value has been shown to be a general indication of the<br />

edibility of oils (AOAC, 1980; Pearson, 1981). The peroxide value is frequently used to<br />

measure the progress of oxidation of oil. It indicates the oxidative rancidity of oil. (deMan,<br />

1992).<br />

The techniques to characterize and authentify of functional oils<br />

Several techniques to characterize and authentify the food products have been<br />

proposed. The authentication methods applied to oils and fats can be classified as chemical (=<br />

VIII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

separative) or physical (= non-separative). The most widely used and accepted physical<br />

technique for oil and fat authentication is ultraviolet (UV) spectrometry. Other promising<br />

physical techniques which have been investigated for oil and fat characterization and<br />

authentication include mass spectrometry, pyrolysis mass spectrometry, GC-electron<br />

ionisation mass spectrometry, nuclear magnetic resonance and infrared spectrometry (IR).<br />

Fourier transform infrared (FTIR) spectrometers have many advantages over<br />

conventional dispersive instruments, with more energy throughput, excellent wavenumber<br />

reproducibility and accuracy, extensive and precise spectral manipulation capabilities<br />

(rationing, subtraction, derivative spectra and deconvolution) and advanced chemometric<br />

software to handle calibration development. FTIR spectroscopy can provide much more<br />

information on the characteristics, composition and/or chemical changes taking place in fats<br />

and oils than can be obtained from conventional dispersive IR instruments. Furthermore from<br />

a practical viewpoint, FTIR quantitative analysis methods are generally rapid (1-2 min), can<br />

be automated and reduce the need for solvents and toxic reagents associated with wet<br />

chemical methods for fats and oils analyses, making the development of FTIR methods timely<br />

in view of present efforts to eliminate toxic solvents<br />

Horizontal attenuated total reflectance (HATR) accessories also have been widely<br />

used in the development of FTIR methods for the analysis of fats and oils, because they<br />

provide a simple and convenient means of sample handling (Sedman et al., 1999).<br />

Mid infrared (MIR) spectroscopy can be used to identify organic compounds because<br />

some groups of atoms display characteristic vibrational absorption frequencies in this infrared<br />

region of the electromagnetic spectrum. Edible fats and oils in their neat form are ideal<br />

candidates for FTIR analysis, in either the attenuated total reflectance or the transmission<br />

mode.<br />

A wide variety of foods is encapsulated- flavoring agents, acids, bases, artificial<br />

sweeteners, colourants, leavening agents, antioxidants, agents with undesirable flavors, odors<br />

and nutrients, among others. They retain their bioactivity and remain accessible to external<br />

reagents.<br />

Phytosterols, flavonoids and sulphur containing compounds represent three groups of<br />

compounds found in fruits and vegetables, which may be important in reducing the risk of<br />

atherosclerosis (Howard and Kritchevsky, 1997). Some phytochemicals such as ascorbic acid,<br />

carotenoids, vitamin E, polyphenols, isoflavone and phytosterols have been highlighted as<br />

physiologically-active ingredients that help fight certain diseases.<br />

Natural products such as phytochemicals and herbal extracts are being widely used by<br />

consumers as alternatives to prescription drugs for allergic diseases. Many of the compounds<br />

found in plants have useful applications in the pharmaceutical, food processing and various<br />

other industries.<br />

Encapsulation also masks some objectionable flavors, e.g. fish oil and some bitter<br />

antibiotics. Encapsulation can be used to convert oils into solid and water soluble forms and<br />

extend their use in many product applications. The encapsulation of oils, include as methods<br />

and techniques: spray-drying, spray-chilling, fluid bed encapsulation, extrusion encapsulation,<br />

and encapsulation by complex coacervation. Oils high in omega-3 fatty acids may be spraydried<br />

and oil encapsulated in a dry matrix with very low exposure to surface oxidation.<br />

In most of the cases the matrices used to encapsulated oils and fats are gums (acacia,<br />

arabic), proteins, carbohydrates (casein/sugar), maltodextrin, beta-cyclodextrin, sodium<br />

alginate, gelatin.<br />

IX


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

PART II. ORIGINAL CONTRIBUTIONS<br />

CHAPTER II. CHARACTERIZATION OF FUNCTIONAL OILS USED FOR<br />

BIOENCAPSULATION<br />

Edible oils extracted from plant sources (sunflower, pumpkin, soybean, rapeseed,<br />

olive, etc.) are important in foods and in various industries (e. g. cosmetics, pharmaceuticals,<br />

lubricants). They are key components of the diet and also provide characteristic flavours and<br />

textures to foods. To check their quality and safety, the oils analysis is made by different<br />

techniques. Three techniques are generally applied to characterize such oils: ultraviolet (UV)<br />

spectrometry, Gas-Chromatography (GC) with Flame Ionization Detection (FID) and Fourier<br />

transformed Infrared spectroscopy equipped with horizontal attenuated total reflectance<br />

(FTIR-ATR).<br />

II.1. MATERIALS AND METHODS<br />

Samples of four different oils were examined: seabuckthorn oil (SBO) extracted from<br />

seabuckthorn fruits, collected from <strong>Cluj</strong> county (Transylvania, North of Romania), extra<br />

virgin olive oil (EVO) purchased on the Italien market, hemp oil (HP) and pumpkin oil (PK)<br />

were purchased on Romanian market.<br />

The following chemical determinations were carried out according to the methods<br />

described in the A. O. A. C. and IOOC or by the Commission of the European Union (EU):<br />

acid value and iodine number. All tests were performed in triplicate. Acid value was<br />

calculated from the free fatty acid content of the analyzed oils, determined by titration<br />

according to the modified official method Ca 5a-40. The iodine value has been determined by<br />

the AOCS method Cd 1c-85 (1997).<br />

II.2. RESULTS AND DISCUSSIONS<br />

Determination of acid and iodine value<br />

The results of chemical analysis are presented in Table 1. indicating that oil<br />

characteristics are in good agreement with current published values.<br />

These data indicate that the oils investigated correspond to Codex quality indicators<br />

for iodine values, except SB oil, and do not correspond for the acid values.<br />

X


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Table 1. Chemical and physical characteristics of analyzed oils compared with literature<br />

Acid value +<br />

(mg KOH/g Oil)<br />

Aciditatea +<br />

(mg KOH/g ulei)<br />

Iodine value<br />

Indicele de iod<br />

Hemp<br />

Oil<br />

Ulei de Canepa<br />

Extra Virgin Olive<br />

Oil<br />

Ulei de Măsline<br />

Extra Virgin<br />

Chemical and physical characteristics<br />

Caracteristicile chimice si fizice<br />

Pumpkin<br />

Oil<br />

Ulei de Dovleac<br />

Sea buckthorn<br />

Oil<br />

Ulei de Cătina<br />

4.0 6.6 4.0 4.0<br />

145-166** 75-94** 116-133** 98-119‡<br />

+ CODEX 210/CODEX STAN 33;**Firestone D., 1999; ‡Albulescu M. et al., 2006<br />

Determination of ultra violet/visible (UV-Vis) oils fingerprint<br />

A spectral characterization (fingerprint) of the oil samples by UV-Vis is presented in<br />

Fig. II.1. The difference between a typical authentic (accepted) and not authentic (rejected) oil<br />

has been determined based on peaks’ position and intensities (Socaciu C. et al., 2005).<br />

Hemp (Cannabis sativa L) oil<br />

The fingerprint spectral characterization of hemp oil according with data from<br />

OMLC, is given by the content of chlorophyll with the maximum absorbance at 411 nm<br />

(Fig.II.1.A.).<br />

Virgin Olive (Olea europaea ) oil<br />

The color of extra virgin olive oil is dependent on the pigments, usually having high<br />

carotenoid and chlorophyll content. Rippen olives give a yellow oil because of the carotenoid<br />

(yellow red) pigments. The color of the oil is influenced by the exact combination and<br />

proportions of pigments. A simple equation : Color = Chlorophyll (Green) + Carotenoids<br />

(Yellow red) + other pigments (“color equation”).<br />

XI


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

A. B<br />

C. D.<br />

Fig.II.1.UV-Vis spectra of investigated oil - fingerprint for regions 3X0-600 nm with specific<br />

of maximum absorbance peak: A. hemp oil (HP); B. extra virgin olive oil (EVO); C. pumpkin<br />

oil (PK); D. seabuckthorn oil (SB)<br />

The chlorophyll content decreases as the fruit matures so olives picked green produce<br />

a greener oil with a "grassy" flavor. The fingerprint of the extra virgin olive oil we attributed<br />

to the “color equation” mentioned previously (Fig.II.1.B.).<br />

Pumpkin (Cucurbita pepo) oil<br />

The representative fingerprint of this oil accepted have the peak at 418 nm lower and<br />

the peak at 435 nm higher (Fig.II.1.C.) compared to the not accepted oils which have a high<br />

peak at 418 nm and a low one at 435 nm (Lankmayr et al., 2004).<br />

Seabuckthorn (Hippophae rhamnoides) oil<br />

The absorption maxima from seabuckthorn oil spectrum shows that the fingerprint of<br />

this oil has a broad absorption with the three maxima or shoulders in the blue spectral range<br />

between 400 and 500 nm, corresponding to the carotenoids (Fig.II.1.D.). The main nutrient in<br />

seabuckthorn oil is beta-carotene. According with literature and compared to the three<br />

maxima in the spectra of seabuckthorn oil, is it obviously that the fingerprint of this oil is<br />

given by beta-carotene (Lichtenthaler and Buschmann, 2001).<br />

XII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Fourier Transform Infrared Spectroscopy (FTIR) analysis of oils<br />

FTIR studies of edible oils have proved the existence of relationships between<br />

frequency and absorbance values of certain bands of the oil FTIR and the oil composition as<br />

well as between some of these spectroscopic parameters and the oil oxidation level (Guillen,<br />

M. D. and Cabo, N, 1997, 1998, 1999, 2000, 2002).<br />

According to these spectra, we identified the relevant infrared frequencies (bands)<br />

useful to and assign the specificity of the oils investigated ( Table 2.).<br />

No.<br />

Bands<br />

Nr.<br />

banda<br />

HP<br />

HP<br />

(cm -1 )<br />

Table 2. Relevant infrared bands and assignments of the oils investigated<br />

EVO<br />

EVO<br />

(cm -1 )<br />

PK<br />

PK<br />

(cm -1 )<br />

SB<br />

SB<br />

(cm -1 )<br />

Functional group<br />

Grupul functional<br />

1 3008 3005 3008 3006 =C-H (cis-) stretching<br />

Mode of vibration<br />

Modul de vibratie<br />

2 2956 2956 2956 2956 -C-H (CH3) stretching (asymetric)<br />

3 2923 2923 2923 2922 -C-H (CH2) stretching (asymetric)<br />

4 2853 2853 2854 2853 -C-H (CH2) stretching (symetric)<br />

5 1742 1742 1742 1742 -C=O (ester) stretching<br />

6 1654 1653 1653 1653 -C=C- (cis-) stretching<br />

7 1463 1464 1464 1464 -C-H (CH2, CH3)<br />

8 1456 1456 1456<br />

9 1418 1417 1418 1417 =C-H (cis-) bending (rocking)<br />

10 1396 1402 1398 1402 bending<br />

11 1377 1377 1377 1377 -C-H (CH3) bending (symmetric)<br />

12 1317 1319 bending<br />

13 1236 1238 1238 1238 -C-O, -CH2- stretching, bending<br />

14 1155 1159 1157 1161 -C-O, -CH2- stretching, bending<br />

15 1120 1118 1120 1116 -C-O stretching<br />

16 1097 1097 1099 1095 -C-O stretching<br />

17 1028 1028 1029 1033 -C-O stretching<br />

18 958 962 968 -HC=CH- (trans-) bending out of plane<br />

19 914 914 -HC=CH- (cis-) bending out of plane<br />

20 721 721 721 721 -(CH2)n-, -HC=CH-<br />

(cis-)<br />

bending (rocking)<br />

XIII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Although oil spectra seem to be similar, they show differences in the intensity of their<br />

bands as well as in the exact frequency at which the maximum absorbance is produced in each<br />

case, due to the different nature and composition of the oil under study (see Fig. II.2.).<br />

Fig.II.2. FTIR-ATR fingerprint spectra (1700-800 cm -1 ) of analyzed oils: Fingerprint oils:<br />

HP= hemp, EVO (EOV) = extra virgin olive; PK= pumpkin; SB= seabuckthorn<br />

Gas-Chromatography Determination of fatty acid profile<br />

The composition of fatty acids analyzed by GC-FID in this study is shown in Table 3.<br />

The fatty acid composition of the analyzed oils has been compared with the composition of<br />

genuine oils reported in the literature or by the direct analysis of the genuine oils (Table 3.).<br />

Fatty acid %<br />

Acizi graşi %<br />

Palmitic acid<br />

(16:0)<br />

Table 3. Fatty acid composition (percentage) of the investigated vegetable<br />

Hemp Oil<br />

Ulei de Canepă<br />

Extra virgin<br />

Olive oil<br />

Ulei Extra Virgin<br />

de Măsline<br />

Pumpkin oil<br />

Ulei de Dovleac<br />

Seabuckthorn oil<br />

Ulei de Cătină<br />

7.48 7.28 6.29 7.76<br />

XIV


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Stearic acid (18:0) 1.66 2.67 3.64 0.3<br />

Arachidic acid<br />

(20:0)<br />

1.06 - - 0.11<br />

Σ saturated % 10.02 9.95 9.93 8.17<br />

Palmitoleic<br />

(C16:1)<br />

Oleic acid<br />

(C18:1)<br />

Linoleic acid<br />

(C18:2)<br />

Linolenic<br />

(18:3n3)<br />

Eicosadienoic acid<br />

(C20:2)<br />

-<br />

14.94<br />

72.6<br />

-<br />

0.55<br />

-<br />

36.81<br />

43.14<br />

0.93<br />

-<br />

-<br />

42.44<br />

46.71<br />

Σ unsaturated % 87.54 80.88 90.07 12.5<br />

C18:1/C18:2 0.21 0.85 0.91 6.3<br />

omega 3 : omega<br />

6 fatty acids<br />

II.3. CONCLUSIONS<br />

0.92<br />

- 0.022 0.02 -<br />

By GC-FID, the fatty acid composition of the analyzed oils has been determined and<br />

compared with the composition of genuine oils reported in the literature or by the direct<br />

analysis of the genuine oils. Regarding the content in fatty acids, GC-FID analysis revealed<br />

that:<br />

• hemp oil composition does not agree with the literature for most of the fatty acids,<br />

hemp oil contains lower values as the value reported. Oleic acid at least ranged<br />

between the values mentioned.<br />

• primary fatty acids of extra virgin olive oil are oleic and linoleic acid with a small<br />

amount of linolenic acid.<br />

• for pumpkin seed oil, the fatty acid composition is in good agreement with the profile<br />

for most of the fatty acids, excepting palmitic and stearic acid found in lower<br />

concentrations.<br />

• the fatty acids composition of seabuckthorn oil demonstrated that this oil is from<br />

pulp/peel (whole) berries, being rich in palmitoleic acid and oleic acid.<br />

-<br />

5.4<br />

6.3<br />

-<br />

0.8<br />

-<br />

XV


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

CHAPTER III. BIOENCAPSULATED OILS: BEADS PREPARATION PROTOCOLS<br />

AND CHARACTERIZATION<br />

III.1. MATERIALS AND METHODS<br />

The following chemicals were used:<br />

• as matrices for encapsulation: alginate, k-carrageenan, chitosan, xanthan gum<br />

and guar gum from Sigma Aldrich<br />

• the others solvents and reactants also from Sigma Aldrich<br />

• the oils used were purchased as we mentioned before.<br />

Protocol for synthesis of empty beads of different sizes and concentrations<br />

Different concentrations of alginate (1%, 1.5%, 2% w/v), mixture of: alginate and<br />

carrageenan, alginate and xanthan gum, alginate and guar gum were dissolved in de-ionized<br />

water stirred for ~ 30 minutes, different concentrations of chitosan (1%, 1.5%, 2% w/v) was<br />

dissolved in acetic acid 0.7% v/v, than were dropped into a stirred hardening bath, using a<br />

peristaltic pump with injector 0.4 x 20mm, and the beds were formed instantaneously.<br />

After ~ 1h, the beads were separated from this hardening bath and were put on Petri dishes<br />

for ‘’protection’’ and ‘’conservation’’.<br />

Protocol for synthesis of beads of different sizes and concentrations incorporating small oil<br />

droplets<br />

Different solutions containing matrices obtained were used to prepare the mixtures<br />

(emulsions) with oils; the mixtures were continuously stirred to maintain the emulsions. The<br />

emulsions formed were dropped into the hardening bath, using a pipette for controlled<br />

injection.<br />

Taking into consideration the viscosity of the solutions obtained, were chosen the<br />

combinations between this two matrices having not so high viscosity. First the emulsions<br />

obtained, were evaluated microscopically and than were dropped into the hardening bath.<br />

After ~ 1h, the beads were separated from this hardening bath and were put on Petri dishes<br />

for ‘’protection’’ and ‘’conservation’’.<br />

Microscopic evaluation of emulsions before encapsulation<br />

Microscopic evaluation of emulsions before encapsulation was imaged using an<br />

Olimpus optical microscope BXX1M equipped with a digital camera.<br />

Beads Characterization: sizes and morphology, FTIR and thermal analysis<br />

The obtained bead sizes, areas, perimeters, elongation and compactness were<br />

measured using the UTHSCSA ImageTool software.<br />

XVI


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

The surface morphology of freeze- and air-dried hydrogels was determined using a<br />

scanning electron microscope (Hitachi S-2700, iMOXS, with BSE detector). Beads samples<br />

were sputtered with gold and scanned at an accelerating voltage of 15 kV.<br />

III.2. RESULTS AND DISCUSSIONS<br />

Microscopic evaluation of emulsions before encapsulation<br />

Stability of emulsions (including the composition and microstructure) is a key element<br />

for evaluation of the lifetime and temperature conditions for the storage and use of emulsion<br />

based products. The oil droplets sizes and shapes dispersed in the structure of matrices<br />

dissolved were compared in order to evaluate the stability of the emulsions.<br />

The drop size distributions of emulsions were determined by optical microscopy<br />

associated to an image analysis technique. It was observed that oils droplets in emulsion<br />

coalescence after a few minutes when the matrices concentrations increased (because no<br />

emulsificator was used to help the emulsion formation), being necessary to drop it<br />

immediately into the hardening bath. Different concentrations of matrices were used to<br />

encapsulate the oils. The first evaluation of the solution of matrices dissolved was done.<br />

The oils droplets were homogenized uniformly, they are smaller with the increasing of<br />

matrix (Fig.III.1.). This demonstrated that the good oils encapsulation increased with the<br />

increasing of matrix concentration.<br />

A. B.<br />

C. D.<br />

Fig. III.1. Microscopic images with different emulsions using as matrices: A. alginate 2%; B.<br />

alginate 1%; C. alginate-guar gum complex; D. alginate-xanthan gum complex. The scale bar<br />

represents 5 μm.<br />

XVII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Beads Characterization<br />

After the emulsion was formed, it was extruded into the hardening bath and the gel<br />

formed by the action of cross-linking agents. The beads containing functional oils were<br />

almost spherical, and slightly yellowish, whereas those containing extra virgin olive oil,<br />

pumpkin oil, hemp oil and were less transparent and light yellowish, and the beads containing<br />

seabuckthorn oil were orange in color. This result was owing to original color presented in an<br />

oil phase.<br />

Comparating all the matrices and concentration of matrices used to obtain beads with<br />

oils encapsulated (Fig.III.2.), and taking into consideration all the characteristics of the<br />

different beads containing different types of oils, most specially roundness and compactness,<br />

which are two important characteristics in cosmetic and nutraceutical applications, and not to<br />

forget elongation coefficient, the most suitable for oils encapsulation are: alginate 2%,<br />

chitosan 2%, and alginate in complex with k-carrageenan, xanthan and guar gums in ratio<br />

0.75:0.75.<br />

Parameter values/Valoarea parametrilor<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

AG-CAR (0.5:0.5)<br />

AG-CAR (0.75:0.75)<br />

AG-XG (0.75:0.75)<br />

AG-XG (0.5:0.5)<br />

AG-GG (0.75:0.75)<br />

AG-GG (0.5:0.5)<br />

AGoil2%<br />

Samples/Probele<br />

AGoil1.5%<br />

AGoil1%<br />

CHoil2%<br />

CHoil1.5%<br />

CHoil1%<br />

Area / Aria (cm2)<br />

Perimeter / Perimetru<br />

Elongation (axes ratio)/<br />

Elongatia (raportul axelor)<br />

Roundness (up to 1) /<br />

Sfericitatea val. max. 1<br />

Diameter / Diametrul (cm)<br />

Compactness (up to 1)/<br />

Compactitatea (val. max. 1)<br />

Fig.III.2. Comparative graphic representation of characteristics of alginate complex with kcarrageenan,<br />

xanthan and guar gums, alginate and chitosan beads obtained containing oil:<br />

AG-CAR (0.5:0.5) = alginate-k-carrageenan (ratio 0.5:0.5) complex beads containing oil;<br />

AG-CAR (0.75:0.75) = alginate-k-carrageenan (ratio 0.5:0.5) complex beads containing oil;<br />

AG-XG (0.75:0.75) = alginate-xanthan gum (ratio 0.75:0.75) complex beads containing oil;<br />

AG-XG (0.5:0.5) = alginate-xanthan gum (ratio 0.5:0.5) complex beads containing oil; AG-<br />

GG (0.75:0.75) = alginate-guar gum (ratio 0.75:0.75) complex beads containing oil; AG-GG<br />

(0.5:0.5) = alginate-guar gum (ratio 0.5:0.5) complex beads containing oil; AGoil2% =<br />

alginate 2% beads containing oil; AGoil1.5% = alginate 1.5% beads containing oil; AGoil1%<br />

= alginate 1% beads containing oil; CHoil2% = chitosan 2% beads containing oil; CHoil1.5%<br />

= chitosan 1.5% beads containing oil; CHoil1% = chitosan 1% beads containing oil<br />

XVIII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Scanning electron microscopy<br />

The purpose of the scanning electron microscopy study was to obtain a topographical<br />

characterization of beads.<br />

The surface of beads obtained is non regular due to the oil droplets dispersed all over<br />

the internal structure, except the chitosan beads which do not present such an irregular surface<br />

(Fig.III.3.A and B.). The SEM pictures of beads revealed that the surfaces were found to be<br />

non porous.<br />

A. B.<br />

Fig.III.3. Scanning electron micrographs of external structure of different beads containing<br />

oils: A. alginate-carrageenan complex; B. chitosan. The scale bars are shown on the<br />

individual photographs. Magnification 70x.<br />

FTIR analysis<br />

FTIR Characterization of matrices<br />

By FTIR-ATR spectra we were able not only to identify the main wave numbers<br />

specific to free matrices (AG, CAR, CH, GG, XG) and to discriminate later the differences<br />

when oils were free or incorporated. The wave numbers useful for matrices discriminations<br />

were identified at 3244-3302 cm -1 (O-H stretch), 1400-1474 cm -1 (CH2 bending), 1000-1200 -<br />

1 (C-O and C-C stretch), 924-1000 cm -1 ( poly OH and CH2 twist), 776-892 cm -1 (glycoside<br />

links).<br />

To summarize, FTIR spectroscopy can discriminate between the different matrices:<br />

Functional group and<br />

vibration<br />

O–H stretching vibration 3244 3514<br />

AG CAR GG XG CH<br />

PolyOH groups<br />

3299 3302 3289<br />

O-H +<br />

N-H strech<br />

C–H stretching of CH2 group 2926 2953, 2911, 2894 2884 - 2935<br />

C-O stretching ( COOH) 1597 - 1636 - 1651<br />

XIX


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Deformations of CH2 group (<br />

bending)<br />

1408 1474, 1400 1408 1400 1428<br />

O-H bending - 1223 ( S=O strech<br />

sulphate ester<br />

1350 1247 -<br />

C-O and C-C ring stretching 1200-1000 - 1145 1150 1151<br />

–CH2OH stretching mode 1054 1063 1054 1061<br />

C–OH alcoholic<br />

(C-O stretching saccharide)<br />

–CH2 twisting vibration 948, 902,<br />

1024 1024 - 1025 1024<br />

Gululonic &<br />

mannuronic<br />

924, 910<br />

Polyhydroxy groups<br />

Glycosidic links 809 842<br />

Galactose sulphate,<br />

glycosidic link<br />

FTIR characterization of different beads containing oils<br />

1016 - -<br />

866,777<br />

(1,4; 1,6) link<br />

galactose<br />

and mannose<br />

785 C-H<br />

rocking,<br />

bending<br />

C-C stretching<br />

The spectra of empty beads obtained, beads containing oils and free oils were<br />

recorded. Matrices concentrations did not the affected the FTIR-ATR characteristics peak<br />

intensities. As example in Fig.III.4. are shown FTIR-ATR spectra of SB oil and alginate 2%<br />

beads containing SB oil.<br />

The encapsulation of SB oil in alginate induces the decrease of absorbance intensity at<br />

3400 cm -1 (which was proportional with the increase of alginate percentage) and shifts of<br />

absorbance peaks to lower-wavenumbers in the region 1000-1500 cm -1 specific to the<br />

encapsulated SB oil comparing with the free SB oil.<br />

By FTIR-ATR analysis, mixture of oils and different blank beads showed the peaks<br />

attributable to both oils and empty beads. This confirms the oils entrapment into the beads at<br />

the molecular level, the oil specific double peaks (regions between 2800-2900 cm -1 and 1700-<br />

900 cm -1 ) which are present also in the free oils.<br />

892,<br />

776<br />

XX


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Fig.III.4. FTIR-ATR spectra of: A. alginate 2% beads containing SB oil; B. alginate powder;<br />

C. SB oil; D. alginate 2% beads empty<br />

Thermal analysis<br />

DSC measurements<br />

The DSC thermograms of the free functional oils as well as alginate beads containing<br />

oils, alginate/k-carrageenan, alginate-guar gum and alginate-xanthan complex beads, and<br />

chitosan beads containing oils were measured.<br />

Some endothermal peaks of seabuckthorn oil and beads containing seabuckthorn oil<br />

are shown in Fig.III.5.; the peaks temperature increased with the increasing of matrices<br />

concentration, and for each matrice is a characteristic endothermal peak.<br />

Thermogravimetric analysis<br />

The TGA thermograms of the free functional oils as well as alginate beads containing<br />

oils, alginate/k-carrageenan, alginate-guar gum and alginate-xanthan complex beads, and<br />

chitosan beads containing oils were measured.<br />

As is shown in Fig.III.6., which is the graphic representation of restmass% of some<br />

samples, the peaks temperature increased with the increasing of matrices concentration, this is<br />

due to the high content of the beads water. Oils do not influence so much the restmass% of the<br />

capsules.<br />

XXI


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Temperature (°C)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

AG 2% AG<br />

1.5%<br />

Alginate<br />

1%<br />

AG-CAR<br />

(0.75%)<br />

CH 2% CH 1% AG-GG AG-KG SB<br />

Fig. III.5. Graphic representation of DSC endothermic peaks of some samples<br />

DSC and TGA has been widely applied in the monitoring of oxidative stability,<br />

thermal behavior, kinetic parameters in various oil samples (Jayadas et al., 2006; Milovanovic<br />

et al., 2006; Bahruddin et al., 2008). The oxidative decomposition of saturated fatty acids<br />

according with literature showed weight loss before 380°C (Bahruddin et al., 2008). Because<br />

on this study the highest temperature of thermal analysis measurements has been 300°C, is<br />

not taking into consideration this aspect regarding monitoring oxidative stability. This should<br />

be an explanation why the analyzed oils did not loss so much weight during thermal<br />

measurements, according with literature weight loss % should be more than 10% depending<br />

on the oil sample (Jayadas et al., 2006; Milovanovic et al., 2006; Bahruddin et al., 2008).<br />

Restmass %<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

AG 2% AG 1.5% AG-CAR<br />

(0.75%)<br />

AG-GG AG-KG SB<br />

Fig.III.6. Graphic representation of restmass% of some samples of TGA analysis<br />

XXII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

The aim of this study regarding the thermal measurements was to analyze the thermal<br />

behavior and to check the stability of beads containing different functional oils obtained in the<br />

context of their further applications on food or cosmetic. For this purpose it is know that in<br />

most of the cases especially on food field the products are sterilize or are expose to high<br />

pressures treatments in order to avoid the biohazard or the contamination, these treatments<br />

being done during technological process.<br />

III.3. CONCLUSIONS<br />

Our experimental studies using the ionotropically crosslinked gelation to<br />

microencapsulate functional oils into natural matrices demonstrates which the best<br />

technological conditions are in order to assure stable beads and controlled conditions of<br />

bioactive molecules release.<br />

Are considered to be the best concentrations from all tested as suitable for oils<br />

encapsulation: alginate and chitosan 2%, 1.5% and 1%, complexes of alginate with kcarrageenan,<br />

xanthan and guar gums in ratio concentrations of 0.75:0.75.<br />

The results show that the amount of oil encapsulated in different matrices affected the<br />

mean diameter of the beads. The size of the gel beads increased with the amount of oil<br />

encapsulated. Also the other characteristics of capsules (area, perimeter, roundness and<br />

elongation) chanced after oil encapsulation.<br />

By FTIR-ATR analysis, mixture of oils and different blank beads showed the peaks<br />

attributable to both oils and empty beads. This confirms the oils entrapment into the beads at<br />

the molecular level, the oil specific double peaks (regions between 2800-2900 cm -1 and 1700-<br />

900 cm -1 ) which are present also in the free oils.<br />

CHAPTER IV. ENCAPSULATION EFFICIENCY AND RELEASE STUDIES<br />

IV.1. MATERIALS AND METHODS<br />

Encapsulation efficiency of the beads<br />

The oils encapsulation was determined calculating the amount of β-carotene or total<br />

carotenoids content of each oil analyzed before and after encapsulation. The samples were<br />

assayed for β-carotene or total carotenoids content of each oil according previous analysis<br />

when was identified the UV-Vis fingerprint, spectrophotometrically.<br />

Encapsulation efficiency (EE%) was calculated by using formulae:<br />

EE% = C1/C2 x XL0, C1= carotenoid concentration in the oil<br />

C2= carotenoid concentration after release from beads<br />

Also from the hardening baths, after encapsulation process, were extracted the<br />

carotenoids with THF for a better efficiency calculation.<br />

XXIII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Release rate measurements of oil from beads<br />

Control release of carotenoids contents in the oils from beads were measurements<br />

spectrophotometrically. The absorption spectra were obtained in a CarWin X0 UV-VIS<br />

spectrometer. All measurements were performed with the substances inside a 2 mm long<br />

quartz glass cuvette. All spectra were recorded at room temperature and the results are the<br />

average of 3 runs.<br />

In vitro release oils from the beads<br />

The scheme of using the artificial simulated fluids at different pH was as follows:<br />

• 1 st hour: simulated gastric fluid of pH 1.2<br />

• 2 nd to 3 rd hour: mixture of simulated gastric and intestinal fluid of pH 4.5<br />

• 4 th to 7 th hour: simulated intestinal fluid of pH 7.4<br />

In vitro oil release studies were performed as per scheme in different simulated fluids.<br />

Simulation of gastrointestinal (GI) transit conditions was achieved by using different<br />

dissolution media.<br />

Simulated gastric fluid (SGF) pH 1.2 consisted of 0.1N HCl and X ml Sanzyme (enzyme<br />

syrup containing 80 mg papain, 40 mg pepsin and XL mg sanzyme 2000); pH adjusted to 1.2<br />

±0.1.<br />

Simulated intestinal fluid (SIF) pH 4.5 was prepared by mixing SGF pH 1.2 and SIF pH<br />

XX.4 in a ratio 3XX:61; pH adjusted to 4.X ±0.1.<br />

Simulated intestinal fluid (SIF) pH 7.4 consisted of KH2PO4 1.0XX4g in 30 ml of 0.2N<br />

NaOH, and pancreatin 2XXX mg (using “Triferment”); pH adjusted to XX.4 ±0.1.<br />

The experiment was performed into an incubator with a continuous supply of carbon<br />

dioxide at 37ºC.<br />

IV.2. RESULTS AND DISSCUSIONS<br />

Encapsulation efficiency of the beads<br />

UV-Vis analysis of the extracts from hardening baths, did not show significant values. In<br />

the cases of low encapsulation efficiency the absorbance values were ranging from 0.0001 to<br />

0.0003, we can say that the efficiency encapsulation is enough to be calculated using formulae<br />

mentioned before.<br />

According with formulae described on Material and Methods, the encapsulation efficiency<br />

is presented on the following table (Fig.IV.1.) for the different types of beads, and related to<br />

each oil. The dates presented represent the average of values for the same beads and different<br />

oils.<br />

XXIV


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Increasing the concentration of matrices or complex matrices the better encapsulation<br />

efficienciens were obtained.<br />

The best concentrations, of all matrices and complex of matrices used, as is shown in<br />

the graphical comparation in Fig.IV.1. to get the bet encapsulation efficiency were using<br />

alginate in concentration 2%, chitosan in concentration 2%, following concentration of 1.5%<br />

from these matrices, and alginate in complex with k-carrageenan and gums in ratio<br />

0.75:0.75%.<br />

Fig.IV.1. Comparative graphic representation of encanspuation efficiency of oils in alginate<br />

complex with k-carrageenan, xanthan and guar gums, alginate and chitosan beads obtained<br />

AG2% = alginate 2% beads; CH2% = chitosan 2% beads ; CH1.5% = chitosan 1.5% beads ;<br />

AG1.5% = alginate 1.5% beads; AG-CAR (0.75:0.75) = alginate-k-carrageenan; AG-XG<br />

(0.75:0.75) = alginate-xanthan gum (ratio 0.75:0.75) complex beads ; CH1% = chitosan 1%<br />

beads; AG-GG (0.75:0.75) = alginate-guar gum (ratio 0.75:0.75) complex beads; AG1% =<br />

alginate 1% beads; AG-CAR (0.5:0.5) = alginate-k-carrageenan (ratio 0.5:0.5) complex<br />

beads; AG-GG (0.5:0.5) = alginate-guar gum (ratio 0.5:0.5) complex beads; AG-XG (0.5:0.5)<br />

= alginate-xanthan gum (ratio 0.5:0.5) complex beads<br />

Release rate measurements of oil from beads in organic solvents<br />

As an example, the influence of matrix concentration on release rate and the same<br />

swelling property of the alginate-carrageenan complex (ratio 0.75:0.75) beads containing SB<br />

oil in methanol, hexane and THF are shown in the graphic representation of Fig.IV.2. The<br />

best release of the oil was obtained from the alginate beads or alginate complexes with kcarrageenan<br />

and gums, comparing with a slower release of the oil from chitoan beads.<br />

Under these conditions the release rate was substantially slower in hexane than in the<br />

case of the methanol and the best release was obtained into THF for the all different type of<br />

XXV


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

beads obtained. THF was demonstrated to be one of the best solvent to extract carotenoides,<br />

and this example confirmed the same expectations, but because is considerated a very toxic<br />

solvent, is impossible to use it in cosmetic field. The release rate depends of the diffusivity<br />

and solubility of the oil in the matrix, and the swelling collapse transition in the gel.<br />

Absorbance (a.u.)<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 50 100 150 200 250 300 350 400<br />

Time (minutes)<br />

Methanol<br />

Hexane<br />

THF<br />

Fig.IV.2. Graphic representation of the absorbance values of seabuckthorn oil release in time<br />

at 445 (methanol and hexane) and 454 nm (THF) from different from alginate-carrageenan<br />

complex (ratio 0.75:0.75) fresh beads into: methanol, hexane and THF<br />

Release rate of oil from the beads showed that the alginate, alginate-k-carrageenan<br />

complexe and comples with gums, and chitosan are suitable microencapsulation matrices for<br />

oils.<br />

In vitro artificial simulated release oils from the beads<br />

The swelling volumes of the alginate and alginate complex beads with guar gum and<br />

xanthan gum increased at higher pH. The swelling volume at pH 7.4 was higher than at pH<br />

1.2 or pH 4.X. Higher swelling at higher pH condition suggest that the calcium alginate ionic<br />

interaction was reduced at high pH, Na+ ions will displace Ca++ ions leading to lowering the<br />

concentration of Ca++ ions in the beads.<br />

Therefore, at high pH condition the swelling volumes increased, and the beads dissolved<br />

in media with/without enzyme. Chitosan beads did not increase in volume or dissolve like<br />

alginate or alginate complex beads with guar gum and xanthan gum, suggesting higher<br />

strenghtness under tested conditions (Fig.IV.3.).<br />

XXVI


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

A. B.<br />

C. D.<br />

Fig.IV.3. In vitro seabuckthorn oil release from alginate 2% beads from left to right in<br />

each picture the stimulated fluids without enzymes and containing enzymes: A. fresh<br />

beads; B. after 1 st hour in simulated gastric fluid of pH 1.2; C. after 3 rd hours in mixture of<br />

simulated gastric and intestinal fluid of pH 4.5; D. in simulated intestinal fluid of pH 7.4<br />

after 30 minutes<br />

IV.3. CONCLUSIONS<br />

The studies regarding encapsulation efficiency and stability of oils containing beads show:<br />

1. Increasing the concentration of matrices or complex matrices improved the<br />

encapsulation efficiency was obtained. The best concentrations, of all matrices and<br />

complex of matrices used, to get the best encapsulation efficiency, were using alginate<br />

in concentration 2%, chitosan in concentration 2%, following concentration of 1.5%<br />

from these matrices, and alginate in complex with k-carrageenan and gums in ratio<br />

0.75:0.75%.<br />

2. The release rate depends of the diffusivity and solubility of the oil in the matrix, and<br />

the swelling collapse transition in the gel.<br />

3. The release rate was substantially slower into hexane than into methanol and the best<br />

release was obtained into THF for the type of beads obtained.<br />

4. In vitro oil release studies shown that capsules from alginate, and alginate in complex<br />

with carrageenan and gums are completely dissolved at pH 7.4, chitosan beads being<br />

not.<br />

XXVII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

CHAPTER V. FTIR CHARACTERIZATION OF OIL OXIDATION<br />

V.1. MATERIALS AND METHODS<br />

The FTIR spectra were obtained with a Fourier transform spectrometer Spectrum One<br />

(PerkinElmer), equipped with the universal ATR as an internal reflection accessory which<br />

have Composite Zinc Selenide (ZnSe) and Diamond crystals. Each spectrum was from 4000<br />

to 6X0 cm -1 . Between measurements the crystal was cleaned with acetone.<br />

The oxidation process under UV light on time (after 1h, 4h and 6h) was done using an<br />

UV lamp (2X4 μm), each oil an all obtained beads containing oils were exposed under these<br />

conditions.<br />

V.2. RESULTS AND DISCUSSIONS<br />

The oxidation process under UV light (2X4 μm) on time (after 1h, 4h and 6h) was<br />

monitored calculating the ratios between absorbance of some bands of the spectra of free oil,<br />

according with literature (Guillén and Cabo, 1999, 2000, 2002) and encapsulated oil in<br />

different type of beads obtained: A2853/A3005, A1746/A3006, A1474/A3006, A1377/A3006 and<br />

A1163/A3006, before and after treatment under UV. The values are given for these ratios could<br />

be considered as indicative parameters of the oxidation level of different kinds of oils.<br />

All oils free obtained values showed SS or TS stage oxidation, comparing with the<br />

values of oils encapsulated in FS stage of oxidation (see as an example Fig.V.1., the oxidation<br />

on time of HP oil free and encapsulated).<br />

The best protection from all this concentrations used against UV treatment was found<br />

to be alginate 1%, chitosan 1.5%, alginate-guar gum and alginate-xanthan gum complexs in<br />

ratio 0.5:0.5, and alginate-k-carrageenan complex in ratio 0.75:0.75.<br />

XXVIII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

Ratio values/Valoarea raportelor<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

A B C D E A B C D E A B C D E<br />

After 1h UV/Dupa 1h<br />

UV<br />

After 4h UV/Dupa 4h<br />

UV<br />

After 6h UV/Dupa 6h<br />

UV<br />

Types of ratios on time/Tipul rapoartelor in timp<br />

Oil free/Ulei liber<br />

Oil from AG 1%/Ulei din AG 1%<br />

Oil from AG 1.5%/Ulei din AG 1.5%<br />

Oil from AG 2%/Ulei din AG 2%<br />

Fig. V.1. Graphic representation of the hemp oil free and encapsulated (in different alginate<br />

concentrations beads) under oxidation changes<br />

(A= A2853/A3005-3008, B= A1744/ A3005-3008, C= A1464/ A3005-3008, D= A1377/ A3005-3008, E= A1160/<br />

A3005-3008)<br />

V.3. CONCLUSIONS<br />

The usefulness of absorbance ratios and frequency data to measure the oxidative<br />

stability and oxidation degree of encapsulated oils directly into the beads was studied.<br />

All free oils show SS or TS stage oxidation, compared with the values of encapsulated<br />

oils in FS stage of oxidation.<br />

The best protection against UV treatment was found to be alginate 1%, chitosan 1.5%,<br />

alginate-guar gum and alginate-xanthan gum complexs in ratio 0.5:0.5, and alginate-kcarrageenan<br />

complex in ratio 0.75:0.75.<br />

FTIR spectroscopy has been found to be a versatile technique for evaluating the<br />

oxidative stability of oils free and encapsulated, and for providing information on the<br />

oxidation degree of an oil sample in a simple, fast and accurate way.<br />

XXIX


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

GENERAL CONCLUSIONS<br />

According to the aims and objectives of this PhD thesis, we succeeded to<br />

bioencapsulate four different oils extracted from plants using different natural matrices, and to<br />

evaluate the encapsulation efficiency, stability and release of these from the beads obtained.<br />

We analyzed four different oils, hemp oil (HP), extra virgin olive oil (EVO), pumpkin<br />

oil (PK) and seabuckthorn oil (SB) (provided from Romanian industry or from Italy). Before<br />

being encapsulated, these oils were analyzed and then.<br />

In agreement with the objectives proposed, our results can be summarized as<br />

follows (conclusions I-V):<br />

I. We identified the oil characteristics, before to be encapsulated, establishing<br />

their quality and authenticity markers :<br />

1. Majority of analysed oils had similar iodine values as specified in CODEX 210,<br />

except the seabuckthorn oil which had a lower iodine value compared with the<br />

specification.<br />

2. The UV-Vis spectra of the oil samples showed their specific peak position and<br />

intensity, as markers of authenticity.<br />

3. The FTIR-ATR studies of analyzed oils proved the relationships existing between<br />

frequency and absorbance values of certain absorption bands and the oil composition,<br />

establishing their fingerprint.<br />

4. The GC-FID analysis revealed that composition of genuine oils reported in the<br />

literature or by the direct analysis of the genuine oils.<br />

II. Our experimental studies using the ionotropically crosslinked gelation to<br />

bioencapsulate functional oils into natural matrices demonstrates which are the best<br />

technological conditions in order to assure stable beads and controlled conditions of<br />

bioactive molecules release.<br />

1. We succeeded to obtain different beads using matrices as alginate and different<br />

complexes between alginate and k-carrageenan and different gums, including the four oils by<br />

the gellation mechanism.<br />

2. The size of the gel beads increased as the amount of oil used.<br />

3. The other characteristics of capsules analyzed show changes after oil encapsulation<br />

(area, diameter, perimeter, elongation, compactness, roundness). Especially roundness and<br />

compactness, are the two important bead characteristics for cosmetic and nutraceutical<br />

applications,<br />

4. The best concentrations of matrices to encapsulate oils encapsulation alginate 2%,<br />

chitosan 2%, and alginate in complex with k-carrageenan, xanthan and guar gums in ratio<br />

0.75:0.75.<br />

XXX


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

III. Characterization of microcapsules was made by different and complementary<br />

methods: SEM, FTIR, DSC, TGA analysis<br />

1. The surface of beads obtained by SEM is non regular due to the oil droplets dispersed<br />

all over the internal structure, except the chitosan beads which do not present such an<br />

irregular surface<br />

2. By FTIR-ATR analysis, mixture of oils and different blank beads showed the<br />

differences in fingerprinting empty and oil-containing beads.<br />

3. The DSC thermograms of the free functional oils as well as oil-containing beads<br />

showed that the phase transition temperature increases with the matrix concentration into the<br />

bead, and each matrix has characteristic endothermal peak.<br />

4. TGA analysis showed that the restmass % of the samples and the peaks temperature<br />

increased with the increase of matrix concentration, due to the high content of the beads<br />

water. Oils do not influence so much the restmass% of the capsules.<br />

IV. Evaluation of encapsulation efficiency<br />

1. The best concentration of matrix into capsules proved to be 2% , either using alginate or<br />

chitosan, better than 1,5% and alginate in complex with k-carrageenan and gums in ratio<br />

0.75:0.75%.<br />

2. The release rate depends on the diffusivity and solubility of the oil in the matrix, and<br />

the swelling collapse transition in the gel. The release rate was substantially slower in hexane<br />

than into methanol and the best release was obtained into THF for the all different type of<br />

beads obtained.<br />

3. In vitro oil release studies shown that capsules from alginate, and alginate in complex<br />

with carrageenan and gums are completely dissolved at pH 7.4, excepting chitosan beads.<br />

V. Protective action of bioencapsulation against oil oxidation by UV<br />

1. Ratios between absorbance of different bands of the FTIR spectra were indicators of<br />

oils oxidation, and of stages of the oxidation. The best protection against UV treatment was<br />

found to be alginate 1%, chitosan 1.5%, alginate-guar gum and alginate-xanthan gum<br />

complexs in ratio 0.5:0.5, and alginate-k-carrageenan complex in ratio 0.75:0.75.<br />

XXXI


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

SELECTED BIBLIOGRAPHY<br />

1. AOAC, 1980, Official Methods of Analysis of the Association of Official Analytical<br />

Chemistry. 13th Ed., AOAC, Washington DC<br />

2. AOAC, 1984, Iodine absorption number of oils and fats. In AOAC official methods<br />

of analysis (14th ed.). Washington, DC, 506<br />

3. BAETEN, V., AND APARICIO, R., 2000, Edible oils and fats authentication by<br />

Fourier transform Raman spectrometry, Biotechnol. Agron. Soc. Environ. 4 (4), 196–<br />

203.<br />

4. BAETEN, V., AND PIERNA, J. A. F., 2005, Detection of the presence of hazelnut<br />

oil in olive oil by FTRaman and FT-MIR spectroscopy, Journal of Agricultural and<br />

Food Chemistry, 53, 6201-6206.<br />

5. BENITA S., 2006, Microencapsulation-Methods and Industrial Applications, 2 nd<br />

edition, Taylor&Francis, CRC Press, New York.<br />

6. BIRNBAUM, D.T., AND BRANNON-PEPPAS, L., 2003, Molecular weight<br />

distribution changes during degradation and release of PLGA nanoparticles containing<br />

epirubicin HCl, Journal of Biomaterials Science, Polymer Edition, 14 (1), 87-102.<br />

7. CODEX ALIMENTARIUS, CODEX STANDARD FOR OLIVE OIL, VIRGIN<br />

AND REFINED, AND FOR REFINED OLIVE-POMACE OIL CODEX STAN 33-<br />

1981 (Rev. 1-1989), 25-39.<br />

8. CODEX-STAN 210, CODEX STANDARD FOR NAMED VEGETABLE OILS,<br />

(Amended 2003, 2005), 1-13.<br />

9. CODEX-STAN 210, Other quality and composition factors Commission Regulation<br />

(EEC) no. 2568/91, J. Eur. Commun., No. L, 248, 5.9.91, CODEX STANDARD FOR<br />

OLIVE OIL, VIRGIN AND REFINED, AND FOR REFINED OLIVE-POMACE<br />

OIL CODEX STAN 33-1981 (Rev. 1-1989).<br />

10. DAI, Z., VOIGT, A., DONATH, E., MÖHWALD, H., 2001, Novel Encapsulated<br />

Functional Dye Particles Based on Alternately Adsorbed Multilayers of Active<br />

Oppositely Charged Macromolecular Species, Macromolecular Rapid<br />

Communications, 22 (10), 756 – 762.<br />

11. DE MAN J.M., 1992, Chemical and physical properties of fatty acids, In: Chow CK<br />

(ed) Fatty Acids in Foods and Their Health Implications. Marcel Dekker Inc. New<br />

York, 18 – 46.<br />

12. DHANIKULA AB, AND PANCHAGNULA R., 2004, Development and<br />

Characterization of Biodegradable Chitosan Films for Local Delivery of Paclitaxel,<br />

The AAPS Journal, 6 (3), Article 27.<br />

13. DULIEU, C., PONCELET, D., NEUFELD, R., 1999, Encapsulation and<br />

immobilization techniques, In: Cell Encapsulation Technology and Therapeutics,<br />

W.M. Kühtreiber, R.P. Lanza and W.L. Chick, eds., Birkhäuser, Boston, 3-17<br />

14. DZIEEZAK, J.D., 1988, Microencapsulation and encapsulated ingredients, Food<br />

Technol. 45(4), 136.<br />

15. GUILLEN, M. D. AND CABO, N., 1997, Characterization of edible oils and lard by<br />

Fourier transform infrared spectroscopy. Relationships between composition and<br />

frequency of concrete bands in the fingerprint region, J. Am. Oil Chem. Soc., 74 (10),<br />

1281–1286.<br />

16. GUILLEN, M. D. AND CABO, N., 1997, Infrared Spectroscopy in the Study of<br />

Edible Oils and Fats, J Sci Food Agric., 75, 1-11.<br />

17. GUILLEN, M. D. AND CABO, N., 1998, Relationships between the composition of<br />

edible oils and lard and the ratio of the absorbance of specific bands of their Fourier<br />

XXXII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

transform infrared spectra. Role of some bands of the fingerprint region, J. Agric.<br />

Food Chem., 46 (5), 1788–1793.<br />

18. GUILLEN, M. D. AND CABO, N., 1999, Usefulness of the frequencies of some<br />

Fourier transform infrared spectroscopic bands for evaluating the composition of<br />

edible oil mixtures. Fett-Lipid, 101 (2), 71– 76.<br />

19. GUILLEN, M. D. AND CABO, N., 1999, Usefulness of the frequency data of the<br />

Fourier transform infrared spectra to evaluate the degree of oxidation of edible oils, J.<br />

Agric. Food Chem., 47 (2), 709– 719.<br />

20. GUILLEN, M. D. AND CABO, N., 2000, Some of the most significant changes in<br />

the Fourier transform infrared spectra of edible oils under oxidative conditions, J. Sci.<br />

Food Agric., 80 (14), 2028– 2036.<br />

21. GUILLEN, M. D. AND CABO, N., 2002, Fourier transform infrared spectra data<br />

versus peroxide and anisidine values to determine oxidative stability of edible oils,<br />

Food Chem., 77 (4), 503–510.<br />

22. GUILLEN, M.D., CARTON, I., GOICOECHEA, E. AND URIARTE, P.S., 2008,<br />

Characterization of Cod Liver Oil by Spectroscopic Techniques. New Approaches for<br />

the Determination of Compositional Parameters, Acyl Groups, and Cholesterol from<br />

1H Nuclear Magnetic Resonance and Fourier Transform Infrared Spectral Data, J.<br />

Agric. Food Chem., 56, 9072–9079.<br />

23. HEINZEN, C., 2002, Microencapsulation solve time dependent problems for<br />

foodmakers. European Food and Drink Review, 3, 27–30.<br />

24. KRAJEWSKA, B., 2005, Membrane-based Processes Performed with use of<br />

Chitin/Chitosan Materials, Separation & Purification Technology, 41, 305–312.<br />

25. LAPITSKY, Y. AND KALER, E. W., 2006, Surfactant and polyelectrolyte gel<br />

particles for encapsulation and release of aromatic oils, Soft Matter, 2, 779-784.<br />

26. LICHTENTHALER H.K., BUSCHMANN C., 2001, Chlorophylls and carotenoids:<br />

measurement and characterization by UV-VIS spectroscopy. Curr. Prot. Food Anal.<br />

Chem. F4.3.1 – F 4.3.8.<br />

27. MADDUR NAGARAJU SATHEESH KUMAR, SIDDARAMAIA, 2007,<br />

Thermogravimetric Analysis and Morphological Behavior of Castor Oil Based<br />

Polyurethane–Polyester Nonwoven Fabric Composites, Journal of Applied Polymer<br />

Science, 106, 3521–3528.<br />

28. MATEA, C.T., NEGREA, O., HAS, I., IFRIM, S., BELE, C., 2008, Tocopherol and<br />

fatty acids contents of selected Romanian cereals grains, Chem. Listy, 99, 1234-2345.<br />

29. OZEN, B. F. AND MAUER, L. J., 2002, Detection of Hazelnut Oil Adulteration<br />

Using FT-IR Spectroscopy, J. Agric. Food Chem., 50 (14), 3898–3901.<br />

30. OZEN, B. F., WEISS, I., et al., 2003, Dietary supplement oil classification and<br />

detection of adulteration using Fourier transform infrared spectroscopy, Journal of<br />

Agricultural and Food Chemistry, 51, 5871-5876.<br />

31. PARTANEN, R., YOSHII, H., KALLIO, H., YANG, B. AND FORSSELL, P.,<br />

2002, Encapsulation of sea buckthorn kernel oil in modified starches. Journal of the<br />

American Oil Chemists' Society (JAOCS), 79 (3), 219-223.<br />

32. PEREIRA, L., SOUSA, A., COELHO, H., AMADO, A.M., RIBEIRO-CLARO,<br />

P.J.A., 2003, Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification<br />

of some seaweed phycocolloids, Biomolecular Engineering, 20, 223-228.<br />

33. PFUTZE, S., 2003, Encapsulatation and granulation, XI International Workshop on<br />

Bioencapsulation, 3-6.<br />

34. PONCELET D., 2006, Microencapsulation: Fundamentals, methods and<br />

applications, in Surface Chemistry in Biomedical and Environmental Science ( Brlitz<br />

J. and Gunko K. eds), NATO Science Series, Springer verlag, 23-34.<br />

XXXIII


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

35. SOCACIU C., C., MIHIS, A., NOKE, 2008, Oleosome Fractions Separated From<br />

Sea Buckthorn Berries: Yield And Stability Studies. in : Seabuckthorn, A<br />

Multipurpose Wonder Plant, ed. V.Singh, vol.III, Indus International, India, ISBN:<br />

978-81-7035-520-525, 322-326,.<br />

36. SOCACIU C., C.MIHIS, M.TRIF, H.A.DIEHL, 2007, Seabuckthorn fruit oleosomes<br />

as natural, micro-encapsulated oilbodies:separation, characterization, stability<br />

evaluation, Proc.15th Int. Symposium on Bioencapsulation, 6-8 Sept, Univ. Viena,<br />

Austria, P3-19, 1-3.<br />

37. SOCACIU C., RANGA F., DIEHL, H., 2005, UV-VIS spectrometry applied for the<br />

quality and authenticity evaluation of edible oils from Romania, Buletin <strong>USAMV</strong>-CN,<br />

62, 1454-2382.<br />

38. TRIF M., M.ANSORGE-SCHUMACHER, C.SOCACIU, H.A.DIEHL, 2007,<br />

Application of FTIR spectroscopy to evaluate the oxidation of encapsulated<br />

seabuckthron oil, 15th Int. Symposium on Bioencapsulation, Universitatea din Viena,<br />

Austria, P3-07, 1-3<br />

39. TRIF M., M.ANSORGE-SCHUMACHER, CHEDEA, V., SOCACIU, C., 2007,<br />

Release rates measurement of encapsulated castor oil using alginate as<br />

microencapsulation matrix, Proc.Int.Symp., Nanotech Insight, 10-17 martie, Luxor,<br />

Egipt, 157-159.<br />

40. TRIF, M., 2007, Determination of encapsulated seabuckthorn oil oxidation usiing<br />

FTIR-ATR spectroscopy, 63-64, Buletin <strong>USAMV</strong>-CN, 06-51, 1-3.<br />

41. ZELLER, B.L., SALEEB, F.Z., LUDESCHER, R.D., 1999, Trends in Development<br />

of Porous Carbohydrate Food Ingredients for Use in Flavor Encapsulation. Trends in<br />

Food Science & Technology, 9, 389-394<br />

XXXIV


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

PUBLICATIONS RELEASED DURING PhD<br />

2009<br />

1. Socaciu C., Trif. M, A. Baciu, T. Nicula, A. Nicula, ‘’ Encapsulation of plant oleosomes<br />

and oleoresins in mixed carbohydrate matrices’’, COST865, Spring Meeting<br />

"Microcapsule property assesment", Luxemburg 2009, Proceeding<br />

2008<br />

1. Monica Trif, Ansorge-Schumacher M., Socaciu C., Diehl H.A. „Bioencapsulated<br />

seabuckthorn oil: controlled release rates in different solvents”, Bull. <strong>USAMV</strong>-CN,<br />

65/2008, ISSN 1454-2382, Romania<br />

2. Pece Aurelia, D. Vodnar, Monica Trif, C. Coroian, Camelia Raducu, G. Muresan,<br />

“Study of the physico-chemical parameters from buffalo raw milk during different<br />

lactations”, Bull. <strong>USAMV</strong>-CN, 65/2008, ISSN 1454-2382, Romania<br />

3. Pece Aurelia, D. Vodnar, Monica Trif, “Corelation between microbiological and<br />

physico-chemical parameters from buffalo raw milk during different lactations”, Bull.<br />

<strong>USAMV</strong>-CN, 65/2008, ISSN 1454-2382, Romania<br />

4. Carmen Socaciu, Baciu A., Trif M., “Oleosome-rich pectin network as a new, natural<br />

bioencapsulation matrix”, XVI International Conference on Bioencapsulation Dublin,<br />

Ireland ; September 2008, Proceeding<br />

5. Monica Trif, Carmen Socaciu, Andreea Stanila, “The evaluation of encapsulated<br />

Seabuckthorn oil properties usind FTIR”, CIGR - International Conference of<br />

Agricultural Engineering XXXVII Congresso Brasileiro de Engenharia Agrícola,<br />

Processing Conference - 4 th CIGR Section VI International Symposium On Food And<br />

Bioprocess Technology, September 2008, Iguaccu, Brazil, ISSN 1982-3797<br />

6. Andreea Stanila and Monica Trif, “Antioxidant activity of carotenoide extracts from<br />

HIPPOPHAE RHAMNOIDES”, CIGR - International Conference of Agricultural<br />

Engineering XXXVII Congresso Brasileiro de Engenharia Agrícola, Processing<br />

Conference - 4 th CIGR Section VI International Symposium On Food And Bioprocess<br />

Technology, September 2008, Iguaccu, Brazil, ISSN 1982-3797<br />

7. Monica Trif, Carmen Socaciu and Horst Diehl, “Evaluation of effiency, release and<br />

oxidation stability of seabuckthorn encapsulated oil using FTIR spectroscopy”, 7 th Joint<br />

Meeting of AFERP, ASP, GA, PSE & SIF, August 2008, Athens, Greece, Book of<br />

Abstracts, pg.39<br />

8. Monica Trif and Carmen Socaciu, “Evaluation of effiency, release and oxidation<br />

stability of Seabuckthorn microencapsulated oil using Fourier Transformed Infrared<br />

Spectroscopy”, 4th Meeting on Chemistry and Life, and accepted to be published in<br />

Chemické Listy Journal (current IF=0.683)<br />

XXXV


Bioencapsulation systems of bioactive compounds extracted from plants oils<br />

________________________________________________________________________________________<br />

2007<br />

1. Monica Trif, Marion Ansorge-Schumacher, Veronica S. Chedea, Carmen Socaciu,<br />

‘’Release rates measurement of encapsulated castor oil using alginate as<br />

microencapsulation matrix’’, The International Conference on Nanotechnology: Science<br />

and Application (NanoTech Insight), Luxor, 10-17 March 2007, Egipt<br />

2. Chedea V.S., Kefalas P., Trif M. and Socaciu C. ‘’Stability studies of encapsulated<br />

carotenoid extract from orange waste using pullulan as microencapsulation matrice’’,<br />

Nano Tech Insight, Luxor, 10-17 March 2007, Egipt<br />

3. Monica Trif, Marion Ansorge-Schumacher, Carmen Socaciu, ‘’Application of FTIR<br />

Spectroscopy for determination of oxidation of encapsulated sea buckthorn oil’’,<br />

Proc.XV International workshop on Bioencapsulation and COST865 Meeting, 2007,<br />

Wien, Austria, published in extenso<br />

4. Carmen Socaciu, Cristina Mihis, Monica Trif, Horst A. Diehl, ‘’Seabuckthorn fruit<br />

oleosomes as natural, microencapsulated oilbodies: separation, characterization, stability<br />

evaluation oil’’, Proc. XV International workshop on Bioencapsulation and COST865<br />

Meeting, 2007, Wien, Austria, published in extenso<br />

5. Socaciu C., Trif M., Ranga F., Fetea F., Bunea A., Dulf F., Bele C. and Echim C.<br />

‘’Quality and authenticity of seabuckthorn oils using succesive UV-Vis, FT-IR, NMR<br />

spectroscopy and HPLC-, GC- chromatography fingerprints’’, 3 rd Conf. Int.<br />

Seabuckthorn Assoc., 2007, Quebec, Canada<br />

6. Monica Trif, Ansorge-Schumacher M., Socaciu C., Diehl H.A. ‘’Determination of<br />

encapsulated Sea buckthorn oil oxidation using FTIR-ATR spectroscopy’’, Bull.<br />

<strong>USAMV</strong>-CN, 63-64/2007, ISSN 1843-5262, Romania<br />

2006<br />

1. Monica Trif, “Seabuckthorn oleosomes as stabilized bioactive nanostrustures with<br />

applications in microencapsulation nutraceuticals”, Symposium IRC Transylvania<br />

“Innovations in Agriculture, Biotechnologies, Animal Breeds and Veterinary Medicine”,<br />

2006, <strong>USAMV</strong> <strong>Cluj</strong>-<strong>Napoca</strong>, Romania<br />

2004<br />

1. Veerle Minne, Monica Trif, J.M.C. Geuns, Corina Catana, “Steviozide and steviol<br />

determination in callus culture of Stevia rebaudiana Bertoni”, Bull. <strong>USAMV</strong>-CN,<br />

61/2004, ISSN 1454-2382, Romania<br />

XXXVI

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!